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Abstract

Friedreich’s ataxia (FRDA\) is caused by reduction of frataxin levels to 5-35%. To better
understand the biochemical sequelae of frataxin reduction, in absence of the confounding effects
of neurodegeneration, we studied the gene expression profile of a mouse model expressing 25—
36% of the normal frataxin levels, and not showing a detectable phenotype or neurodegenerative
features. Despite having no overt phenotype, a clear microarray gene expression phenotype was
observed. This phenotype followed the known regional susceptibility in this disease, most changes
occurring in the spinal cord. Additionally, gene ontology analysis identified a clear mitochondrial
component, consistent with previous findings. We were able to confirm a subset of changes in
fibroblast cell lines from patients. The identification of a core set of genes changing early in the
FRDA pathogenesis can be a useful tool in both clarifying the disease process and in evaluating
new therapeutic strategies.
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Introduction

Friedreich ataxia (FRDA), the most prevalent inherited ataxia, is most frequently caused by
a GAA triplet repeat expansion within the first intron of the gene encoding for frataxin, a
nuclear encoded mitochondrial protein (Campuzano et al., 1996). The mutation affects
frataxin transcription, leading to severe reduction of protein levels in homozygous patients
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(Bidichandani et al., 1998). The normal function of frataxin, and how its deficiency
ultimately leads to neuronal dysfunction and death, is not well understood. Deficiency of the
yeast frataxin homolog protein Yfhlp causes a strong reduction in the assembly of
mitochondrial proteins containing iron—sulfur clusters (ISC) (Muhlenhoff et al., 2002), and
frataxin is required for ISC assembly in yeast mitochondria (Gerber et al., 2003; Lutz et al.,
2001). These data support a specific role for frataxin in the biosynthesis of cellular ISC
proteins, which may be in turn related to oxidative stress sensitivity and iron homeostasis
alterations (Puccio and Koenig, 2002).

FRDA has been a challenging disease to model in mice. Homozygous deletion of frataxin in
the mouse causes embryonic lethality a few days after implantation, demonstrating a pivotal
role for frataxin during early development (Cossee et al., 2000). Heterozygous knockout
mice show reduced (50%) frataxin levels, no obvious phenotype, and sporadic heart iron
deposits after dietary iron load (Santos et al., 2003). Through a conditional gene-targeting
approach, neuronal, cardiac (Puccio et al., 2001), and pancreatic (Ristow et al., 2003)
frataxin knockout mice have been generated. These models show cardiac hypertrophy, large
sensory neuron dysfunction, deficient ISC protein activities (Puccio et al., 2001), and
diabetes due to reactive oxygen species increase, growth arrest, and apoptosis in pancreatic
beta cells (Ristow et al., 2003).

However, in FRDA patients (Pianese et al., 2004) and in lymphoblastoid cell lines derived
from FRDA patients (Campuzano et al., 1997) a residual frataxin activity (5-35% of normal
levels) is present. Thus, animal models with FRDA reduction, rather than its complete
absence, would be valuable to further explore the effects of moderate frataxin deficiency on
cellular and organismal functioning. One such model has involved the generation of a mouse
expressing frataxin only from a human transgene containing a small repeat expansion
(Miranda et al., 2002). The presence of a homozygous (GAA),3q repeat expansion in frada
mouse gene led to a reduction of frataxin levels to about 75% of the wild type (WT). After
crossing this knockin mouse with a frataxin knockout, the resulting knockin/knockout
offspring (KIKO) expressed 25-36% of the WT levels. These mice — when examined at 12
months of age — showed no obvious phenotype, no iron deposits, and no differences with
controls after dietary and parenteral iron load (Miranda et al., 2002). This model therefore
provides a significant advantage for gene expression studies aimed at understanding the
consequences of frataxin deficiency, since it is not confounded by factors that often
accompany but may not initiate neurodegeneration, such as cell loss or inflammation
(Geschwind, 2000).

FRDA presents a striking regional distribution of neuropathological abnormalities, with
constant involvement of cervical spinal cord, neuronal loss in brainstem nuclei, and fairly
common loss of Purkinje cells in the cerebellar cortex (Lamarche et al., 1984). To address
the FRDA regionality, we studied several brain regions from KIKO mice using DNA
microarrays. We hypothesized that, at a time prior to any evidence of neurodegeneration, this
would allow us to assess early cellular changes in tissues that were frataxin deficient, in the
absence of detectable cell loss. Similar approaches have been used to assess biochemical
changes prior to the onset of overt disease in other models of neurodegenerative conditions,
such as spinocerebellar ataxia (SCA) 1 (Serra et al., 2004), ataxia with vitamin E deficiency
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(AVED) (Gohil et al., 2003), amyotrophic lateral sclerosis (Yoshihara et al., 2002),
Huntington’s disease (Sipione et al., 2002), and in heterozygous carriers of ataxia
telangiectasia (Watts et al., 2002). This approach has allowed us to gain insight into early
molecular dysfunction caused by reduced frataxin levels and complements other recent
studies in this area by highlighting key pathways for therapeutic intervention.

Materials and methods

Samples

Frataxin heterozygous knockout mice (frda*/~) were crossed with frda*/230GAA mice, to
generate frataxin knockout/knockin mice (frda™230GAA) and the offspring was genotyped as
described (Miranda et al., 2002). In this study, four 6-month-old KIKO mice were compared
to age and gender matched WT littermates. Total RNA from three brain regions, cervical
spinal cord (SC), cerebellum (CB), and brainstem (BS), was extracted by acid phenol
extraction (Trizol, GIBCO/BRL) as recommended by the manufacturer. The purity and
quality of the extracted RNA were assayed by measuring the optical density at 260 and 280
nm (NanoDrop ND-100 Spectrophotometer, NanoDrop Technologies) and by gel
electrophoresis on RNA assay chips (Agilent 2100 Bioanalyzer, Agilent Technologies). Four
WT (two males and two females) and four KIKO (two males and two females) mice were
compared. RNAs from WT samples of the same gender were pooled, and co-hybridized with
KIKO samples (Fig. 1).

Probe synthesis and hybridization

Labeled cDNA synthesis, hybridization, and signal detection were performed using the
tyramide signal amplification (TSA, PerkinElmer) kit, according to the manufacturer’s
protocols with minor modifications (Karsten et al., 2002). Briefly, two total RNA samples
(1.5 pg) were reverse transcribed to fluorescein- and biotin-labeled cDNA, and hybridized
on mouse 9K cDNA arrays (UCLA Microarray Core Facility, http://www.genetics.u-cla.edu/
microarray), including 9,150 genes and expressed sequence tags. This cDNA array based on
the Incyte Unigem 1 mouse clone set was chosen because it had previously shown highly
reproducible hybridizations (Karsten and Geschwind, 2002; Karsten et al., 2002). Probe
signals were generated using Cy3 and Cy5 reporters, and the hybridization was duplicated
with dye swapping, in order to eliminate the influence of dye bias effects (Liang et al., 2003;
Yang et al., 2002). Eight hybridizations using 4 independent pairs were performed for each
of the three brain regions, for a total of 24 microarray hybridizations. Two additional
microarrays were used for homotypic control/control hybridizations.

Scanning and data analysis

Slides were scanned by the GMS 418 Array Scanner (Genetic Microsystems), and the
resulting images were analyzed by ImaGene 4.2 (Biodiscovery) using auto segmentation
measurements set 3 pixel buffer and width for background. Signals from the poor quality
spots flagged by ImaGene software were ignored. The ImaGene-generated data were loaded
onto Gene-Spring 6.0 (Silicon Genetics), the local background was subtracted, and only the
signal intensities greater than the background were subjected to lowess normalization, to
obtain intensity-dependent normalized ratios of KIKO to WT. After averaging the dye-
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swapped ratio pairs, every probe had at maximum 4 ratios for each of the three brain
regions. EntrezGene (http://www.ncbi.nIm.nih.gov/entrez/), Ensembl (http://
www.ensembl.org), and GeneOntology (http://www.geneontology.org) were used to obtain
nomenclature, sequence, and gene ontology (GO) information.

Statistical analysis

After ruling out the signal outliers, genes with at least 8 ratio measurements were analyzed
by the one-sample Student’s #test, to select those differentially expressed across all the
examined regions. In addition, one-way ANOVA with post hoc Tukey test was used to select
those with specific regional changes. By means of EASE software (Hosack et al., 2003)
differentially expressed genes with GO data available were searched for over-represented
classes. EASE calculates the over-representation (within the subset of differentially
expressed genes) of each GO functional cluster, with respect to the total number of genes
assayed and annotated within each functional cluster.

Human cell lines

Primary fibroblast cell lines from 3 patients and 3 controls were obtained from Coriell Cell
Repositories (Camden, NJ) and cultured in F12 Dulbecco’s modified essential medium with
HEPES and glutamine (F12-DMEM, Invitrogen), with 10% calf serum and 1% penicillin-
streptomycin. All cell lines were cultured at 37°C, in a humidified atmosphere of 5% CO,,
95% air.

Real-time quantitative PCR

Results

Selected differentially expressed genes were assayed using real-time quantitative PCR (qRT-
PCR) using SYBR green | as fluorescent dye. Total RNA (2 pg) from different animals
(distinct from those studied in the microarray analysis) was treated with DNAse | (Promega)
and converted into cDNA by SuperScript 11 kit (Invitrogen). The reactions were performed
with 2x SYBR-green PCR Master Mix (BioRad), in a 25 pl volume. Assays were performed
in triplicate, and analyzed using an ABI 7700 instrument (Applied Biosystems). The fold
change was calculated using both standard curve analysis and the Pfaffl method (Pfaffl et al.,
2002), using Hprt as reference gene. For each gene, data from at least 3 KIKO/WT pairs
were averaged.

Genes differentially expressed across all the regions

We first identified genes that were differentially expressed across all the examined brain
regions. Student’s ftest analysis identified 185 sequences across 12 independent
experiments that were significantly differentially expressed between mutant and WT
animals. Among these genes, 116 were upregulated and 69 downregulated (Fig. 2). A list of
selected differentially expressed sequences according to their proposed biological function is
reported in Table 1. The observed changes were small, but statistically significant, with most
genes with a fold change between 1.2 (0.2) and 1.5 (0.5), consistent with the little or absent
phenotype.

Neurobiol Dis. Author manuscript; available in PMC 2010 June 15.


http://www.ncbi.nlm.nih.gov/entrez/
http://www.ensembl.org
http://www.ensembl.org
http://www.geneontology.org

1duosnuey Joyiny ¥HIO 1duosnuey Joyiny JHIO

1duosnue Joyiny gHID

Coppola et al. Page 5

Genes showing region-specific changes

Since FRDA involves degeneration of specific brain regions, rather than global
neurodegeneration, it was also interesting to assess regional distinctions between mutant and
WT mice. So, we next determined whether any genes were differentially expressed in some
brain regions and not in others, identifying potential pathways that could underlie selective
compensation or vulnerability. After ANOVA analysis, an additional 105 genes
demonstrated a significant regional pattern of differential expression. Strikingly, the cervical
spinal cord, which is the region most affected in the human disease, showed the most
changes in gene expression (7= 61), followed by brainstem (7= 27), and cerebellum (n=
17). Moreover, these SC changes were biased to involve more downregulation than
upregulation (Fig. 2, Table 1).

Functional categorization of gene expression changes

EASE analysis was used to help annotate genes relative to relevant functional categories.
The subset of overall differentially expressed genes (including the genes showing regional
changes) was classified according to GO biological process, cellular component, and
molecular function (Table 2). Interestingly, the mitochondrial cellular component (along
with ribonucleoprotein complex) showed a significant over-representation in this subset of
genes, consistent with the mitochondrial localization of the frataxin protein across species,
and the demonstrated role of mitochondrial dysfunction in the disease. It is also notable that
genes associated with the RNA function and translational regulation were identified in all
three gene ontology classifications. The significant over-representation of ribonucleoprotein
complex (within cellular components), of RNA binding (within molecular function), and of
ribosome biogenesis (within biological function) supports a role for dysfunction in RNA
metabolism and protein translation in addition to the basic mitochondrial respiratory
involvement in FRDA.

Quantitative RT-PCR confirmation of differential expression

Confirmation on KIKO samples—The expression of 25 genes, chosen to represent a
cross section of genes expressed at different levels and regions, was tested on RNA extracted
from an independent set of mutant and WT animals, by means of gRT-PCR, so as to provide
an independent confirmation of the microarray results (Fig. 3). gRT-PCR data confirmed the
microarray data for 18/25 (72%) of the genes.

Confirmation on FRDA fibroblast cell lines—\We next tested the expression levels of
the human homologs of 11 genes on RNA extracted from three fibroblast cell lines from
FRDA patients. 7/11 genes (64%) showed the same changes in human FRDA fibroblasts
(Fig. 3). Since fibroblasts are not neural tissue, such a level of confirmation was close to
what might be expected a priori, based on experience from our group and others, when
confirming changes in different cell types and across different methods (array vs. gRT-PCR).

Discussion

The goal of this microarray study was to identify a biochemical phenotype secondary to a
significant reduction in frataxin levels in clinically relevant brain regions, prior to the onset
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of any neurodegeneration or clinical phenotype. This avoids confounding factors, as cell loss
or reactive changes occurring during overt neurodegeneration. Over 200 differentially
expressed genes involved in several pathways were identified. Quantitative RT-PCR was
used in independent KIKO mouse samples and in fibroblasts from FRDA patients and
confirmed a significant proportion of these changes. A subset of genes showed region-
specific changes, mostly involving the cervical spinal cord, which is a region heavily
involved in the human disease. Consistent with the subtle biochemical phenotype expected,
the magnitude of the changes observed was small, and in many cases likely providing a
compensatory mechanism to counteract cellular stress induced by reduced frataxin.

Current pathogenetic theories propose a role of frataxin in ISC assembly (Acquaviva et al.,
2005; Muhlenhoff et al., 2002; Stehling et al., 2004), in the activation of stress pathway
(Pianese et al., 2002), and in iron metabolism (Cavadini et al., 2002). Microarray studies of
Ayfhlyeast strains (knockout for the yeast frataxin homolog) showed increased expression
of genes involved in iron level regulation (Foury and Talibi, 2001). In the first study
involving human cells, Tan et al. reported altered expression of several classes of genes,
including amino acid metabolism, apoptosis and signal transduction; these authors focused
on the involvement of the sulfur amino acid pathway (which is connected to the ISC
biosynthetic pathway) and confirmed this finding through functional experiments (Tan et al.,
2003). In two recent studies, cardiac and liver tissues from a conditional frataxin knock-out
were studied with microarrays, and showed expression changes in genes involved in amino
acid (Seznec et al., 2005) and heme metabolism (Schoenfeld et al., 2005). In the present
study, GO analysis and literature review showed that the genes identified are involved in
nucleic acid and protein metabolism, signal transduction, stress response, and nucleic acid
binding. The over-representation of mitochondria-related transcripts within the subset of the
differentially expressed genes supports an involvement of mitochondrial pathways secondary
to the deficiency of frataxin, a nuclear-encoded mitochondrial protein. Thus, our study adds
further evidence supporting the mitochondrial and amino acid metabolism involvement, the
activation of stress pathways, and little involvement of iron metabolism-related genes in the
early steps of FRDA pathogenesis.

OX-REDOX chemistry and disease pathophysiology

Oxidative stress plays an important role in the pathogenesis of FRDA (Puccio and Koenig,
2002), and this may be linked to the ISC biosynthesis defect. Antioxidant defenses have
been reported reduced in FRDA cells (Chantrel-Groussard et al., 2001; Jiralerspong et al.,
2001), and increased in transgenic cells overexpressing frataxin (Shoichet et al., 2002).
Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione
(GSSG) to glutathione (GSH), and is essential in maintaining adequate levels of reduced
GSH. Levels of mMRNA coding for glutathione reductase 1 are reduced in the cervical spinal
cord of frataxin deficient mice, and in fibroblasts from patients. This observation is
intriguing, since a lower activity of this enzyme has been reported in the blood of FRDA
patients (Helveston et al., 1996) and higher levels of GSSG have been found in frataxin-
deficient cells (Tan et al., 2003). The gene NHL repeat containing 2 has a thioredoxin
domain and its transcript is downregulated across all the CNS regions and in FRDA
fibroblasts. Thioredoxins play a key role in maintaining proteins in their reduced state, and
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in defense against oxidative stress (Arner and Holmgren, 2000). Taken together, our data
support the role of an early deficiency in the oxidative stress-related pathways in this animal
model, and offer a contribution to the general debate about the role of oxidative stress in
neurodegeneration (Andersen, 2004), especially after two recent studies respectively
supporting (Sturm et al., 2005) and suggesting a revision (Seznec et al., 2005) of the concept
of FRDA as a paradigm for neurodegenerative diseases due to oxidative stress.

The involvement of the stress-pathway response

The mitogen-activated protein kinase (MAPK) signaling cascade is implicated in several
cellular processes, including regulation of gene expression in response to environmental
stress (Chang and Karin, 2001). A hyperactive stress pathway, involving the mitogen
activated protein kinase kinase 4 (MAP2K4) and the c-JUN N-terminal kinase was reported
in FRDA fibroblasts and in a FRDA foetus, suggesting an early role in the disease
pathogenesis (Pianese et al., 2002). Map4k5, coding for a member of the MAPK family, is
upregulated in frataxin deficient mice. AVED - a human neurodegenerative disorder caused
by mutations in the TTPA gene, coding for the a-tocopherol transfer protein — is often
clinically indistinguishable from FRDA (Ben Hamida et al., 1993), suggesting some
common pathogenetic pathways. Thus, it is striking that the gene expression profile
identified here shares some analogies with that of vitamin E deficiency mice. Map2k3, a
member of the MAPK cascade, is upregulated in the liver of an AVED mouse model (Gohil
et al., 2003), and members of the same family have been identified as vitamin E sensitive
transcripts (Roy et al., 2002). RAR-related orphan receptor alpha (downregulated in brains
of KIKO mice and in FRDA fibroblasts) is involved in the lipid metabolism and in
protection against age-related degenerative processes (Boukhtouche et al., 2004), and is
strongly downregulated in the cortex of 7zva'~ mice. Of note, the spontaneous staggerer
mouse is caused by a mutation in this gene, and is associated with ataxia and cerebellar
degeneration (Hamilton et al., 1996).

RNA and protein metabolism

The role of RNA and protein metabolism evident in the GO analysis from KIKO mice is
supported by other reports in literature. In addition to cysteinyl-tRNA synthetase
(upregulated in this study), 3 other tRNA-synthetases (GIn-, Asn-, and Ala-tRNA
synthetase) have been reported as upregulated in hearts of frda mutants (Seznec et al., 2005),
and another (seryl-tRNA synthetase) was previously reported as downregulated in FRDA
lymphoblasts (Tan et al., 2003), suggesting an involvement of intracellular amino acid
metabolism in the pathogenesis of the disease.

Importance of a ‘microarray phenotype’ in absence of overt neurodegeneration

The presence of a gene expression phenotype raises questions about the absence of a clinical
phenotype in this model. The transcriptional profile in KIKO mice may be involved in a
compensatory response aimed at maintaining cellular function and integrity, or constitute an
early step in disease pathogenesis. In the first case, the compensatory changes would
underlie the absent phenotype; in the second, the lifespan of frataxin deficient mice may be
too short to detect a clinical phenotype. Therefore, the possibility of a very late-onset disease
in this model (or an undetectable underlying pathologic process) should be considered. The
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conditional FRDA mouse model shows signs of neurological impairment about 6 months
after the knocking-down of frataxin (Simon et al., 2004), and the knockout mouse for a-TTP
(a-TTP™~) — a model of a late-onset, slowly progressive neuronal degeneration due to
chronic oxidative stress — did not present clinical or pathological phenotype until after 1 year
of age (Yokota et al., 2001). But, similar to our observations here, a gene expression
phenotype could be detected in a similar model at 12-16 weeks of age (Gohil et al., 2003).
Thus, the presence of a detectable phenotype is related to many factors, including age,
genetic background, and type of phenotypic analysis. Although fibroblasts are not known to
be involved in human disease, they provide an accessible source for comparing in human
tissue changes found in mouse. Thus, we do not expect all the changes in brain to be
measured in fibroblasts, but we were able to confirm a subset of the genes changing in
KIKO mice in FRDA fibroblasts. This provides some additional support for the use of
mouse models in this disorder, and additional candidate genes for further investigation
through functional studies. In addition, the definition of a core of genes changing due to
frataxin deficiency can be useful in the evaluation of small molecules with possible
therapeutic value: looking for candidate drugs able to revert a gene expression phenotype
based on 10-15 genes may be more sensitive than relying entirely on frataxin levels.

Some methodological issues should be addressed. Even after a conservative statistical
approach, some of the detected changes in a microarray study can always be due to
biological variability. However, in this case, we reduced this effect by performing many
replicates (8 per brain region), pooling the samples, and confirming the differentially
expressed genes with gRT-PCR on animals distinct from those tested in the microarray
study. A concordance of 72% between gRT-PCR and microarray data is well within typical
levels of confirmation, especially using independent samples. In addition, nearly 10% of the
observed changes were confirmed in this manner by gRT-PCR, a large cross section of the
data. It should be emphasized that the small magnitude of the detected changes challenges
the sensitivity of both microarray and gRT-PCR techniques. However, the rate of
concordance between the two techniques was very reasonable, supporting the validity of the
results.

In conclusion, the identification of a gene expression profile associated with reduced frataxin
levels in this animal model provides valuable insights for further studies aimed at both
understanding the earliest molecular events in FRDA pathogenesis, and in setting up in vitro
tools to evaluate new therapeutic strategies.
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Fig. 1.
Study design schematic. Four 6-month-old KIKO mice (2 males, 2 females) were compared

to age and gender matched WT littermates. RNA extracted from each of three CNS regions
was co-hybridized on microarray slides (=12, 4 for spinal cord, 4 brainstem, and 4
cerebellum). To control for biological variability, WT samples from the same gender were
pooled. To avoid a dye-effect, replicates were performed with dye-swaps, for a total of 24
array hybridizations performed (8 for spinal cord, 8 brainstem, and 8 cerebellum). SC: spinal
cord; BS: brainstem; CB: cerebellum.
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Fig. 2.
Differentially expressed genes in three CNS regions in frataxin deficient mice. 185 genes

were identified as differentially expressed across all regions. An additional 105 genes
showed expression changes with a regional distribution, following the gradient of known
neuropathological involvement in FRDA (spinal cord > brainstem > cerebellum). The
majority of these changes were observed in the cervical spinal cord, the most severely
affected region in patients, and most of them were towards downregulation.
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Fig. 3.
Microarray and gRT-PCR data in KIKO mice and FRDA fibroblasts. Microarray data were

confirmed through real-time quantitative PCR. Samples from at least 3 distinct animals and
controls were tested. A subset of genes was tested on three fibroblast cell lines from FRDA
patients. Two genes with regional changes in spinal cord (sc) were also observed to be
differentially expressed in human fibroblasts. Frataxin (bottom row) was not present on the
array, so we present gRT-PCR data showing its downregulation in both KIKO mice and
FRDA fibroblasts. Bars: fold change. Error bars: standard error.
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