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Genome-wide association (GWA) studies have led to a paradigm 
shift in the discovery of gene–disease associations. Since 2007, 
several hundred GWA studies have been published, including sev-
eral dozen on cancer phenotypes (1–56). As a result of this research 
effort, a large number of new gene–disease associations have been 
discovered pertaining to common genetic variants, with minor 
allele frequencies typically exceeding 5% in the general population 
(57–59). These discoveries include many associations with robust 
statistical support for influencing susceptibility to diverse cancers. 
However, despite the accumulating interesting findings, there is 
debate about the exact merits and future of such studies (60–64). 
Skeptics point out that discoveries of new associations with this 
expensive technology are not as numerous as originally expected, 
discovered genetic effects for common variants are small, the 
ability of the discovered variants to discriminate disease risk is 
minimal, and the true functional culprits linked to the discovered 
markers remain largely unknown. If so, GWA studies of common 
variants may be reaching their limits of discovery, and research 
efforts should shift to other approaches, such as genome se-
quencing and rare variant analysis (61). Alternatively, more opti-
mistic investigators point out that the costs of GWA genotyping 
have decreased steeply over time, many robust associations con-
tinue to be discovered, disease risk may be adequately predicted if 
a large number of such markers are discovered for each disease, 

and the discovery of novel genetic risk loci creates opportunities 
for understanding the biological function of these loci and using 
this knowledge for translational purposes (62).

Whereas new sequencing technologies are already in use and 
will continue to grow in their applications, it is useful to review 
what we have found based on GWA studies targeting common 
genetic variants. An overview of the current evidence can provide 
a useful perspective on past achievements and future prospects 
of GWA studies and will help to assess the contribution these 
discoveries can make toward explaining the genetic risk of diverse 
malignancies.

In this review, we assembled a compendium of discovered asso-
ciations with robust statistical support from cancer susceptibility 
GWA studies (excluding hematological malignancies). We 
addressed the following questions: Is the pace of new discoveries of 
associations between common variants and cancer accelerating or 
decelerating? How strong are the magnitudes of the discovered 
effects in terms of the genetic risk conferred and the frequency of 
the risk variants? How extensive might the discrimination of risk 
be if information from all identified risk variants is used? Finally, 
is the pattern of discovered effects reflective primarily of statistical 
power considerations and would it be possible to find many more 
similar associations if larger studies could be performed with the 
same platforms?
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Compilation and Cleaning of Database of 
Associations
The review considered all single-nucleotide polymorphisms 
(SNPs) associated with any cancer, except for hematological malig-
nancies, for which discovery of an association stemmed from a 
GWA study using an agnostic screening of more than 100 000 
tagging SNPs across the human genome, and the P value for the 
test of association reached the genome-wide significance (GWS) 
threshold of less than 5 × 1028 (65) in at least one publication. In 
an agnostic GWA study, there is no prior belief that one SNP 
should have more chances than another for being associated with 
the phenotype of interest. Therefore, for all SNPs, the same GWS 
threshold is applied that accounts for the extent of multiplicity of 
comparisons. Associations were considered eligible regardless of 
whether they reached GWS in the early stage at which the agnos-
tic testing was performed or (as is more often the case) only after 
additional data were included from subsequent replication stages 
or from other GWA studies in a GWA meta-analysis (66). The 
review excluded pharmacogenetic studies and studies that evalu-
ated only associations with various clinical or pathologic features 
of a specific cancer type (eg, grade, stage, or invasiveness).

The search for studies and eligible markers was based on the 
online catalog of GWA studies hosted by the National Human 
Genome Research Institute (NHGRI, last searched March 15, 
2010; www.genome.gov/gwastudies). Details on the NHGRI cat-
alog appear elsewhere (58,59). Briefly, the catalog is updated 
weekly to include all published studies that have performed 
genome-wide evaluations for human phenotypes and traits, and it 
lists associations with P values less than or equal to 1025. Extracted 
data include study name, publication date (month, year), chromo-
somal region, potentially implicated gene(s), SNP with the stron-
gest statistical support, risk allele, sample size (number of case 
patients and number of control subjects in the first and subsequent 
stages), frequency of the risk allele, respective effect size and 
95% confidence interval, and P value.

For this review, a number of steps were taken to augment the 
information available from the NHGRI catalog and to confirm 
data quality. All potentially eligible articles in the catalog were 
retrieved, and information was collected on the ancestry of the 
studied populations. When possible, data regarding allele frequency 
and effect sizes were extracted separately based on population 
ancestry. For all associations with listed P values greater than or 
equal to 5 × 1028 in the catalog, the data were scrutinized in the 
original publication to avoid missing statistically significant associ-
ations. We checked non-GWS P values in the original publications 
to identify whether they might have been corrected for multiple 
comparisons or some other identifiable error. In addition, other 
errors, inconsistencies, or missing values were corrected, and odds 
ratios (ORs) were consistently corrected, as needed, to reflect per-
allele odds ratios in multiplicative models. The article reference 
lists were reviewed to identify articles with pertinent results of 
GWA studies that had not been indexed in the NHGRI catalog. 
Furthermore, to include recently published data, additional eli-
gible articles were searched in the advance online publications of 
the journals that had published other eligible GWA studies until 
March 15, 2010.

For duplicate entries, for which the same SNP was found to be 
associated with the same cancer in two or more studies, only the 
earliest published study was retained. If both studies were pub-
lished at exactly the same date, then the study with the largest total 
sample size was retained. The same rule was applied when two or 
more studies had found different SNPs in the same genetic locus, 
which were nevertheless perfect proxies (linkage disequilibrium 
measure D′ = 1.0, correlation coefficient r2 = 1.0). When two dif-
ferent SNPs were in linkage disequilibrium with r2 less than .8 and 
it had not been excluded that they might confer independent infor-
mation, both were retained. When r2 was greater than or equal to .8, 
or there was evidence that the SNPs did not confer independent 
information, the same rules were applied as for duplicate entries or 
perfect proxies to select only one of the SNPs. When linked SNPs 
with r2 greater than or equal to .8 were listed as discovered in the 
same GWA study, only the one with higher population attribut-
able fraction (that takes into account both the minor allele 
frequency and the OR of the association) (67) was retained. 
Pairwise values of r2 for linkage disequilibrium were obtained using 
the SNP Annotation and Proxy Search software (68) (http://www 
.broadinstitute.org/mpg/snap; Broad Institute, Boston, MA).

The review focused primarily on associations attaining a P value 
of less than 5 × 1028, as analyzed by the primary authors. No effort 
was made to standardize analyses in terms of whether any adjust-
ments were used or not (eg, age or sex). All associations are 
expressed as odds ratios per allele copy in log-additive (multiplica-
tive) models. The chosen GWS threshold is not absolute, and it 
was used for operational purposes only. GWS may depend on the 
studied populations and their linkage disequilibrium structure, as 
well as the available sample size (65). The selected P value is a 
relatively lenient threshold, if one considers the multiplicity of 
analyses involving different phenotypes in such studies (69), but 
associations that reach such a P value have a very high chance  
of being genuine. Whereas some of the associations that had 
modestly higher P values than this GWS threshold may also  
be genuine, they may have to await further replication studies.

Analyses
Descriptives and Time Trends
Descriptives summarized the number of associations, the 
distribution of the odds ratios, risk allele frequencies, and minor 
allele frequencies. Moreover, the number of newly discovered as-
sociations each year (2007, 2008, 2009, and 2010 [until March 
15th]) was evaluated based on the time of the first publication for 
each association. An increase in the number of discovered associa-
tions may simply be the result of an accumulation of new discov-
eries for different types of cancers that had not been evaluated 
before, rather than an addition of many more associations for can-
cers for which some associations were already reported by one or 
more GWA studies. Thus, these two categories were considered 
separately. When multiple GWA studies pertaining to the same 
cancer were published on exactly the same date, the one with the 
largest number of eligible entries in the catalog was considered the 
first for the purposes of this categorization. Odds ratios, risk allele 
frequencies, and minor allele frequencies were compared in the 
two categories of discoveries.
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Distribution of Risk
For selected cancer types (colorectal, prostate, testicular, and thy-
roid), simulations were performed to generate the anticipated 
distribution of risk in the population, assuming that these SNPs 
would have independent effects. For each cancer, 25 000 individ-
uals were simulated. For each SNP and each risk allele, its carrier 
status was randomly assigned across the simulated population with 
a frequency equal to the observed risk allele frequency in the GWA 
study that had discovered that association. Carrier status was con-
sidered to confer an increased risk of the disease equal to that 
observed in the article that had originally discovered the associa-
tion. Allele frequency and odds ratios were simulated based on 
estimates from European ancestry populations. Data were too 
limited to perform simulations for other ancestry populations. 
These simulations were performed for two cancers with a high 
number of genetic loci discovered in GWA studies of populations 
of European ancestry (prostate and colorectal cancers) and the two 
cancers that had the two genetic loci with highest population at-
tributable fraction (testicular and thyroid cancers). For other can-
cers, the discrimination of risk would likely be even more limited. 
For loci that had more than one linked SNP entered in the com-
pendium, only the SNP with the lowest P value was considered. 
Discovered estimates may be slightly or modestly inflated because 
of winner’s curse (70,71). The winner’s curse means that when 
associations are discovered based on crossing a significance thresh-
old, their effect size (the OR) is expected to be on average inflated 
compared with the true value. However, this pertains primarily to 
the magnitude of the effect that emerges out of the original agnos-
tic screening, and it should be less of an issue for the final effect 
size that emerges once the subsequent stage and replication sam-
ples have been included, as in the data used for the simulations. 
Conversely, the estimated effects may be slightly or modestly 
underestimated if the multiplicative allelic model is misspecified 
(72), if gene–gene interactions exist (73), or if each locus has addi-
tional variants that confer independent risk (64).

The distributions of risk across the simulated individuals were 
visualized, and the population relative risk (approximated by the 
multiplicative OR) was obtained for individuals in the upper vs 
lower decile and in the upper vs lower quartile of predicted risk 
(74). The mean of the simulated risk was set at 100, and the risk of 
subjects at the 10th, 25th, 50th, 75th, and 90th percentiles of risk 
was also estimated.

Statistical Power Considerations
The statistical power to discover associations with per-allele odds 
ratios of 1.40, 1.20, and 1.07 for risk allele frequencies f of 40% 
and 10% at a = 5 × 1028 level of statistical significance was esti-
mated for the sample sizes available in representative GWA inves-
tigations. In a GWA study with multiple stage design, the statistical 
power must be corrected by multiplying by the power of the first 
(and any intermediate) stage to select SNPs for the final-stage 
replication. To illustrate this principle, consider a GWA study 
with three stages. In the first stage, SNPs are selected only if they 
pass an a1 threshold (typically far less stringent than 5 × 1028); in 
the intermediate stage, SNPs are selected only if they pass an a2 
threshold; and in the subsequent final stage, SNP GWS is claimed 
for P less than 5 × 1028 based on combined data from all stages with 

power Pgws when all data are combined. Then, the statistical power 
of that study is estimated as Pgws × P1 × P2, where P1 and P2 are the 
power estimates for the first and intermediate stages with a1 and 
a2, respectively. Statistical power calculations were performed for 
the largest study on breast cancer (42) and for a large meta-analysis 
of GWA and replication studies for colorectal cancer (15). For 
comparison, we also calculated the statistical power that would be 
achievable if the GWA approach were maximally used, and all 
available samples from all stages could be evaluated in a GWA 
platform with discovery claimed at a = 5 × 1028. These analyses 
provided information on how many additional discoveries could be 
expected for odds ratios in the upper range of what has been 
observed so far for common cancers (OR = 1.40), for a typical value 
(OR = 1.20), and for the lowest value observed for common vari-
ants in common cancers (OR = 1.07).

Software
Statistical analyses were performed in Stata (College Station, TX), 
version 10.1 (75), and by using the PS program (William D. 
Dupont and Walton D. Plummer, http://biostat.mc.vanderbilt.edu 
/twiki/bin/view/Main/PowerSampleSize) (76) for statistical power 
calculations. P values for the comparison of groups by Mann–
Whitney U test are two-tailed.

Eligible GWS Associations
The NHGRI catalog listed 54 eligible articles; two more cited 
articles were retrieved by perusing the full text of the 54 articles. 
The 56 eligible articles (1–56) were published between January 
2007 and March 2010 and had a total of 173 listed associations. Of 
these, further screening excluded 24 duplicates, nine perfect 
proxies, seven associations with r2 greater than or equal to .8, 40 
associations with P values between 1 × 1025 and 5 × 1028, and one 
association reaching the GWS threshold only in haplotypic 
analyses.

The remaining 92 associations were eligible for evaluation 
(Table 1). Of those, 81 were entirely independent and 11 referred 
to markers with modest linkage disequilibrium to others. These 81 
associations pertained to 15 different types of cancer. More than 
half of the associations pertained to prostate cancer (n = 27, 26 
independent loci), colorectal cancer (n = 11, 10 loci), or breast 
cancer (n = 11 loci); there were fewer associations for glioma (n = 
8, 6 loci), basal cell skin cancer (n = 5 loci), melanoma (n = 5,  
4 loci), lung cancer (n = 5, 4 loci), testicular cancer (n = 4, 3 loci), 
nasopharyngeal cancer (n = 4, 2 loci), and pancreatic cancer (n = 3 
loci), whereas for the other five cancer types, there were only one 
or two discovered associations.

The discovered genetic loci are scattered across the genome, 
but some clustering is also obvious (Table 1). The most profound 
example is the 8q24.21 area, to which 12 of the 92 associations 
map. This area includes eight independent loci (regions) associated 
with the following cancers: breast, colorectal, and prostate cancers 
(five independent loci), bladder cancer (two independent loci), and 
glioma. Each of these eight loci is robustly associated with one type 
of cancer, but there is also some clustering even within the same 
region. For example, region 4 contains genetic markers associated 
with both prostate and colorectal cancers, with additional weaker 
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evidence for association with ovarian cancer (77). Two other chro-
mosomal bands each have genetic markers for two different can-
cers (2q35 for breast cancer and neuroblastoma and 5p15.33 for 
lung cancer and glioma), but these pertain to distant independent 
loci that localize to different genes or intergenic areas.

Pace of Discovery
Of the 92 associations, 36 came from articles that were the first to 
discover GWS associations for the respective cancer; the other 56 
had appeared in subsequent publications. Across the 92 associa-
tions, the pace of discovery was accelerated between 2007 and 
2009, with 15 associations in 2007, 25 in 2008, and 50 in 2009, but 
only two in the first 10 weeks of 2010. Of those, associations for 
cancers for which no previous discoveries had been made accounted 
for 10, six, 20, and zero discoveries in the four years, respectively. 
Among the 56 discoveries that appeared in subsequent publica-
tions after a GWA study had already found one or more variants 
for a specific cancer type, five were published in 2007, 19 in 2008, 
30 in 2009, and two in the first 10 weeks of 2010.
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Figure 1. Distribution of allele frequencies of the discovered risk alleles 
based on European control populations.
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Figure 2. Distribution of per-allele odds ratios for the discovered vari-
ants. Two outliers with odds ratios greater than 1.8 are not shown.

Population Ancestry
Eighty-three associations had been studied in European ancestry 
populations, whereas data were limited for Asian and African 
ancestry populations (details in the footnote of Table 1). For 69 
associations, GWS was attained based on European ancestry data. 
For 16 associations (rs2981582, rs889312, rs13281615, rs3817198, 
rs3803662, rs3802842, rs505922, rs1465618, rs12621278, 
rs17021918, rs7679673, rs1512268, rs7127900, rs5557167, 
rs3790844, and rs9543325), GWS was attained by combining data 
from both European and other populations, and for seven associa-
tions (rs2046210, rs1299984, rs671, rs3869062, rs3129055, 
rs2517713, and rs29232), GWS was attained from data on popula-
tions of Asian ancestry. Data for formal cross-ancestry compari-
sons are limited, although several examples were noted of divergent 
ancestry-specific risk allele frequencies and odds ratio estimates 
(Table 1).

Allele Frequencies and Odds Ratios
The risk alleles (based on European ancestry control populations) 
tended to have relatively high frequencies (median = 43%, inter-
quartile range [IQR] = 28%–54%), and the distribution had an 
inverse U-shape, with many associations having risk allele 
frequencies in the range of 25%–55% and fewer having small or 
high-risk allele frequencies (Figure 1). The median minor allele 
frequency was 33% (IQR = 20%–43%). Risk alleles were more 
likely to be minor rather than major alleles (57 vs 28). Seven asso-
ciations had risk allele frequency of 10% or less, whereas two had 
risk allele frequency greater than 90%.

Per-allele odds ratios for the discovered variants were modest, 
with a median of 1.22 and IQR = 1.15–1.36 (Figure 2). With one 
exception, the eight odds ratios exceeding 1.50 had been docu-
mented for relatively less common cancers (testicular, thyroid, 
neuroblastoma, melanoma, and glioma), whereas only one associ-
ation of prostate cancer had an odds ratio exceeding 1.79, and even 
that one pertained to a variant with low risk allele frequency in 
European ancestry populations (3%). The strongest odds ratio for 
any of the other three common cancers (lung, breast, and colorectal) 
was 1.41. The median odds ratio for the seven associations that 
were identified in Asian populations was 1.67, and the cancers 
studied were breast, esophageal, and nasopharyngeal.

There was evidence that the 30 associations that came from 
articles that were the first to publish GWS associations for the 
respective cancer had stronger effect sizes than the 55 associations 
discovered in subsequent publications (median OR = 1.28, IQR = 
1.21–1.37 vs OR = 1.18, IQR = 1.12–1.25, P < .001 by two-sided 
Mann–Whitney U test). There was no statistically significant dif-
ference in the risk allele frequencies or minor allele frequencies  
(P = .32 and .68, respectively).

Anticipated Distribution of Risk
For the simulation studies of cancer risk in colorectal, prostate, 
testicular, and thyroid cancers, 10, 26, three, and two risk variants, 
respectively, were considered (Figure 3). The two cancers (colo-
rectal and prostate) with a substantial number of variants have 
smooth distributions that are left-skewed and have long tails cor-
responding to individuals who have various possible combinations 
of a substantial number of susceptibility alleles (Figure 3, A and B). 
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The other two cancers (testicular germ cell and thyroid) have more 
clearly discrete categories of risk corresponding to the many fewer 
possible combinations of risk alleles (Figure 3, C and D). The dif-
ferences in risk across individuals are generally not large for any of 
the four cancers (Table 2). Individuals at the upper vs lower decile 
have 2.8-fold higher risk in colorectal cancer, 6.9-fold higher risk 
in prostate cancer, 8.0-fold higher risk in testicular cancer, and  
4.5-fold higher risk in thyroid cancer (Table 2). The risk in the 
upper vs lower quartile of simulated risk is 2.1-fold higher in colo-
rectal cancer, 4.1-fold higher in prostate cancer, 4.2-fold higher in 
testicular cancer, and 4.1-fold higher in thyroid cancer (Table 2).

Statistical Power Considerations
We used two published GWA studies as a working example to 
calculate statistical power in a multistage design for breast cancer 
and colorectal cancer. The multistage design used for the breast 
cancer GWA study had good statistical power (0.65) to detect an 
OR = 1.40 for f = 40%, but statistical power was very limited to 
detect an OR = 1.40 for f = 10% or an OR = 1.20 (0.23 and 0, re-
spectively) even for a very common variant (Table 3). For the co-
lorectal cancer GWA meta-analysis in which a much larger sample 
was genotyped in the first stage, the statistical power was excellent 
(0.8 for all) for detecting common variants with f = 40% and OR ≥ 
1.20 and those with f = 10% and OR = 1.40 but not those with 
f = 10% and OR = 1.20 (0.08).

In the breast cancer study, excellent statistical power (0.85) 
would be achieved (hypothetical achievable power, Table 3) for 
OR ≥ 1.20, even for f = 10%, if all available samples from all stages 
(n = 26 240 case patients and 26 858 control subjects) could be 
evaluated in a GWA platform, with discovery claimed at a = 5 × 
1028 level of statistical significance. Hypothetical achievable statis-
tical power for colorectal cancer (n = 20 186 case patients and 
20 855 control subjects) would be 1.0 for f = 40% and OR = 1.2 and 
1.4, although it drops to 0.6 for f = 10% and OR = 1.2. The avail-
able total sample sizes do not provide any statistical power to 
identify risk variants with weak associations (OR = 1.07), even if all 
samples were genotyped in a GWA platform (Table 3).

A comparison of the statistical power in the performed multi-
stage designs vs the hypothetical achievable power in a study geno-
typing all available samples in a GWA platform (Table 3) shows 
that substantial increments in the number of discovered variants 
could occur for breast cancer for variants with f = 40% and modest 
odds ratio (1.20) and for f = 10% and either modest or larger odds 
ratio (1.2–1.4). For colorectal cancer, there would be few addi-
tional discovered variants, if any, for very common alleles (f = 40%) 
and also no increased yield for less common alleles (f = 10%) and 
OR = 1.4, but there would be potential to discover additional var-
iants with f = 10% and OR = 1.2.

Use of familial case patients can reduce the sample size required 
to detect a common variant by more than twofold (78) depending 

Table 2. Distribution of risk in simulated populations based on the combined multiplicative effect of all variants discovered in  
genome-wide association studies

Cancer type
Variants  

considered

Risk in percentile of simulated risk* RR in upper vs lower  
decile (95% CI)

RR in upper vs lower  
quartile (95% CI)10th 25th 50th 75th 90th

Colorectal 10 66.4 78.3 95.6 113.3 139.6 2.75 (2.41 to 3.14) 2.10 (1.91 to 2.31)
Prostate 26 43.2 58.7 84.8 123.1 174.4 6.85 (6.02 to 7.79) 4.08 (3.67 to 4.53)
Testicular 3 39.8 54.5 101.4 138.9 152 7.99 (7.06 to 9.03) 4.19 (3.89 to 4.52)
Thyroid 2 58.9 58.9 80.8 131.8 141.4 4.45 (3.96 to 5.01) 4.09 (3.75 to 4.46)

*	 Risks are shown standardized against the mean simulated risk in the population (mean = 100). CI = confidence interval; RR = relative risk.

Figure 3. Distribution of the risk in a simulated 
sample of European descent individuals for 
which the mean risk in the population is set  
at a value of 100. A) Colorectal, B) prostate,  
C) testicular germ cell, and D) thyroid cancers.
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on whether effect sizes are stronger in familial cancer. For colo-
rectal cancer, 922 familial case patients were included in stage I of 
the design. This may increase the statistical power to identify a 
variant with f = 40% and OR = 1.2 from 0.8 to 0.88 using the same 
inflation as suggested by the original meta-analysis (15). However, 
the statistical power for a variant with f = 10% and the same effect 
size would still be very small (0.19). If we assume that all case 
patients considered in the first design stage of the colorectal cancer 
study were familial case patients, then the statistical power to 
detect an association with f = 10% and OR = 1.20 would be inflated 
to 0.60. However, even with all samples available for genotyping, 
the statistical power to detect weak associations (OR = 1.07) would 
still be negligible. Similar changes would be seen in statistical 
power calculations for breast cancer.

Conclusions
GWA studies in cancer have effectively identified several genetic 
loci with strong statistical evidence for association with particular 
cancer types. These loci have not been previously identified 
through linkage or candidate gene studies. However, the explana-
tory power of these loci to predict individual cancer risk is limited 
by their modest effect sizes. Thus, despite the early success of the 
GWA approach, GWA-identified loci explain only a small propor-
tion of the overall variability in cancer susceptibility.

The effect sizes of the loci identified in cancer GWA studies 
(average OR of 1.20) are smaller than the effect sizes identified in 
a recent NHGRI analysis of GWA-identified loci for diverse phe-
notypes (48). This difference may reflect the different spectrum of 
considered phenotypes. The SNP trait associations with the 
largest odds ratios in the NHGRI catalog (58) generally pertain to 
physical traits (eye color, hair color), biochemical traits (lipid 
levels, immunoglobulin E levels), or pharmacogenomic effects (eg, 

warfarin dosage and hemorrhagic risk). Compared with these phe-
notypes, it is likely that cancer is a more heterogeneous phenotype 
with a more complex genetic architecture and more modest ge-
netic effects conferred by single variants. Another potential expla-
nation is the expected difference in effect sizes between the first 
wave of GWA studies and subsequent GWA studies. For a given 
disease, the earliest GWA studies often identify the largest effects, 
and subsequent studies identify additional loci that often have a 
smaller effect size.

Given the initial success of cancer GWA studies, is it reasonable 
to expect a similar yield from future GWA studies, or has the 
GWA approach reached the stage of diminishing returns? We 
observed a steady, or even accelerating, rate of new discoveries 
between January 2007 and late 2009 but very few new associations 
in early 2010. Statistical power analyses suggest that if all existing 
GWA samples were analyzed for well-studied cancers such as 
breast and colorectal cancers, there would be reasonable statistical 
power to detect odds ratios in the range of 1.2, which are currently 
missed by multistage designs. However, extending GWA efforts to 
discover risk variants with weak associations (ie, ORs ~ 1.07) will 
require sample sizes orders of magnitude larger than even the most 
comprehensive efforts to date. Thus, whereas comprehensive 
analysis of existing GWA samples for well-studied cancers will 
likely identify the bulk of common variants with odds ratios of  
1.2 or higher, extending the GWA approach to identify variants of 
very small effect will require substantial new efforts.

Such efforts would likely depend on the coordinated work of 
international research consortia and efforts to establish additional 
very large prospective cohorts (79). Whereas the development of 
research consortia has been critical to the success of many current 
GWA efforts, much larger sample sizes would be needed to iden-
tify variants with very small effects. However, because the contri-
bution of such variants to the genetic architecture is not well 

Table 3. Statistical power analyses for actual multistage genome-wide association (GWA) studies and for hypothetical studies in which 
all available samples would be subjected upfront to genotyping in a GWA platform*

Type of cancer

Sample, No. of  
case patients/No. of  

control subjects Alpha level

Statistical power

f = 10% f = 40%

OR = 1.4 OR = 1.2 OR = 1.07 OR = 1.4 OR = 1.2 OR = 1.07

Breast cancer (42)
  Stage I 390/364 .052 0.33 0.13 0.06 0.65 0.25 0.08
  Stage II 3990/3916 2 × 1025 0.71 0.04 0 1 0.40 0
  Stage III† 26 240/26 858 5 × 1028 1 0.85 0 1 1 0.02
  Power of multistage design   0.23 0 0 0.65 0.10 0
  Hypothetical achievable power‡ 26 240/26 858 5 × 1028 1 0.85 0.001 1 1 0.02
Colorectal cancer (15)
  Stage I 6780/6843 1025 0.97 0.13 0 1 0.80 0.01
  Stage II§ 20 186/20 855 5 × 1028 1 0.60 0 1 1 0.02
  Power of multistage design   0.97 0.08 0 1 0.80 0
  Hypothetical achievable power‡ 20 186/20 855 5 × 1028 1 0.60 0 1 1 0.02

*	 The power of a statistical test represents the probability of rejecting a false null hypothesis (ie, finding an association when one truly exists) and depends on 
sample and effect size. The breast cancer GWA study (42) discovered six variants, of which one had an odds ratio (OR) = 1.20–1.40, five had OR = 1.07–1.20, 
and none had odds ratio less than 1.07 or greater than 1.40. The colorectal cancer meta-analysis of GWA studies (74) increased the total number of associations 
to 11, of which three had OR = 1.20–1.40, eight had OR = 1.07–1.20, and none had odds ratio less than 1.07 or greater than 1.40. f = minor allele frequency.

†	 In this stage, all data from stage I and stage II and new replication data were combined; therefore, power calculations include all data.

‡	 Power achieved if all available samples from all stages could be evaluated in a GWA platform with discovery claimed at a = 5 × 1028 level of significance.

§	 In this stage, replication data were combined with data from stage I. Power calculations include all data. Calculations do not consider the possibility of better 
power if an enriched sampling design is used, for example, as in the colorectal cancer study (15]).
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known, it is not clear that even very large sample sizes would be 
enough to make personalized cancer risk prediction viable based 
on current GWA platforms alone (80).

Simulations considering all GWA-discovered common genetic 
variants for four cancers showed that the predicted cancer risk of 
individuals differed only 2.1- to 4.2-fold between the upper and 
lower quartiles of risk. The number of available variants did not 
matter as much as the effect sizes of these variants. Thus, risk dis-
crimination was best for testicular cancer, for which only three 
independent variants were considered in the calculations, whereas 
discrimination was slightly worse for prostate cancer with 26 vari-
ants, and 10 variants for colorectal cancer achieved very limited 
discrimination because they all had small effect sizes. These find-
ings are in agreement with other studies that have modeled the risk 
of populations for specific types of cancers (81–86). In theoretical 
studies of the effect of multiple breast cancer loci, the risk discrim-
ination was similar in magnitude to our simulated results. An initial 
report of the cumulative effect of five loci for prostate cancer 
reported somewhat higher odds ratios (83), but subsequent repli-
cation efforts have demonstrated more modest results (84). In a 
more recent multivariable analysis of prostate cancer including  
22 variants in the Icelandic population (47), the top 1.3% of high-
est risk had only 2.5-fold higher risk of prostate cancer than the 
general population. Even this modest estimate may be overfit to 
the Icelandic data and needs independent validation.

The question of the predictive value of genetic information in 
disease prediction at the individual and population levels remains 
an area of considerable debate (87,88). Our results, along with the 
others cited above, suggest that for individual disease prediction, 
the prognostic importance of GWA-identified cancer suscepti-
bility loci is limited. For population screening efforts, such infor-
mation may eventually become useful in specific contexts, but 
more data are needed on the predictive performance of evolving 
prognostic models in independent data samples, the incremental 
benefit of adding genetic information to preexisting risk models, 
risk reclassification analyses, and the potential benefits and harms 
of genetic-based population screening strategies (89,90).

As the coverage of genotyping chips continues to improve, the 
ability to identify risk variants in previously under-interrogated 
regions may lead to new discoveries without an increase in sample 
sizes. Moreover, genome coverage for European and Asian ances-
try populations is quite good with current chip technology, but 
coverage for non-European and non-Asian populations is still less 
than optimal (91,92). The vast majority of studies have addressed 
European descent populations, with limited data on other ancestral 
groups. Therefore, it is possible that additional loci will be discov-
ered by performing GWA studies in non-European ancestry 
groups. Despite these caveats, it appears unlikely that the current 
“prediction gap” between the predictive power of GWA-discovered 
common variants and the anticipated genetic proportion of disease 
variance will be closed by additional GWA studies focusing on 
common variants alone.

There are several potential explanations for this prediction gap. 
One obvious possibility is that a substantial proportion of genetic 
risk variability is due to uncommon and rare variants (93,94). The 
advent of next-generation sequencing for discovery of functional 
variants both within and outside of GWA-identified loci is under 

way. If much of the genetic architecture is because of rare variants 
with small or modest effects, deciphering this architecture may be 
very difficult, if not impossible. Second, more in-depth evaluation 
of interesting loci may reveal a number of additional independent 
signals. The more obvious example in this regard is the 8q24 
region where the evaluation of more tag SNPs identified up to 
eight independent SNPs in five different linkage disequilibrium 
blocks to be associated with prostate cancer susceptibility (55). 
Third, we still do not know the functional implications of most of 
the discovered markers. Understanding function has not been easy, 
but it may point to regulation of genes at a distance from the iden-
tified variants, which may lead to further focused searching for 
additional variants. For example, there is preliminary evidence that 
the associations of rs6983267 in the 8q24 region with colorectal 
cancer may reflect an impact on Wnt signaling and differential 
binding of transcription factor 7–like 2, with an impact on either 
the MYC proto-oncogene or on other more remote gene targets 
(95–97). Fourth, the assumption that risk alleles simply contribute 
in an additive fashion to individual disease risk may be incorrect. If 
this is the case, accurate estimates of risk will depend on the iden-
tification of more accurate models of genetic risk and even poten-
tially complex gene–gene and gene–environment interactions. 
Genetic effects may be different in populations with different envi-
ronmental exposures. A number of systems biology approaches 
have been used to model complexity, including computational ap-
proaches using high-throughput genetic variation data and gene 
expression data to generate network models of interacting genes 
(98–100). Such approaches represent sophisticated attempts to 
capture the connectivity pattern of the underlying disease biology, 
but these efforts are in early stages, and their ultimate impact on 
individual disease prediction remains unclear. Finally, the pro-
posed estimates of the heritability and genetic contribution of 
some cancers may need to be reviewed again. Some of the higher 
estimates may be inflated, and thus, all genetic factors may only 
explain a small or modest fraction of cancer risk.

It is difficult to tell upfront whether a new GWA study for a 
cancer that has not been previously examined in this framework 
will yield no major discoveries or several gene variants with sub-
stantive effects. For example, pancreatic cancer susceptibility was 
initially assessed in a large GWA study with almost 2000 case 
patients, as many control subjects, and with replication effort in 
another 12 datasets with even larger sample size, but the yield was 
only one variant with very modest odds ratio of 1.20 (3). 
Conversely, four variants were discovered for nasopharyngeal  
carcinoma starting with a small GWA investigation of less than 
300 case patients and control subjects (50). Nevertheless, once a 
first effort has been made, the initial yield is suggestive of what 
might be expected to be found with further studies and larger 
sample sizes with the same platforms. It is also theoretically pos-
sible that more consistent phenotypic ascertainment and definition 
of case patients and more exhaustive screening of latent disease in 
control subjects may also increase the power of discovering new 
variants. However, this should be done without eroding sample 
size from excessive exclusions, and it is often difficult, if not impos-
sible, to go back and reascertain case patients and control subjects 
in these populations. In all, when current GWA platforms do not 
yield substantial further discoveries with large sample sizes, other 
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types of genetic variation (eg, rare variants) and technologies  
(eg, sequencing) would have priority in further research efforts.

In summary, the GWA approach in cancer has been successful 
for its intended purpose of identifying common genetic variants 
associated with cancer risk. For common solid tumors such as 
breast, colon, and prostate cancers, future GWA efforts with ever 
larger samples are likely to identify some additional risk variants. 
However, the effect size of most of these variants will likely be 
smaller than what has already been discovered, and the predictive 
value of such variants is likely to be very limited. Of course, the 
benefits of the GWA approach are not limited to personalized 
genomic risk prediction, and the wealth of newly identified ge-
netic risk loci has opened new avenues for basic science investiga-
tion. The success of GWA studies in breast, colon, and prostate 
cancers suggests that the extension of the GWA approach to other 
cancers will likely be fruitful if similar sample sizes can be col-
lected. Finally, complementary approaches to GWA, including 
high-throughput sequencing, may afford valuable new insights 
into the genetic architecture and underlying biology of cancer 
susceptibility.
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