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Conventional anticancer drug dose-finding 
(phase I) trials define the recommended 
dose as the maximum tolerated dose (MTD) 
based on the incidence of dose-limiting 
toxicity (DLT). DLT may not be the opti-
mal endpoint for new classes of more selec-
tive, potentially less toxic molecularly 
targeted drugs because the MTD may sub-
stantially exceed the dose required to 
achieve maximum target inhibition (MTI) 
(1–6). Determining optimal dose by quan-
tifying target modulation is a rational alter-
native but depends on identification of the 
appropriate drug target, availability of  
a validated real-time assay for quantifying 
target modulation, tissue selection (tumor 
or surrogate) for analysis, and timing  
of tissue sampling relative to drug 
administration.

We developed an adaptable trial design 
that incorporates MTI as the primary end-
point to define optimal dose but that can 
also define MTD if DLT is observed before 
reaching a dose that achieves MTI (Figure 1). 
We applied this design to define the optimal 
dose or MTD of the dipeptidyl peptidase 
(DPP) inhibitor talabostat mesylate (Point 
Therapeutics, Inc, Boston, MA) (7,8), 
which was administered in combination 
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Figure 1. Trial schema. Algorithm of the 
adaptable trial design used to define an 
optimal dose of talabostat based on the 
degree of target (dipeptidyl peptidase-4 
[DPP-4]) inhibition. Maximum target inhi-
bition (MTI) is defined as a greater than 
90% decrease in DPP-4 activity relative to 
baseline, 24 hours after the first dose of 
talabostat. Two patients are enrolled at 
the starting dose. If dose-limiting toxicity 
(DLT) is not observed (boxes with a 
single line border) and one or both do 
not achieve MTI, the dose would be esca-
lated. If MTI is achieved in both, the dose 
level would be expanded to six patients. 
If fewer than five of the six have MTI, the 
dose would be escalated. If five or more 
achieve MTI, the dose would be esca-
lated one additional dose level to ensure 
that the optimal dose is on the plateau of 
the dose–response curve. If DLT is 
observed in one patient at any point, the 
dose escalation would switch to a tradi-
tional phase I (3 + 3 design), and a more 
conservative 40% dose escalation would 
be used (boxes with double line border), 
but DPP-4 inhibition will continue to be 
monitored. If two or more patients at a 
dose level experience a DLT, a maximum 
tolerated dose (MTD) would be defined.
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with temozolomide (150 mg/m2/d × 5 days) 
or carboplatin (adaptively dosed based on 
renal function to achieve an area under the 
curve [AUC] of 7 mg•min/mL over 2 days), 
in children with refractory solid tumors. 
Talabostat was given orally once daily for  
14 days beginning days 7–9 of each 28-day 
treatment cycle. The starting dose was  
100 µg/m2/d with planned dose escalations to 
200, 350, 600, and 900 µg/m2/d. Intrapatient 

CONTEXTS AND CAVEATS

Prior knowledge
The conventional primary endpoint in dose-
finding studies is dose-limiting toxicity 
(DLT). However, newer more selective anti-
cancer drugs may require a different pri-
mary endpoint defined by the extent to 
which a drug inhibits a therapeutic target. 
Talabostat mesylate inhibits fibroblast acti-
vation protein (FAP), which may play a role 
in tumorigenesis and tumor stromal 
remodeling.

Study design
A phase I trial design incorporating max-
imum target inhibition as the primary end-
point was used to find the optimal dose of 
talabostat in children with relapsed or re-
fractory solid tumors. Inhibition of dipepti-
dyl peptidase-4 (DPP-4) was used as a 
surrogate for FAP inhibition. The trial was 
designed to revert to a traditional phase I 
trial if DLT were to occur.

Contribution
DPP-4 activity was completely inhibited  
at doses lower than that predicted by the 
maximum effect model. There were no 
grade 3 or 4 toxic effects or talabostat-
related DLT.

Implications
Maximum target inhibition is a rational pri-
mary endpoint for selective anticancer 
drugs. An adaptive trial design incorpo-
rating this model can be a feasible and safe 
means of dose finding for molecularly tar-
geted agents.

Limitations
The trial was stopped because clinical de-
velopment of talabostat was discontinued, 
so the effects could not be investigated in a 
larger sample of patients. DPP-4 was used 
as a surrogate for FAP because of ease of 
sampling, so FAP inhibition was not mea-
sured directly.

From the Editors 

dose escalation was permitted on the second 
and subsequent treatment cycles in patients 
who did not experience DLT.

Talabostat competitively and reversibly 
inhibits fibroblast activation protein (FAP; 
inhibition constant Ki = 5 nM), which may 
play a role in tumorigenesis and tumor 
stromal remodeling. Talabostat also in-
hibits DPP-4 (Ki = 0.18 nM), present in 
tissues, including plasma, which is readily 
accessible (9–12). We used DPP-4 inhibi-
tion as a surrogate for FAP inhibition and 
defined the optimal talabostat dose as the 
dose inhibiting more than 90% of serum 
DPP-4 enzyme activity at 24 hours post-
dose in five or more of six patients. Serum 
DPP-4 activity at baseline, 1 hour, and 24 
hours after the first talabostat dose of each 
cycle was quantified using a validated fluo-
rometric assay based on cleavage of Ala-
Pro-7-amino-4-trifluoromethylcoumarin 
conjugate (Bachem, King of Prussia, PA) to 
a fluorescent product by DPP-4 (13). The 
assay detects a 90% decrease in enzyme 
activity with intra- and interassay coeffi-
cient of variation of 1.4% and 13.3%, 
respectively.

Plasma concentrations of talabostat 
were measured after the first dose on cycle 
1 using liquid chromatography with turbo 
ion-spray tandem mass spectrophotometric 
detection (Applied Biosystems, Foster City, 
CA). The assay has a lower limit of quanti-
fication of 0.6 ng/mL.

Statistical properties of the adaptable 
trial design were investigated by calculating 
probabilities of the three possible outcomes 
(MTD exceeded, MTI achieved in five or 
more of six patients, and dose escalation) 
using a range of probabilities of DLT and 
greater than 90% DPP-4 inhibition 
(Supplemental Table 1, available online). 
At a given dose level, if the true probability 
of MTI is 0.90 and true DLT probability is 
0.05, the probability of exceeding the MTD 
is 0.03, of achieving MTI in five or more of 
six patients is 0.76, and of dose escalation is 
0.21. With a true probability of MTI of 
0.90 and an unacceptable DLT probability 
of 0.33, the outcome probabilities become 
0.61, 0.29, and 0.10, respectively, whereas 
if the DPP-4 inhibition probability is 0.50 
with a 0.05 DLT probability, outcome 
probabilities are 0.02, 0.10, and 0.88, re-
spectively. Thus, the design has a reason-
able chance of correctly identifying the 
proper dose for attaining MTI.

Six patients, median age 15 years (range 
4.5–18 years), were enrolled at doses  
of 100 (n = 2), 200 (n = 2), and 350 (n = 2) 
µg/m2/d (Figure 2). Two patients who 
received two cycles and one who received 
three cycles had intrapatient talabostat 
dose escalation for a total of 10 cycles and 
a maximum talabostat dose of 600 µg/m2/d. 
No grade 3 or 4 toxic effects and no  
talabostat-related DLT occurred. The trial 
stopped before completion because clin-
ical development of talabostat was discon-
tinued, but data from these six patients 
illustrate the utility of this adaptable phase 
I trial design.

AUC0–8 of talabostat increased in pro-
portion to dose (mean AUC0-8 was 7.0 
ng•h/mL at 100 µg/m2, 20 ng•h/mL at 200 
µg/m2, and 34 ng•h/mL at 350 µg/m2). 
Mean half-life of talabostat was 2.8 hours. 
DPP-4 activity was completely inhibited 
(median = 98%) 1 hour after the first dose 
of talabostat on nine of the 10 treatment 
cycles at doses ranging from 100 to 600  
µg/m2. One patient experienced nausea and 
delayed gastric emptying, as evidenced by 
an undetectable plasma concentration  
1 hour post-dose. Plasma talabostat con-
centration 1 hour post-dose on cycle 1 
(100–350 µg/m2) ranged from 0.64 to 10.1 
ng/mL (n = 5). At the 600 µg/m2 dose level, 
serum DPP-4 inhibition was 85% on two 
cycles administered to one patient (Figure 2). 
Talabostat plasma concentration 24 hours 
post-dose (C24 h) was less than 0.6 ng/mL in 
five of the six patients. One patient, who 
received 350 µg/m2, had a C24 h of 0.86 ng/
mL. The maximum effect model predicted 
that a dose of 1200 µg/m2 would be required 
to achieve MTI.

Characterization of the dose–effect rela-
tionship by application of basic pharmaco-
dynamic principles was the basis of this 
dose-finding study. A surrogate tissue 
(serum) and target (DPP-4) were selected 
as the endpoint because of the ease of sam-
pling and similar Ki for FAP and DPP-4. 
To assess whether the target was maximally 
inhibited throughout the dosing interval, 
we measured DPP-4 inhibition 24 hours 
post-dose. The maximum effect model 
predicted that 1200 µg/m2 would be 
required to achieve MTI on a once-daily 
schedule. This dose was not tolerable  
in adults (14); therefore, a change to 
twice-daily dosing was planned. The mean 
plasma talabostat concentration 10 hours 
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post-350 µg/m2 was 0.86 ng/mL, which 
should be inhibitory (15).

Intrapatient dose escalation with DPP-4 
inhibition measured on every treatment 
cycle provides additional valuable dose– 
effect data characterizing the dose–effect 
curve within individual patients as well as 
the population to more efficiently evaluate 
multiple dose levels. One limitation of the 
study was that FAP inhibition was not di-
rectly measured. A second limitation was 
early closure of the study because of drug 
availability. However, treatment of six 
patients on four dose levels provided suffi-
cient data to project optimal dose. This 
adaptable trial design appears to be fea-
sible, safe, and efficient. Further evaluation 
of this trial design in the development of 

molecularly targeted agents with validated 
biomarkers is warranted.

Supplementary Data

Supplementary data can be found at http: 
//www.jnci.oxfordjournals.org/.
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