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Abstract

Background: Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic enteritis in a wide range of animal species.
In cattle, MAP causes a chronic disease called Johne’s disease, or paratuberculosis, that is not treatable and the efficacy of
vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk
production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to
0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP
susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out
association studies that have higher precision.

Methodology/Principal Findings: The objective of the current study was to localize genes having an impact on Johne’s
disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50
BeadChip) to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were
selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals
serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA
negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal.

Conclusion/Significance: The analysis of the genotype data identified several chromosomal regions associated with disease
status: a region on chromosome 12 with high significance (P,561026), while regions on chromosome 9, 11, and 12 had
moderate significance (P,561025). These results provide evidence for genetic loci involved in the humoral response to
MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information into
breeding programmes for the improvement of health status.
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Introduction

Mycobacterium avium subspecies paratuberculosis (MAP) causes

paratuberculosis or Johne’s disease in cattle, a chronic granulo-

matous gastroenteritis [1,2]. Johne’s disease occurs worldwide and

is primarily a disease of ruminants, including cattle, sheep, goats,

and farmed deer. However, the disease has a wide host range and

has been reported to occur in non-ruminants species, such as wild

rabbits [3] and their predators, foxes and stoats [4], and in

primates such as mandrills and macaques [5,6].

MAP is responsible for huge economic losses, particularly in

dairy cattle herds [7]. Moreover, several studies have suggested a

link between MAP and Crohn’s disease in man [8–10]. However,

the evidence for a link between Johne’s and Crohn’s diseases

remains controversial and the causal role of MAP has not been

proven [11–13].

In cattle, the disease starts with the slow development of

intestinal lesions in infected animals, a proportion of these animals

become clinically ill after two to six years [14]. Clinical signs of

infection include progressive weight loss, intractable diarrhoea,

decreased milk production and ultimately death [15]. However, in

cattle, Johne’s disease is not treatable and vaccine efficacy it is still

controversial. The prevalence of MAP in farmed animals in

Europe is approximately 20% [16].

The main route of transmission of MAP is the faecal-oral route

[17]; however, it can also be transmitted in the semen of bulls, in

milk to the newborn calf, and in utero across the placenta [2]. In

addition it has also been suggested that MAP can exist within the

tissues of animals for years without causing clinical disease [18,19].

Although the mechanisms that affect the balance between

acquired resistance and progression to clinical disease are

unknown, they may involve maturation of the immune system in
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terms of the various T-cell subsets and the specific tissue

distribution of immune cells. In the early stages of the infection,

MAP infects macrophages in lymphoid tissue in the ileum, where it

inhibits phagosome maturation and induces the recruitment of

inflammatory cells, resulting in granulomatous enteritis. Cattle

typically become infected with MAP as calves; however, clinical

signs of infection do not usually appear before two years of age,

and are most commonly seen after the second or third lactation.

Infected cattle may spread MAP to other animals in the herd

through faecal contamination of the environment, prior to the

appearance of clinical signs [20]. Current Johne’s diagnostic tests

have low sensitivity for detecting the infection in pre-clinical

animals (0.45–0.5) [21], thus testing for MAP may not identify all

infected animals. The sub-clinical stage of MAP infection is

characterized by loss of pro-inflammatory Th1 response and an

increased antibody-mediated Th2 response, however, the mech-

anism by which MAP interacts with the bovine immune system

and suppresses Th1 response remains unclear [22].

Susceptibility to MAP infection has been found to be heritable

[23–26] with heritability estimates ranging from 0.06 to 0.102,

depending the definition of infection, the statistical model used and

the population studied.

Several studies have addressed the identification of genetic loci

associated with MAP susceptibility by testing candidate genes, by

genome-wide linkage or association studies. Polymorphisms in

functional candidate genes, SLC11A1 [27], TLR1, 2 and 4, [28]

and CARD15 [29] have been associated with susceptibility with

MAP infection in cattle. CARD15 has also been associated with

increased the risk of Crohn’s disease in humans [30,31]. Genome

wide linkage analysis provided evidence for a QTL for MAP

susceptibility on Bos taurus chromosome 20 [32] and recently, a

genome wide association study using a high density single

nucleotide polymorphism (SNP) panel (the Illumina BovineSNP50

BeadChip) identified regions on chromosomes 3 and 9 that are

highly significantly associated with the presence of MAP in tissue

and faeces [33]. However, neither of these publications present

evidence for strong functional candidate genes associated with

Johne’s disease in these chromosomal regions.

The current study presents evidence for loci associated with

MAP susceptibility that were identified using a high density SNP

panel (the Illumina BovineSNP50BeadChip whole genome SNP

assay) in a case-control study with a sample size of about 900

Holstein cattle using the presence of antibody against the

bacterium as the definition of susceptibility.

Results

1. Genotype quality assurance and internal population
structure analysis

Following quality control checks, 846 of the 54,001markers

were excluded because of low (,95%) call rate, 6511 markers

were excluded because of low minor allele frequency (MAF)

,0.002 and 294 markers were excluded because they were out of

Hardy-Weinberg equilibrium in controls at a false discovery rate

(FDR ,0.2). With respect to the samples: 26 were removed

because of low call rate (,0.95) and 1 sample was eliminated

because of high autosomal heterozygosity (FDR ,1%). The mean

heterozygosity of the sample was 0.3360.01, while the sample

removed had heterozygosity higher than 0.53, indicating possible

sample contamination. A further 14 samples were removed due to

high IBS (Identity By State). Mean IBS was 0.7360.01, based on

2000 autosomal markers, while the samples removed showed IBS

.0.95. No outliers were identified by Classical Multi Dimension

Scaling (MDS), consequently the final data set that passed the

quality controls and was used in the association analysis contained

46350 Genome wide SNPs and 925 samples.

2. Genome Wide Association Analysis
Genome Wide Analysis identified SNPs with significant

association with MAP antibody response on chromosomes 12, 8,

9, 11, and 27. Genome-wide Manhattan plots displaying the GWA

results with respect to their genomic position, are shown in Figure 1

and details are given in Table 1. All the markers with significant

associations had high call rates, ranging between 0.97 and 0.99,

and MAF ranging between 0.11 and 0.42 (Table 1). Evidence of

population substructure was estimated by the genomic inflation

factor l= 1.15 for a basic chi-square statistics test, and was

completely corrected by the GRAMMAR-CG methodology that

yielded l= 1. The Q-Q plot of the resulting analysis is shown in

Figure 2.

Three moderately significant SNPs were identified on chromo-

some 12 at positions 69663832, 69599639 and 68553182 with p-

values of 1.04 e-06, 1.44 e-06 and 1.50 e-05 and explained 0.48%

0.46% and 0.38% of the phenotypic variance respectively

(Table 1). In addition 2 further SNPs on chromosome 12 at

positions 67342543 and 69808111 showed p-values close to

significance 6.84 e-05 and 7.80 e-05. These SNPs also had high

call rates. The peak defining the region identified by the SNPs on

chromosome 12 is bell shaped indicating a non random

association (Figure 3). A list of the genes located within 1Mb

from the significant SNP identified is provided in Table 2 and their

potential functions are described in Table S1. A graphical

representation of the chromosomal regions associated with MAP

is shown in Figure 3–6. On chromosome 12 (BTA12) two of the

significant SNPs are located in a coding region of the genes

IPI00841680.2 and IPI00824465.3 respectively; both of these

SNPs fall in the intronic region of the gene.

Two further moderately significant SNPs were identified on

chromosomes 9 and 11 (p-value of 1.94 e-05 and 3.93 e-05) at

positions 46362363 and 89695126 explaining 0.34%, 0.33% and

of the variance respectively. A further SNP with high significance

(3.55 e-06) is currently not positioned on the bovine genome

sequence. In addition, 2 SNPs had p-values close to significance:

one on chromosome 8 at position 37257076 and the second on

chromosome 27 at position 45253563, with p-values of 7.02 and

7.55 e-05 respectively (Table 1).

3. Confirmation in smaller cohort
The six SNPs with highest p-values were then tested using the

same test statistics and by simple regression on a smaller cohort of

277 cases and MAP negative control Holstein animals drawn from

the same population used for the main GWA and chosen using the

same criteria as the main cohort. Case-control samples were

randomly chosen to be herd, test day, sex matched, and to reduce

the possibility of animals being related no more than 6 animals

were selected from the same herd. No population substructure was

identified (l= 1). Following correction for multiple testing (n = 6),

five of the six SNPs tested showed significant association with

MAP infection, even in this the smaller cohort (Table 3). These

SNPs were the two most significant SNP on BTA 12, the SNP on 9

and 11 and the un-unmapped SNP identified in the initial study.

Even with the smaller sample size, the SNP on chromosome 11, at

position 89695126, showed a p-value of 8.06 e-05 before

correction for multiple testing, which was as high as the initial

p-value of 6.95e-05 obtained using a larger number of animals.

Following correction for multiple testing, the p-value reduced to

4.80e-04.

Genetics of Disease Resistance
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Discussion

Considerable work has been carried out to address the genetic

control of susceptibility and resistance to mycobacterial infections,

including bovine paratuberculosis [23–25,28,29,32–37]. Different

approaches have been used to localise and identify the genes

involved in susceptibility to MAP, including the testing of

candidate genes [27] and QTL mapping using relatively low

density markers [32]. More recently, following the publication of

the bovine genome sequence, a genome wide association study

(GWA) using higher density SNP panels has provided evidence of

a genetic component in Jones’s disease susceptibility [33].

In contrast to human association analysis where, in general,

either small well characterised families, or unrelated individuals

are used, the design of genome wide scans in livestock, based on

field samples with unknown pedigree information, poses a series of

Figure 1. Manhattan plot displaying the results (2log10 of p-value) of the Genome-wide scan using the GRAMMAR-GC method
with respect to their genomic position.
doi:10.1371/journal.pone.0011117.g001

Table 1. List of SNP associated with positive ELISA test to MAP infection indentified by Genome Wide Association study in Holstein
cattle.

SNP name BTA
Position
(bp) N

effB
Q.2 P1df Pc1df

Call
Rate Q.2 P.11 P.12 P.22

Pexact
H-W test

Coding Minor/
major allele

ARS-BFGL-NGS-57278 12 69663832 903 0.157 2.29e-06 1.04e-06 0.97 0.11 722 167 14 0.22 G/A

BTA-95991-no-rs 12 69599639 925 0.154 3.14e-06 1.44e-06 1 0.11 743 167 15 0.12 G/A

BTB-01626215 0 0 909 0.168 7.28e-06 3.55e-06 0.98 0.10 732 177 0 0.0001 G/A

ARS-BFGL-NGS-101584 12 68553182 925 0.134 1.50e-05 7.70e-06 1 0.12 709 198 18 0.37 G/A

ARS-BFGL-NGS-8531 9 46362363 925 0.097 3.59e-05 1.94e-05 1 0.27 496 362 67 0.93 A/G

ARS-BFGL-NGS-17731 11 89695127 923 20.082 6.95e-05 3.93e-05 0.99 0.42 310 445 168 0.73 A/G

ARS-BFGL-NGS-105846 12 67342543 925 0.113 1.17e-04 6.83e-05 1 0.15 659 247 19 0.53 A/G

BTB-02056135 8 37257076 925 20.084 1.19e-04 7.02e-05 1 0.37 356 446 123 0.40 A/C

ARS-BFGL-NGS-37647 27 45253563 925 20.086 1.19e-04 7.55e-05 1 0.11 321 484 120 0.003 A/G

BTB-01470661 12 69808111 900 0.135 1.32e-04 7.80e-05 0.97 0.11 696 203 1 4.75e-05 C/A

SNP name: snp name as in the bovine 50K SNP Chip data.
BTA: Bos Taurus Chromosome.
effB Q.2.: effect of the minor allele (B allele).
P1df: raw p-values before adjustment for Genomic Control.
Pc1df: p-values adjusted for Genomic Control.
Q.2.: frequency of the minor allele allele (B allele).
Pexact H-W test = exact p-value for the test of Hardy-Weinberg estimated in cases and controls together.
doi:10.1371/journal.pone.0011117.t001
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different challenges. There is a high level of relatedness in cattle

populations, especially for dairy cattle, where the effective

population size and number of sires used for artificial insemination

in the recent years is very small [38]. The hidden presence of

closely related animals in the sample set can cause a complex

population structure and an a priori unbalanced distribution of

allele frequencies between cases and controls that is likely to inflate

the rate of false positive associations between the trait and the

markers, and could hide the true associations. Robust methodol-

ogy has been developed to account for genetic background, based

on a polygenic model and which is implemented in the

GRAMMAR-CG approach used in the analysis presented here.

This approach was able to disentangle the cryptic relatedness in

the population by modelling the polygenic relatedness between

pairs of samples [39].

In the present work a genome wide scan using a relatively high

density of markers identified moderately significant associations

between SNPs and MAP serology on chromosomes 9, 11 and 12.

Several SNP markers on chromosome 12 were found to be

significantly associated with MAP within a region of 1 Mb and

formed a distinct peak together with the other SNPs that on their

own fail to reach the threshold for significance (see Figure 1). Two

of the significant SNPs are located in coding regions of two genes

that code for the same protein, the ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 protein (ABCC4) which is a

multi-drug resistance associated protein [40]. The possible role of

this protein in response to Johne’s disease is not known. A study

that used DNA pools created from MAP affected and non affected

animals from two sire families, compared allele frequencies for a

panel of microsatellite markers between the pools and identified a

marker significantly associated to MAP status on BTA12, located

at position 67356645 [32]. This is within 2 Mb from the most

significant SNP reported in the present study, and very close to a

second SNP with a less significant association (p = 6.84 e-05) at

position 67342543. The same QTL study also identified a region

on BTA 20 associated with Johne’s disease [32], however in the

present study there was no evidence for an association with MAP

status on this chromosome.

In the present study a SNP was identified on chromosome 9 at

position 46362363 which was significantly associated with

serologically defined MAP susceptibility. In another study the

neighbouring SNP at position 46423922 was associated with MAP

susceptibility defined by presence of bacteria in tissue of the ileum

in Holstein cattle [33]. One interpretation of these findings may be

that the genetic locus identified on chromosome 9 in these two

studies is generally involved in the process of MAP infection and

control of MAP replication, while the locus on chromosome 12

identified here, that was not identified in the study of Settles et al.

[33], is more specifically involved in antibody response to this

bacterium. This may indicate two or more distinct mechanisms of

resistance that involve different metabolic pathways or different

QTL segregating in different populations.

Two genes are located within 1 Mb, of the significant SNP on

chromosome 9, one of which could be considered a strong

functional candidate identified by comparative annotation:

PRMD1 is a transcription repressor that acts on the beta interferon

gene expression and affects the maturation of B-lymphocytes into

antibody secreting cells. The PRDM1 gene, also known as B

lymphocyte induced maturation protein (Blimp1), has been shown

to play a major role in regulating the functional differentiation of B

and T lymphocytes in humans [41–43], and has also been

implicated in myeloid function [44]. Moreover PRDM1 interacts

with several chromatin-modifying enzymes to induce transcrip-

tional repression at the IFN-beta promoter [45]. Although this

gene was not annotated in cattle, by comparative analysis we were

able to locate the gene on the region of BTA9 where the significant

SNP was located using the similarity with the human ortholog.

Therefore Blimp1 represents a strong candidate to be further

investigated for potential association with Johne’s disease. The

significant SNP located on chromosome 11 in the present study

falls within a QTL region found in another GWA scan for ParaTB

tolerance (Settles, personal communication). This region harbours

several genes: E2F6, PQLC3, C2o50, KCNF1, PDIA6, ATP6V1C2,

NOL10, ODC1, HPCAL1. However, none of these genes are

obvious candidates for Johne’s disease susceptibility based on their

known functions.

The major difficulty with studies using large numbers of tests,

especially using the new high density SNP panels, is setting an

appropriate correction for multiple testing. Traditional methods,

such as Bonferroni correction are likely to be too strict, while

relaxing the correction will increase the false discovery rate.

Therefore independent replication of studies is important to

confirm results. In the present study a smaller cohort of Holstein

drawn from the same population, was used to test the significant

associations identified in the first analysis. This second analysis

confirmed 5 of the 6 moderately significant SNP associations.

Comparison of results across studies of Johne’s disease in cattle

identified only some regions in common. This is not surprising as

the size of a study, the population structure, markers used and

definition of the trait will all contribute to the significance of

different genetic loci. It is therefore interesting to examine regions

reported in other studies that did not pass the threshold for

significance in the present study, to identify if there is any

suggestion of an effect. The definition of an infected animal can be

based either on serology or bacterial culture from tissue or faeces.

Previous studies of heritability estimates were based on serology,

while recent genome wide association study [33] used tissue and

faecal culture of the bacteria as the phenotypes. Differences in the

definition of infected status may explain the different genetic loci

indicated as potentially involved in the susceptibility of Johne’s

disease. In this study MAP negative control animals were selected

based on optimizing exposure to infection, considering animals

Figure 2. Q-Q plot of (GRAMMAR-CG) p-values/against expect-
ed p-values.
doi:10.1371/journal.pone.0011117.g002
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Figure 3. Scatter plots of the chromosomal region in BTA 12 associated with MAP and its corresponding genomic regions (taken
from ENSEMBL).
doi:10.1371/journal.pone.0011117.g003

Table 2. Genomic regions associated with MAP.

SNP BTA Position P-value RefSeq gene (1Mb)

ARS-BFGL-NGS-57278 12 69663832 1.04e-06 GPC6, TYRP2, TGDS, GPR180, SOX21, ABCC4

BTA-95991-no-rs 12 69599639 1.44e-06

ARS-BFGL-NGS-101584 12 68553182 7.70e-06

ARS-BFGL-NGS-105846 12 67342543 6.83e-05

BTB-01470661 12 69808111 7.80e-05

ARS-BFGL-NGS-17731 11 89695127 3.93e-05 E2F6, PQLC3, C2o50, KCNF1, PDIA6, ATP6V1C2,
NOL10, ODC1, HPCAL1

ARS-BFGL-NGS-8531 9 46362363 1.94e-05 PRDM1, PREP

BTB-02056135 8 37257076 7.02e-05 None

ARS-BFGL-NGS-37647 27 45253563 7.55e-05 None

BTB-01626215 0 0 3.55e-06 None

doi:10.1371/journal.pone.0011117.t002
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that shared the same environment for the same period of time

from birth. The ‘‘matched controls’’ are indeed not control

animals in the strict sense, but can be defined as animals from the

same cohort that are currently ‘‘non ELISA reactive’’, compared

to ELISA positive animals. The effect of misclassified animals in

the ‘‘control’’ set would have been a loss of power of the

experimental design, nonetheless, evidence of strong association

with particular SNPs was identified. Using serology data will

identify those loci involved in the immune response to disease,

while the culture of bacteria from tissue may identify genes

involved in persistence of infection at different stages of the disease.

Pinedo et al [27] tested three candidate genes related to the

immune function for an effect on disease: BoIFNG (BTA5), TLR4

(BTA8), SLC11A1/NRAMP1 (BTA2). In the present study a SNP

on BTA8 was close to significance, however it is located more than

70 Mb from the TLR4.

Markers associated with resistance or susceptibility could be

used in breeding strategies to reduce disease incidence. Such

markers could also be the starting point in identifying the genes

and hence the biological pathways, associated with response to

infection with MAP which may be useful in developing diagnostic

tests, or therapeutic approached to control the disease. Confir-

mation of the data presented here will be sought in further

replication studies in independent populations as well as studies in

different breeds.

In summary, the BTA9 association with antibody response to

MAP found in the present study was also seen in a genome-wide

association study for MAP bacterial burden [33]. Significant SNP

on BTA 12 fall within a region identified in an early MAP study

[32]. These two regions merit further investigation, and in

particular the PRDM1 gene on the chromosome 9 is a good

positional and functional candidate.

Figure 4. Scatter plots of the chromosomal region in BTA 8 associated with MAP and its corresponding genomic regions (taken
from ENSEMBL).
doi:10.1371/journal.pone.0011117.g004

Genetics of Disease Resistance

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11117



Materials and Methods

1. Animals
Samples were collected from routine Johne’s disease screening

of Holstein cattle carried out between September 2007 and

December 2008 in the province of Lodi in Italy, in area with high

occurrence of Johne’s disease. All samples used in the study

originated from animals routinely tested for MAP and were

obtained in an anonymous form from the State Veterinary

Laboratory within the framework of a local ParaTB eradication

program carried out in collaboration between the breeders

associations and state services. Samples were from animals

belonging to infected herds with high a occurrence of Johne’s

disease, based on the serum antibodies produced in response to

MAP infection using the ID-screenH test (Id.Vet Montpellier,

France). In order to minimize relatedness between animals, as the

presence of closely related individuals would confound the

association analysis, samples were selected from many herds. In

total 2818 samples from Holstein cows were collected from 119

farms, among which, 966 samples were chosen for the study. Of

these samples 483 were MAP antibody positive (cases) and 483

MAP antibody negative (MAP negative controls). All animals were

female, and cases and MAP negative controls were from the same

farm tested on the same day. The ID-screenH test was used to

measure serum antibodies produced in response to M. paratuber-

culosis infection (Id.Vet Montpellier, France). Cases were defined as

animals serologically positive for MAP by ELISA with a sample-

to-positive ratio (S/P) .0.7 and MAP negative controls were

defined as animals showing a sample-to-positive ratio (S/P) ,0.6

as suggested by the supplier. Furthermore, positive animals were

tested twice to confirm the positive result. The Enzyme-linked

immunoassay (ELISA) test is best used as a herd screening test for

M. paratuberculosis and returns a positive result in animals that

progress from an incubation phase to the clinical manifestation of

Johne’s disease. The ELISA test is widely used in heard health

programmes to control the disease.

Figure 5. Scatter plots of the chromosomal region in BTA 9 associated with MAP and its corresponding genomic regions (taken
from ENSEMBL).
doi:10.1371/journal.pone.0011117.g005
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A further set of samples were selected to confirm results, these

were: 277 Holstein cows (140 cases and 137 controls, herd, sex and

test day matched). Clotted blood samples were obtained following

the recovery of serum for MAP ELISA testing. DNA was extracted

from the clotted blood as follows: the clot was washed with the EL

buffer (NH4Cl 0.15M, KHCO3 10 mM, EDTA 0.5) and then the

samples were incubated with KL buffer (SDS 1%, TRIS 1M,

EDTA 0.5M, NaCl 5M) and proteinase K at 60uC for three hours.

DNA was then extracted using a standard phenol-chloroform

protocol, followed by an ethanol precipitation.

The 966 samples, plus 9 duplicated samples as technical

replicates, were genotyped by GeneSeek Inc (Nebraska, USA)

using the Illumina BovineSNP50 BeadChip which contains 54001

SNPs with an average spacing of 51.5 kb and a median spacing of

37.3 kb, based on the BTAU4.0 assembly (ftp://ftp.hgsc.bcm.tmc.

edu/pub/data/Btaurus/). Genotypes were assigned using BEAD-

STUDIO (Illumina, San Diego) software.

2. Genotype quality assurance and internal population
structure analysis

Genotype quality assurance was performed within the R

statistical environment using the GenABEL package as imple-

mented with the ‘‘check.marker’’ function [46]. Data was quality

controlled for marker call rate, minor allele frequency and Hardy

Weinburg Equilibrium (HWE): markers missing 5% of data, or

with MAF of less than 2% were removed as were markers that

were significantly out of HWE. Genotyping efficiency for samples

was also verified and samples with more than 5% missing data

were removed. The duplicated samples showed 99.9% concor-

dance of genotypes calls.

Figure 6. Scatter plots of the chromosomal region in BTA 11 associated with MAP and its corresponding genomic regions (taken
from ENSEMBL).
doi:10.1371/journal.pone.0011117.g006
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Classical Multi Dimension Scaling (MDS) was used to explore

population substructure and to verify the genetic homogeneity of

the sample set prior to analysis. Pair wise identities by state (IBS)

were calculated for all 966 samples based on autosomal SNPs

using identity matrices as implemented in the GenABEL library

[46].

3. Statistical analysis
Genome-wide association analysis was performed using the

GenABEL package [46] in R using a three step GRAMMAR-CG

approach, (Genome wide Association using Mixed Model and

Regression - Genomic Control), with the extension of using the

genomic kinship matrix estimated through genomic marker data,

instead of the pedigree [39,47]. First an additive polygenic model

was used to obtain individual environmental residuals using the

polygenic function of the GenABEL library to disentangle the

cryptic population structure caused by the presence of closely

related animals in the sample set [39]. To account for relatedness,

the variance/covariance matrix was estimated from the genomic

kinship matrix, as pedigree information was not available. The

relationship matrix used in the analysis was estimated using

genomic data with the ‘‘ibs’’ (option weight = ‘‘freq’’) function of

GenABEL. Secondly, association was tested using a simple least

squares method on the residuals, corrected for cryptic relatedness,

familiar correlation, and independent of pedigree structure.

Thirdly, the Genomic Control (GC) approach was used to correct

for conservativeness of the GRAMMAR test, based on the

estimation of the lambda factor, which is the median of all

genome-wide observed test statistics divided by the expected

median of the test statistic under the null hypothesis of no

association, assuming that the number of true associations is very

small compared to the number of tests that are actually performed.

Cases were defined as animals serologically positive for MAP by

ELISA with a sample-to-positive ratio (S/P) .0.7 and MAP

negative controls were defined as animals showing a sample-to-

positive ratio (S/P) ,0.6. Cases were set to 1 and MAP negative

controls to 0. Uncorrected p-values ,561027 were accepted to

represent very strong proof of genome-wide association, while p-

values between 561027 and 561025 were considered as

moderately significant associations.

SNP effects were then estimated using the formula V = 2pqa2

where p and q are the frequencies of the minor and major alleles

and a is the allelic substitution effect [48]. Further to the initial

genome-wide association study (GWAS) a confirmatory associa-

tion study (CMAS) was carried out, using a smaller randomly

selected sub-set of animals belonging to the same initial cohort of

Holstein samples used in the initial the GWA. The analysis of

these data followed the same statistical approach as described

above. The threshold for confirmation of significant results in the

smaller Holstein cohort was set at a p-value of less than 0.05

divided by the actual number of SNPs tested (n = 6).

SNP location and gene names were based on the Btau_4.0,

assembly released on 4 October 2009 (http://www.ensembl.org).

All analyses were carried out within the R statistical environment

(http://www.r-project.org).

Supporting Information

Table S1 Functional description of the genes present in the

genomic regions associated with MAP within 1MB from the SNP.

Found at: doi:10.1371/journal.pone.0011117.s001 (0.06 MB

DOC)
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