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Summary
Sirtuins comprise a family of NAD+-dependent protein deacetylases and ADP-ribosyltransferases.
Mammalian SIRT1 - a homolog of Sir2, the prototypical member of the sirtuin family - is an important
regulator of metabolism, cell differentiation and senescence, stress response, and cancer. As a
NAD+-dependent enzyme, SIRT1 regulates gene expression programs in response to cellular
metabolic status, thereby coordinating metabolic adaptation of the whole organism. Several
important mechanisms have emerged for SIRT1-dependent regulation of transcription. First, SIRT1
can modulate chromatin function through direct deacetylation of histones, as well as by promoting
alterations in the methylation of histones and DNA, leading to the repression of transcription. The
latter is accomplished through the recruitment of other nuclear enzymes to chromatin for histone
methylation and DNA CpG methylation, suggesting a broader role of SIRT1 in epigenetic regulation.
Second, SIRT1 can interact and deacetylate a broad range of transcription factors and coregulators,
thereby regulating target gene expression both positively and negatively. Cellular energy state,
specifically NAD+ metabolism, plays a major role in the regulation of SIRT1 activity. Recent studies
on the NAD+ biosynthetic enzymes in the salvage pathway, nicotinamide phosphoribosyltransferase
(NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1), have revealed
important functions for these enzymes in SIRT1-dependent transcription regulation. The collective
molecular actions of SIRT1 control specific patterns of gene expression that modulate a wide variety
of physiological outcomes.
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1. Introduction
The regulation of gene expression in response to internal and external signals allows cells to
control a wide variety of cellular processes in a coordinated manner to direct physiological, as
well as pathophysiological, outcomes. Signal-regulated transcription by RNA polymerase II

3Address correspondence to: W. Lee Kraus, Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology
Building, Ithaca, NY 14853, Phone: 607-255-6087, Fax: 607-255-6249, wlk5@cornell.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Biochim Biophys Acta. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
Biochim Biophys Acta. 2010 August ; 1804(8): 1666–1675. doi:10.1016/j.bbapap.2009.10.022.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Pol II), which controls the expression of protein-coding genes in the chromatin environment
of the genome, is a complex process that requires a host of protein factors and multipolypeptide
complexes [1-3]. These include sequence-specific DNA binding transcription factors, as well
as a variety of enzymes that (1) covalently modify or de-modify histones and other
transcription-related proteins, (2) mobilize or structurally alter nucleosomes, or (3) enhance
the loading and activity of the Pol II machinery at gene promoters. The concerted actions of
these enzymes allow an exquisite level of control of gene expression.

Members of the sirtuin family of NAD+-dependent protein deacetylases, which include the
nuclear proteins Sir2 (yeast) and SIRT1 (mammals) (Fig. 1), represent an evolutionarily
conserved class of regulatory enzymes [4,5]. Sirtuins play key roles in a variety of cellular
processes from yeast to mammals, including signal-regulated transcription by Pol II [6]. Sir2,
the prototypical sirtuin family member, regulates gene silencing at the mating type loci (HML
and HMR), the ribosomal DNA (rDNA) locus, and telomeres [4,7]. These and other functions
of Sir2 are dependent on its ability to deacetylate nucleosomal histones [4]. Among mammalian
sirtuins, SIRT1 is the family member most closely related to Sir2. SIRT1 controls cell
differentiation, metabolism, circadian rhythms, stress responses, and cellular survival [4,8,9],
and the levels of SIRT1 fluctuate during various cellular processes [10]. As with yeast Sir2,
many of the functions of SIRT1 are dependent on its deacetylase activity, which is directed
towards nucleosomal histones (e.g., histone H4 lysine 16 or “H4K16”) [11,12], as well as a
wide range of transcription factors and other nuclear regulatory proteins [4,5]. The unique
requirement for the metabolic co-enzyme NAD+ as a substrate for both Sir2 and SIRT1
catalytic activity provides a crucial link between cellular metabolic status and gene regulation.
In addition, the deacetylation reaction by sirtuins generates a unique NAD+ metabolite, O-
acetyl-ADP-ribose (OAADPR, Fig. 1) [4,5]. OAADPR plays an essential role in yeast SIR
(silent information regulator) complex assembly [13]. It also binds to macrodomains and may
modulate the function of macrodomain-containing proteins [14,15]. Multiple enzymatic
activities, including Nudix hydrolases, contribute to OAADPR hydrolysis [16-19], suggesting
a role for these enzymes in regulating the cellular functions of Sir2 and SIRT1.

Many of the functions of Sir2, including the locus-specific gene silencing effects noted above
[4,7], are dependent on its dynamic association with chromatin in response to different
environmental or physiological states. For example, as yeast cells age, the Sir proteins relocate
from the silent mating type loci to the nucleolus. The concomitant loss of silencing leads to
sterility and aging [20-22]. In addition, Sir proteins relocate to DNA breaks in a DNA damage
checkpoint-dependent manner [23-25]. Interestingly, a recent study has revealed parallel
functions of SIRT1 in mammalian cells. Specifically, Oberdoerffer et al. have shown that DNA
damage causes a global redistribution of SIRT1 away from silent repeat sequences and gene
promoters to sites of DNA damage [26]. The redistribution of SIRT1 (1) is required for efficient
DNA double strand break repair and genome stability, (2) protects mice from irradiation-
induced cancer, and (3) causes deregulation of SIRT1 bound genes [26].

In this review, we will examine the available literature describing how the localization and
enzymatic activity of Sir2 and SIRT1 at specific sites in the genome regulate gene expression
(Fig. 2). The focus will be on SIRT1, but Sir2 will also be discussed when involved in parallel
processes.
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2. SIRT1-dependent gene regulation through histone modification, DNA
methylation, and the modulation of chromatin structure
2.1. Histone modifications

Many of the functions of Sir2 and SIRT1 are dependent on their ability to deacetylate
nucleosomal histones at specific residues [4,5]. For example, Sir2 is essential for establishing
and maintaining silent chromatin in yeast, which requires deacetylation of H4K16 [4,5]. In this
regard, age-associated decreases in Sir2 protein are accompanied by an increase in H4K16
acetylation and a loss of histones at specific subtelomeric regions, which results in impaired
transcriptional silencing [27].

SIRT1 has been shown to have parallel functions in mammalian cells, promoting chromatin
silencing and transcription repression. SIRT1 is recruited to chromatin through interactions
with a variety of chromatin-associated proteins, such as transcription factors and coregulators
(see the text and Table 1, below). Upon recruitment to chromatin, SIRT1 can deacetylate
H4K16, H3 lysine 9 (“H3K9”) and H3 lysine 14 (“H3K14”) [11,12]. In addition, SIRT1
interacts directly with histone H1 and deacetylates H1 lysine 26 (“H1K26”) [11]. Beyond direct
deacetylation of histones, SIRT1 also interacts with histone-modifying enzymes and regulates
their activity. For example, SIRT1 binds and deacetylates the histone acetyltransferase p300,
which inhibits p300 enzymatic activity [28]. This has the potential to promote hypoacetylation
of nucleosomal histones and affect gene expression outcomes.

Histone acetylation and histone methylation are often coordinately regulated [29]. In this
regard, the binding of SIRT1 to chromatin and the concomitant deacetylation of nucleosomal
histones can promote alterations in histone methylation. For example, in an integrated reporter
gene assay, recruitment and activity of SIRT1 at the promoter induced H4 lysine 20
monomethylation (H4K20me) and H3 lysine 9 trimethylation (H3K9me3), and decreased H3
lysine 79 dimethylation (H3K79me2) [11]. Although in most cases an understanding of the
detailed mechanisms is still lacking for SIRT1-induced histone methylation, recent reports
suggest that SIRT1 can recruit histone methyltransferases (e.g., suppressor of variegation 3–9
homolog 1 or SUV39H1) to target sites, thereby regulating both histone acetylation and
methylation at these sites. SIRT1 interacts with and deacetylates the catalytic domain of
SUV39H1, the principle enzyme responsible for catalyzing H3K9me3 [30]. These interactions
recruit SUV39H1 to chromatin and increase the methyltransferase activity of SUV39H1,
leading to increased levels of H3K9me3 at SIRT1 target sites. Consistent with this observation,
loss of SIRT1 greatly inhibits SUV39H1-dependent H3K9me3 and impairs the localization of
heterochromatin protein 1 (HP-1), an H3K9me3-binding protein [30].

Both SIRT1 and SUV39H1 are also found in a complex with nucleomethylin, a nuclear protein
that binds to H3K9me2 at the rDNA locus [31]. This complex, eNoSC (energy-dependent
nucleolar silencing complex), senses cellular energy status and regulates silent chromatin
formation at the rDNA locus through H3 deacetylation and H3K9 methylation. These
observations suggest that the NAD+-dependent deacetylase activity of SIRT1 in the eNoSC
complex provides a critical link between energy status and rRNA transcription [31].
Interestingly, DBC1 (deleted in breast cancer 1) disrupts the SIRT1-SUV39H1 complex. DBC1
directly binds to both SIRT1 and SUV39H1 and inhibits their enzymatic activity [32-34]. This
activity of DBC1 may play an important role in the regulation of heterochromatin formation
and genomic stability. In addition to its interaction with SUV39H1, SIRT1 has also been found
in the PRC4 (Polycomb repressive complex 4) complex with Ezh2 (Enhancer of zeste homolog
2), a histone methyltransferase, and may therefore indirectly regulate H3K27 and H1K26
methylation [35].
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Recent advances in mass spectrometry technology, including linear trap quadrupole (LTQ)
orbitrap and Fourier transform mass spectrometry (FTMS), have made it possible to directly
examine combinatorial post-translational modifications (PTMs) on histone tails [36-39]. One
interesting use of these technologies would be to further decipher the role of SIRT1 in
coordinating histone modifications, such as acetylation and methylation, and to understand
how SIRT1-dependent modification of histones regulates target gene expression.

2.2. DNA methylation
SIRT1 has been shown to associate with the promoters of aberrantly silenced tumor suppressor
genes (i.e., genes whose promoter CpG islands are hypermethylated) in cancer cells [40].
Inhibition of SIRT1 leads to re-expression of these genes [40]. Interestingly, in cell lines where
these promoters are not hypermethylated and the genes are expressed, no SIRT1 binding is
detected [40]. One of the tumor suppressor genes repressed by the actions of SIRT1 is CDH1,
the gene encoding E-cadherin. Using an experimental model in which a DNA double strand
break was induced in a reporter construct containing the CDH1 promoter, O'Hagan et al.
examined the relationship between DNA damage and SIRT1-dependent gene silencing [41].
In their assays, SIRT1 bound to the region surrounding the DNA break in the reporter construct,
consistent with the results of genomic localization (i.e., the ChIP-chip) studies showing global
redistribution of SIRT1 upon DNA damage [26]. Importantly, SIRT1 binding is required for
recruitment of DNA methyltransferase 3B (DNMT3B) and the subsequent heritable
methylation of CpG islands at the reporter gene promoter [41]. These observations reveal a
critical role for SIRT1 in DNA methylation and epigenetic silencing, although details of the
mechanism remain to be elucidated.

2.3. SIRT1-dependent gene regulation through deacetylation of transcription factors and
coregulators

SIRT1 interacts with a wide variety of DNA-bound or chromatin-associated factors (i.e.,
sequence-specific DNA binding transcription factors and coregulators, respectively) and is
recruited to their target binding sites in the genome [6]. These include p53 [42,43], the FOXO
transcription factors [44,45], the circadian clock protein BMAL1 [46], the nuclear receptors
LXR, estrogen receptor α, and androgen receptor [47-50], the hypoxia-inducible factor 2α
[51], the coregulator PGC1α [52-57], and the DNA repair and anti-apoptotic factor Ku70
[58] (Table 1). Deacetylation of these non-histone targets by SIRT1 is largely responsible for
the complexity of transcriptional regulation by SIRT1 since it contributes to both negative and
positive regulation of target gene expression [6]. The activity of SIRT1 with these target
proteins underlies its function in cell differentiation, metabolism, circadian regulation, stress
response, and survival (Table 1). Several excellent reviews of this subject have recently been
published [5,6,59-62] and the reader is directed to these reviews for a detailed discussion of
this subject. In the following section, we describe one example of SIRT1 regulation of a non-
histone target as an example.

Here we use peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 alpha
(PGC-1α) as an example to discuss in more detail how SIRT1 regulates target gene expression
through interactions with specific transcription factors and coregulators. PGC-1α is a
transcriptional coactivator that controls mitochondrial biogenesis and respiration, and whole-
body energy expenditure [63,64]. To achieve these functions, PGC-1α serves as a coactivator
for a variety of transcription factors, including the PPARs, thyroid hormone receptors,
glucocorticoid receptors, estrogen receptors, estrogen-related receptors (ERRs), myocyte
enhancer factor-2 (MEF-2) and the FOXO transcription factors [65-71].

The activity of PGC-1α is regulated at both transcriptional and posttranslational levels.
Importantly, acetylation by GCN5 and SRC3 negatively regulates PGC-1α activity [72,73].
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Lysine to arginine mutations in PGC-1α, which block acetylation of lysine residues and mimic
the deacetylated state, markedly increase the activity of PGC-1α [52,56]. In vivo, SIRT1
directly interacts with and deacetylates PGC-1α at multiple lysine residues [56], thereby
enhancing the activity of PGC-1α. Recent studies indicate that SIRT1-dependent activation of
PGC-1α plays a major role in regulating metabolic adaptations in different tissues [52,54-56].
For example, during fasting, gluconeogenesis in the liver is upregulated to maintain normal
blood glucose levels. Both SIRT1 expression and activity are induced in the fasted liver, leading
to increased activity of PGC-1α [56].

Once PGC-1α is induced, it regulates gluconeogenic, glycolytic, and fatty acid oxidation genes
through co-activation of transcription factors, such as FOXO1 [65,74,75]. Additionally, SIRT1
can also directly interact with and potentiate FOXO1 activity [76]. Therefore, increased hepatic
SIRT1 activity enhances gluconeogenesis and inhibits glycolysis through activation of both
PGC-1α and FOXO1. Similar interactions between SIRT1 and PGC-1α have been reported in
skeletal muscle cells under fasting and low glucose conditions, where activated PGC-1α
induces expression of genes involved in mitochondrial fatty acid oxidation [55]

Interestingly, in vivo treatment with the SIRT1 activator resveratrol in mice leads to
deacetylation and activation of PGC-1α and enhanced mitochondrial function in several tissues
[53,54]. Increased insulin sensitivity, exercise performance and thermogenic activity are
observed in these mice, suggesting that SIRT1 is a potential target for improvement of general
health and treatment of metabolic diseases [53,54]. In fact, SIRT1 activators are in clinical
trials for Type 2 Diabetes (http://www.sirtrispharma.com/pipeline.html). Other promising
therapeutic areas for SIRT1 include mitochondrial, cardiovascular, neurodegenerative, and
inflammatory diseases, as well as various forms of cancer [77].

3. Regulation of SIRT1 activity by NAD+ biosynthetic enzymes
The cellular functions of Sir2 and SIRT1 are dependent upon its deacetylase activity, which
requires the metabolic coenzyme NAD+. In addition, Sir2 and SIRT1 activity are inhibited by
nicotinamide (NAM), which is (1) a by-product of NAD+-dependent protein modifications by
sirtuins and poly(ADP-ribose) polymerases (PARPs) and (2) a precursor for NAD+

biosynthesis through a salvage pathway [78-80]. The regulation of Sir2 and SIRT1 activity by
NAD+ and its metabolites provides a crucial link between cell metabolism and transcriptional
regulation. This was first characterized with respect to calorie restriction (CR)-induced lifespan
extension in yeast [81,82], but has since been expanded to mammalian systems [83-86].

Studies in yeast have shown that the effect of CR on lifespan requires an intact NAD+ salvage
pathway, and overexpression of the enzymes in this pathway extends yeast lifespan [81,82,
87]. Because no overall change in NAD+ levels is observed in the long-lived yeast strains
[87], other metabolic parameters regulated by the NAD+ salvage pathway, including
NAD+:NADH ratio [88,89] and NAM levels [80,82,90], have been proposed as the actual
signal that regulate Sir2 activity during CR. Studies in mammalian cells have focused on the
role of two enzymes in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase
(NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1), in
controlling SIRT1 function in the nucleus. The salvage pathway comprised by these enzymes
uses NAM as the precursor for NAD+ synthesis in the nucleus (Fig. 3) and, therefore, can
regulate SIRT1 activity through both NAM removal and NAD+ production.

3.1. NAMPT
NAMPT, which catalyzes the conversion of NAM to nicotinamide mononucleotide (NMN)
(Fig. 3) [91], localizes to both the cytoplasm and nucleus [92,93]. In addition, an extracellular
form of the protein has been reported to act as an NAD+ biosynthetic enzyme (eNAMPT)
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[94,95], a cytokine named PBEF (pre-B cell colony-enhancing factor) [96], and a
adipocytokine with insulin-mimetic function (visfatin) [97], although the later study has been
retracted [98]Biochemical analyses suggest that NAMPT is the rate-limiting enzyme in the
NAD+ salvage pathway [99], while in vivo studies demonstrate that NAMPT expression levels
closely correlate with cellular NAD+ production [83,85,86,99-102]. The enzymatic activity of
NAMPT also directly reduces cellular NAM levels [83]. Both of these actions of NAMPT have
the potential to stimulate SIRT1 activity.

The role of NAMPT in the regulation of SIRT1 activity has been explored in a variety of cell
types, including skeletal myoblasts, vascular smooth muscle cells (SMCs), and chondrocytes.
Restriction of nutrients in skeletal myoblasts stimulates NAMPT expression, leading to the
modulation of cellular NAD+/NADH ratio, as well as NAM levels [83]. These changes activate
SIRT1, which promotes a SIRT1-dependent impairment of myoblast differentiation [83].
Similarly, in human vascular smooth muscle cells (SMCs), NAMPT is upregulated during cell
maturation [84] and declines during cell aging [101]. These changes in NAMPT expression
are accompanied by similar changes in cellular NAD+ levels, which regulate SMC function in
a SIRT1-dependent pathway [84,101]. Intriguingly, ectopic expression of NAMPT delays
SMC senescence through activation of SIRT1 [101]. Together, these studies illustrate how
NAMPT-dependent regulation of SIRT1 plays a critical role in muscle cell differentiation,
maturation, and senescence. In human chondrocytes, SIRT1 is recruited to the promoter of a
cartilage-specific gene through interactions with SOX9 [103]. At this gene, NAMPT stimulates
SIRT1 activity and target gene expression through NAD+ production [103]. These studies
illustrate how the gene regulatory activity of SIRT1 is controlled by cellular NAD+ production.

Recent studies have connected the actions of NAMPT and SIRT1 in the regulation of the
circadian rhythm. The circadian rhythm in mammals is controlled by internal “clocks” that
temporally regulate biological functions in response to environmental and physiological cues
in a process that involves negative feedback regulation of gene expression [62]. Many of the
core clock proteins are transcription factors, including CLOCK (a protein acetyltransferase
[104,105]) and BMAL1, which form a DNA-binding heterodimer. CLOCK:BMAL1
heterodimers promote the expression of the genes encoding Period (PER) and Cryptochrome
1 (CRY1) through the CLOCK-dependent acetylation of histones and transcription factors
[62]. Once synthesized, the PER and CRY1 proteins form heterodimers that inhibit
CLOCK:BMAL1-dependent transcription (Fig. 4). A key aspect of this regulatory pathway is
the acetyltransferase activity of CLOCK, which can acetylate histones H3 and H4 [104], as
well as non-histone substrates including its binding partner BMAL1 [105] and potentially other
clock proteins [62]. BMAL1 acetylation facilitates the association of the repressor CRY1 with
CLOCK:BMAL1, thereby forming a crucial link in the feedback regulation of circadian rhythm
[105] (Fig. 4).

Exciting new developments in this field have revealed the involvement of SIRT1 and NAMPT
in circadian regulation. SIRT1 binds to CLOCK and is recruited to the CLOCK:BMAL1
complex at circadian gene promoters [46,106]. At these sites, SIRT1 deacetylates H3K9 and
H3K14 [46], as well as non-histone proteins BMAL1 [46] and Per2 [106]. Deletion or
inhibition of SIRT1 leads to alterations in the circadian cycle, as revealed by changes in
circadian gene expression profiles [46,106]. Interestingly, SIRT1 activity is regulated in a
circadian manner [46,106], suggesting that SIRT1 may be a crucial link between cellular
metabolism and the circadian clock. Two new reports have provided evidence to support this
view. These studies revealed that the gene encoding NAMPT (i.e., NAMPT) is a direct target
for regulation by CLOCK:BMAL1 heterodimers [85,86]. Consequently, NAMPT expression
and cellular NAD+ biosynthesis are subject to circadian regulation and exhibit circadian
oscillations. The increased NAMPT-dependent NAD+ production leads to higher SIRT1
activity. The activated SIRT1, in turn, acts to inhibit the transcription of NAMPT through
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interactions with the CLOCK:BMAL1 complex at the NAMPT promoter. This completes a
feedback loop involving NAMPT/NAD+/SIRT1 and CLOCK:BMAL1 [85,86,107] (Fig. 4).

3.2. NMNAT-1
The NMN produced by NAMPT is further converted into NAD+ by NMNAT (Fig. 3). Three
NMNAT isoforms are found in mammals (NMNAT-1, -2, and -3) [108]. Among them,
NMNAT-1 localizes exclusively to the nucleus [109] and is likely the key NMNAT family
member responsible for regulating SIRT1 activity. Studies using the Wallerian degeneration
slow (WldS) mouse model, which contains a gene fusion encoding the N-terminal fragment of
ubiquitination factor E4B (Ube4B) linked to full-length NMNAT-1 [110,111], have revealed
a critical function for NMNAT-1 in neuronal protection that may be SIRT1 dependent.
Wallerian degeneration is the process by which the distal part of an injured nerve axon
undergoes degeneration; this process is slowed in the WldS mouse. Overexpression of the
chimeric WldS protein, which retains NMNAT-1 enzymatic activity, significantly delays the
axonal degeneration process [110,111].

Controversy exists over the mechanism of WldS action. In some experimental systems,
NMNAT-1 enzymatic activity is required for the neuronal protection phenotype through a
SIRT1-dependent pathway [112,113], while in others, NMNAT-1 enzymatic activity is
dispensible[114-117]. In one study using primary dorsal root ganglion neuron explants, the
axon protective effect of WldS was mimicked by NMNAT-1 overexpression or addition of
exogenous NAD+, and the protective effect of NAD+ required SIRT1 enzymatic activity
[112]. Interestingly, the cellular levels of NAD+ were not altered in the NMNAT-1
overexpressing cells [110,112], suggesting that localized production of NAD+ in the nucleus,
rather than total level of cellular NAD+, regulates SIRT1 function. Further studies are required
to fully understand if and how NAD+-dependent interplay between NMNAT-1 and SIRT1
contributes to the WldS phenotype.

In a recent study, we uncovered a new aspect of NMNAT-1-dependent regulation of SIRT1
function during gene regulation [118]. Using global gene expression analyses, we identified a
group of genes that are (1) commonly regulated by NMNAT-1 and SIRT1 and (2) show SIRT1
binding to their promoters. These genes also show SIRT1-dependent recruitment of NMNAT-1
to their promoters. Knockdown of NMNAT-1 in this system reduced total cellular NAD+ levels
and inhibited the deacetylation of H4K16 by SIRT1 at target gene promoters. These results
demonstrate that (1) NMNAT-1 regulates SIRT1-dependent transcription through NAD+

production and (2) an NAD+ biosynthetic enzyme can be recruited to target gene promoters as
a coregulator to modulate transcriptional outcomes (Fig. 5).

Colocalization of NMNAT-1 and SIRT1 at target gene promoters may regulate SIRT1 activity
in several ways. For example, close proximity of NMNAT-1 and SIRT1 may facilitate more
efficient NAD+ utilization by SIRT1, perhaps through a substrate channeling mechanism
[119]. Indeed, such a mechanism has been proposed previously for SIRT1 regulation by
NAD+ biosynthetic enzymes [120]. The interaction between NMNAT-1 and SIRT1 at target
gene promoters may also promote allosteric regulation that enhances the enzymatic activity of
either or both enzymes, as has been shown for NMNAT-1 and poly(ADP-ribose) polymerase
1 (PARP-1) [121]. Finally, cellular signaling inputs may regulate interactions between
NMNAT-1 and SIRT1, providing an additional level of regulatory control. Similar regulation
has been reported for the interaction between NMNAT-1 and PARP-1 [121]. Overall,
colocalization of NMNAT-1 and SIRT1 at target gene promoters suggests that NMNAT-1
plays an important role in modulating SIRT1 activity during transcription regulation.
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4. Interplay between SIRT1 and PARP-1
PARP-1 is another chromatin and transcription modulating enzyme that, like SIRT1, requires
a source of nuclear NAD+ [122,123]. SIRT1 and PARP-1 regulate many common pathways,
including cellular differentiation, stress response and survival, and the two enzymes share the
same intranuclear NAD+ pool. Consequently, they may influence each other's activity through
competition for NAD+ [124,125]. This may have a significant impact on SIRT1 function
because PARP-1 is the major NAD+ consumer in the cell during stress responses [125,126].
In response to genotoxic stress, PARP-1 activation can deplete intracellular NAD+ stores and,
at the same time, release high levels of NAM. Both of these actions of PARP-1 can inhibit
SIRT1 enzymatic activity.

Interestingly, recent studies have revealed direct regulation of PARP-1 activity by SIRT1,
providing a mechanism for feedback control of PARP-1 activation in response to genotoxic
stress (Fig. 6). For example, SIRT1 activation can inhibit poly(ADP-ribose) (PAR) synthesis
by PARP-1 following H2O2 treatment [127]. On the other hand, deletion of SIRT1 leads to a
dramatic increase in PAR synthesis and apoptosis inducing factor (AIF)-mediated cell death
following genotoxic insult [127]. Furthermore, studies in cardiomyocytes have shown that
PARP-1 is acetylated in response to cellular stress, which leads to the activation of PARP-1
enzymatic activity. [128]. SIRT1 directly binds to and deacetylates PARP-1, therefore
inhibiting PARP-1 activity [128]. SIRT1 also directly inhibits the expression of the PARP-1
gene, thereby reducing cellular PARP-1 levels and activity even further. Interestingly, the
physical interactions between SIRT1 and PARP-1 are regulated by NAD+, with higher
NAD+ levels inhibiting the interaction [128].

Based on these observations, a detailed mechanism has emerged for cross-talk between SIRT1
and PARP-1 in stress response [128] (Fig. 6). PARP-1 is acetylated and activated following
enhanced cellular stress. Poly(ADP-ribosyl)ation by PARP-1 markedly reduces cellular
NAD+ levels, leading to inhibition of SIRT1 activity. When NAD+ levels are low, SIRT1
interacts with and deacetylates PARP-1 and inhibits expression of the PARP-1 gene, thereby
reducing total cellular PARP-1 activity. These actions of SIRT1 block NAD+ depletion by
PARP-1, thus forming a feedback loop to control PARP-1 activity. The interplay between
PARP-1 and SIRT1 has been proposed to play an important role in determining cell fate
between life and death in response to cellular stress.

5. Summary and perspectives
A host of historical, as well as recent, studies have demonstrated clearly a role for yeast Sir2
and mammalian SIRT1 in NAD+-dependent gene regulation. In this regard, these deacetylases
can (1) reduce the acetylation levels of specific lysines in histones and transcription factors to
alter their function, (2) modulate the activity of other histone and protein-modifying enzymes
(e.g., lysine methyltransferases), (3) collaborate with DNA methyltransferases to regulate the
levels of DNA methylation, (4) interact physically and functionally with enzymes in the
NAD+ biosynthetic pathway, and (5) interact physically and functionally with PARP-1 to
regulate its activity. Although the details of SIRT1-dependent gene regulation are becoming
clearer, many unanswered questions still remain. Additional studies are required to resolve the
specific roles of nuclear and extranuclear NAD+ production in regulating the activity of SIRT1.
In addition, the factors that lend specificity to SIRT1-dependent gene regulation at specific
promoters under specific physiological conditions still need to be identified. Finally, a full
cataloging of all of the proteins that are deacetylated by SIRT1, which will require a proteomic
approach, is needed to fully understand the spectrum of SIRT1 functions in the nucleus.
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Fig. 1. The SIRT1-catalyzed protein deacetylation reaction
NAD+ is consumed as a substrate for the deacetylation of target proteins, which are acetylated
on specific lysine (Lys) residues. The products in the reaction are deacetylated protein,
nicotinamide (NAM), and O-acetyl-ADP-ribose (OAADPR).
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Fig. 2. Mechanisms and functions of SIRT1-dependent transcription regulation in mammalian cells
Details are provided throughout the text. TF, transcription factor; Coreg, coregulator.
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Fig. 3. Mammalian NAD+ biosynthetic pathways
In mammals, NAD+ can be synthesized through two pathways. The de novo pathway uses L-
tryptophan as the precursor for NAD+ production in a multi-step pathway. The salvage pathway
uses nicotinamide or nicotinic acid (together called niacin or vitamin B3) to make NAD+. In
addition, nicotinamide riboside has been identified as a dietary precursor for NAD+

biosynthesis. QPRTase, quinolinic acid phosphoribosyltransferase; NPT, nicotinic acid
phosphoribosyltransferase; NMNAT, nicotinamide/nicotinic acid mononucleotide
adenylyltransferase; NAMPT, nicotinamide phosphoribosyltransferase; NADS, NAD
synthase, NRK, nicotinamide riboside kinase.
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Fig. 4. Feedback regulation of circadian clock gene expression
The circadian rhythm in mammals is controlled by internal “clocks” that temporally regulate
biological functions in response to environmental and physiological cues in a process that
involves negative feedback regulation of gene expression. Many of the core clock proteins are
DNA-binding transcription factors, including: CLOCK (a protein acetyltransferase) and
BMAL1 (a heterodimerization partner of CLOCK). CLOCK:BMAL1 heterodimers promote
the expression of the genes encoding NAMPT, Period (PER) and Cryptochrome 1 (CRY1)
through the CLOCK-dependent acetylation of histones and transcription factors (green arrows;
Ac, acetyl groups covalently linked to proteins). PER and CRY1 form heterodimers that inhibit
CLOCK:BMAL1-dependent transcription. Since the gene encoding NAMPT is a direct target
for regulation by CLOCK:BMAL1 heterodimers, NAMPT expression and cellular NAD+

biosynthesis are subject to circadian regulation and exhibit circadian oscillations. Increased
NAMPT-dependent NAD+ production enhances SIRT1 deacetylase activity, which acts to
inhibit the transcription of NAMPT through interactions with the CLOCK:BMAL1 complex
at the NAMPT promoter, thus completing a feedback loop involving NAMPT/NAD+/SIRT1
and CLOCK:BMAL1.
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Fig. 5. Regulation of SIRT1 activity at target gene promoters by nuclear NAD+- producing enzymes
SIRT1 is recruited to target gene promoters and regulates the acetylation state of histones,
transcription factors, and other chromatin-associated proteins in an NAD+-dependent manner.
Nicotinamide (NAM), a byproduct of SIRT1-catalyzed deacetylation reactions, is a potent
inhibitor of SIRT1 activity. NAMPT and NMNAT-1 constitute a nuclear NAD+ recycling
pathway that utilizes NAM for NAD+ biosynthesis. NAM removal and NAD+ production by
NAMPT and NMNAT-1 stimulate SIRT1 activity in the nucleus. In addition, NMNAT-1
interacts with SIRT1 and is recruited to SIRT1 target gene promoters. SIRT1-dependent
recruitment of NMNAT-1 to chromatin may produce NAD+ for direct shuttling to SIRT1 to
support its activity. TF, transcription factor. Ac, acetyl group.
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Fig. 6. Cross-talk between SIRT1 and PARP-1 in stress responses
Stress activates PARP-1 through DNA damage and acetylation of PARP-1. Poly(ADP-ribosyl)
ation by PARP-1 markedly reduces cellular NAD+ levels and increases NAM levels, leading
to inhibition of SIRT1 activity. Together, these changes can lead to apoptotic or necrotic cell
death. To counteract the action of PARP-1, SIRT1 interacts with and deacetylates PARP-1
when NAD+ levels are low, thereby inhibiting PARP-1 activity. This function of SIRT1 helps
to maintain cellular NAD+ levels and SIRT1 activity, and promotes cell survival in response
to stress. Ac-ADPR, acetylated ADP-ribose or OAADPR.
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Table 1
Non-histone substrates and interacting proteins of SIRT1

SIRT1 Deacetylation Substrate Consequence of Deacetylation Biological Outcome References

AR Inhibition Transcriptional repression of target gene [48,49]

BMAL1 Inhibition of BMAL1-CRY1 interaction,
leading to transcription activation

Maintenance of circadian clock [46,105]

E2F1 Inhibition Anti-apoptotic, negative feedback
regulation of SIRT1 expression

[129]

ERα Inhibition of DNA binding activity Transcriptional repression of target gene [47]

FOXO1, FOXO3a, FOXO4 Inhibition or activation, context
dependent

Regulation of stress resistance, cell
survival, angiogenesis,
gluconeogenesis, and adipocyte
function

[44,45,61,76,
130-133]

Ku70 Activation Anti-apoptotic [58]

HIF-2α Activation Positive regulation of stress response to
hypoxia

[51]

LXR Ubiquitylation and activation of LXR Regulation of cholesterol homeostasis [50]

MEF2 Repression of target gene expression Negative regulation of myogenesis [134]

MyoD Repression of target gene expression Negative regulation of myogenesis [135]

p53 Inhibition Anti-apoptotic, cell survival [42,43,136,137]

p73 Inhibition Anti-apoptotic [138]

p300 Inhibition of HAT activity Transcription repression [28]

PCAF Inhibition of p73 expression Negative regulation of the E2F1/p73
apoptotic pathway

[139]

PCAF and GCN5 Deacetylation of PCAF and MyoD in a
SIRT1/PCAF/MyoD complex,
repression of target gene expression

Negative regulation of myogenesis [135]

Per2 Per2 degradation and activation of target
gene transcription

Maintenance of circadian clock [106]

PGC-1a Activation Regulation of mitochondrial function
and glucose and lipid metabolism

[52-57]

RelA/p65 (NF-κB) Inhibition Pro-apoptotic in response to TNFα; anti-
apoptotic in neuronal cells

[140,141]

Smad7 Ubiquitylation and degradation of
Smad7

Inhibition of TGFβ-induced apoptosis [142]

Sox9 Activation Activation of cartilage-specific gene
expression

[103]

SUV39H1 Activation H3K9 trimethylation, reduced rRNA
transcription

[30,31]

TAFI68 Inhibition of DNA binding activity Repression of RNA Pol I-dependent
rRNA transcription

[143]

SIRT1 Interacting Protein Consequence of interaction Biological Outcome References

CTIP1 and CTIP2 H3 and H4 deacetylation Transcription repression [144,145]

HES1 and HEY2 Transcription repression Regulation of cell differentiation [146,147]

HIC1 Recruitment of SIRT1 to its own
promoter

Feedback inhibition of SIRT1
expression

[148]

NCoR and SMRT Transcription repression Inhibition of PPARγ-dependent gene
expression in adipocytes

[149]
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SIRT1 Deacetylation Substrate Consequence of Deacetylation Biological Outcome References

Tat Recycling of Tat Activation of HIV transcription [150]
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