

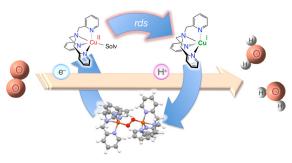
NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2011 May 26.

Published in final edited form as: *J Am Chem Soc.* 2010 May 26; 132(20): 6874–6875. doi:10.1021/ja100538x.

Mononuclear Copper Complex Catalyzed Four-Electron Reduction of Oxygen


Shunichi Fukuzumi^{†,‡,*}, Hiroaki Kotani[†], Heather R. Lucas[§], Kaoru Doi[†], Tomoyoshi Suenobu[†], Ryan L. Peterson^{§,‡}, and Kenneth D. Karlin^{§,‡,*}

[†]Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

[‡]Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea, Fax: +81-6-6879-7370; Tel: +81-6-6879-7368

[§]Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA

Abstract

A mononuclear Cu^{II} complex acts as an efficient catalyst for four-electron reduction of O_2 to H_2O by a ferrocene derivative via formation of the dinuclear Cu^{II} peroxo complex that is further reduced in the presence of protons by a ferrocene derivative to regenerate the Cu^{II} complex.

Cytochrome *c* oxidases (C*c*Os), with a bimetallic active-site consisting of a heme *a* and Cu (Fe_{a3}/Cu_B), are the terminal enzymes of respiratory chains, catalyzing the reduction of molecular oxygen to water by the soluble electron carrier, cytochrome *c*.^{1,2} Synthetic Fe_{a3}/Cu_B analogs have attracted significant attention, because the four-electron reduction of O₂ is not only of great biological interest, 3^{,4} but also of technological significance such as in fuel cells.^{5,6} Multicopper oxidases such as laccase also activate oxygen at a site containing a three-plus-one arrangement of 4 Cu atoms, exhibiting remarkable electroactivity for the four-electron reduction of O₂ has frequently been used to probe the catalytic reactivity of synthetic *CcO* model complexes³⁻⁵ and some copper (only) complexes have also been investigated.^{8–}10 However, there has been no report on the copper complex catalyzed four-electron reduction of O₂ employing one-electron reductants in homogeneous solution; such situations are amenable to systematic studies which provide considerable mechanistic insights.¹¹

fukuzumi@chem.eng.osaka-u.ac.jp, karlin@jhu.edu.

Supporting Information Available. Experimental section, kinetic analysis, and figures (Figure S1–S7). This material is available free of charge via the Internet at http://pubs.acs.org.

Fukuzumi et al.

We report herein that a copper complex $[(tmpa)Cu^{II}](ClO_4)_2$ (1: tmpa = tris(2-pyridylmethyl) amine)¹² efficiently catalyzes the four-electron reduction of O₂ by one-electron reductants such as ferrocene derivatives in the presence of HClO₄ in acetone. As described below, the catalytic mechanism is clarified based on kinetic studies and detection of reactive intermediates.

The addition of a catalytic amount of **1** to an O₂-saturated acetone solution of decamethylferrocene (Fc^{*}) and HClO₄ results in the efficient oxidation of Fc^{*} by O₂ to afford ferrocenium cation (Fc^{*+}) (see Supporting Information for the experimental section). Figure 1 shows the spectral changes obtained following stepwise addition of HClO₄ to this solution. For each time period, the concentration of Fc^{*+} ($\lambda_{max} = 380$ and 780 nm)¹¹ immediately formed is the same as the concentration of HClO₄ added. The reduced product of O₂ is confirmed to be H₂O based on the detection of H₂¹⁸O by ¹⁸O-labeled O₂ experiments (Figure S1). It has also been confirmed that no H₂O₂ is detected via iodometric titration experiments (Figure S2). ¹³ When more than four equiv. of Fc^{*} relative to O₂ (i.e., limiting [O₂]) were employed, only four equiv. Fc^{*+} were formed in the presence of four equiv. HClO₄ (Figure S3).¹⁴ Thus, the stoichiometry of the catalytic reduction of O₂ by Fc^{*} is given by eq 1.¹⁵

$$4Fc^* + O_2 + 4H^+ \xrightarrow{[(tmpa)Cu^{II}]^{2+}} 4Fc^{*+} + 2H_2O$$
(1)

The time profile of the four-electron reduction of O_2 with Fc^* catalyzed by 1 in the presence of HClO₄ in acetone at 298 K was examined by stopped-flow measurements. Figure 2a shows the observed absorption spectral change during the catalytic reaction. Under the conditions employed with relative concentrations of reagents as given in the Figure 2 caption, it is only after Fc^{*+} ($\lambda_{max} = 780$ nm) is completely formed that the peroxo species, [(tmpa)Cu^{II}(O₂) Cu^{II} (tmpa)]²⁺ (2: $\lambda_{max} = 520$ nm)¹⁶ starts to be produced.¹⁷ This is more clearly seen in Figure 2b, the time profiles for the absorbance at 780 nm due to Fc^{*+} , by comparison to the absorbance at 520 nm due to **2**. Because the concentration of HClO₄ is smaller than that of Fc^* , HClO₄ has been consumed when the reaction is over. It is well established that [(tmpa)Cu^I]⁺ reacts with O₂ affording the superoxo species [(tmpa)Cu^{II}(O₂⁻)]⁺ which reacts rapidly with [(tmpa) Cu^{I}]⁺ to produce the peroxo species **2**.¹⁶ Thus, electron-transfer reduction of **1** by Fc^* with O₂ but without HClO₄ affords **2**. This is the reason why **2** starts to appear only after HClO₄ is all consumed. The stoichiometry of the reaction of Fc^* with **1** and O₂ is given by eq 2.

$$2Fc^{*}+2[(tmpa)Cu^{II}]^{2+}+O_{2} \rightarrow 2Fc^{*+}+[(tmpa)Cu^{II}(O_{2})Cu^{II}(tmpa)]^{2+}$$
(2)

The rate of formation of Fc^{*+} in Figure 2b appears to be constant with respect to the concentration of Fc^{*+}, when the concentration of Fc^{*} is in large excess compared to that of HClO₄. The constant rate (M s⁻¹) increases linearly with increasing concentration of **1** and Fc^{*} (Figure S5). The second-order rate constant (k_{obs}) is determined to be $(1.1 \pm 0.1) \times 10^5$ M⁻¹ s⁻¹ from the slope of Figure S5, which is divided by the initial concentration of Fc^{*} (1.0 mM).

The rate of formation of Fc^{*+}, accompanied by formation of **2** via electron transfer from Fc^{*} to **1** with O₂, was also determined without HClO₄, obeying pseudo-first-order kinetics, when the concentration of Fc^{*} is much larger than that of **1** (Figure S6). This rate constant increases linearly with concentration of Fc^{*}. From the slope of the linear plot, the second-order rate constant (k'_{obs}) for formation of Fc^{*+} without HClO₄ under single turnover conditions is determined to be $(4.9 \pm 0.4) \times 10^4$ M⁻¹ s⁻¹ (Figure S6). This value is one-half as compared to the rate constant under catalytic conditions with HClO₄. This is quite consistent with the stoichiometries of the catalytic reaction (eq 1) and the single turnover reaction (eq 2), because

J Am Chem Soc. Author manuscript; available in PMC 2011 May 26.

an additional equiv. of Fc^{*+} is formed in the presence of $HClO_4$ under the catalytic conditions following formation of one equiv. of Fc^{*+} under the single turnover reaction (see Supporting Information for the kinetic analysis).

No further reduction of the peroxo species 2 occurs without an acid. However, the addition of $HClO_4$ facilitates electron-transfer and the further two-electron reduction of 2 to produce two equiv. of Fc^{*+}, accompanied by regeneration of 1. This was confirmed by low temperature measurements (Figure S7). Thus, the overall catalytic cycle is given in Scheme 1. The initial electron transfer from Fc^{*} to 1 and reaction with O₂ affords the two-electron reduction of oxygen to produce the peroxo species that can be further reduced in the presence of $HClO_4$ to facilitate the four-electron reduction of O₂ to H₂O by Fc^{*} (Scheme 1).¹⁸

In summary, a copper complex **1** acts as an effective catalyst for the four-electron reduction of O_2 by one-electron reductants such as Fc^* in the presence of an acid. The present study opens a new approach and the use of copper ion to develop efficient catalysts for the four-electron reduction of O_2 , because the catalytic activity and stability of intermediates can certainly be controlled and tuned by variation of ligands for copper ion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by a Grant-in-Aid (No. 20108010) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (S.F.), the National Institutes of Health (USA) (K.D.K., GM28962), and KOSEF/MEST through WCU project (R31-2008-000-10010-0) (S.F & K.D.K.)

References

- 1. (a) Ferguson-Miller S, Babcock GT. Chem. Rev 1996;96:2889. [PubMed: 11848844] (b) Pereira MM, Santana M, Teixeira M. Biochim. Biophys. Acta 2001;1505:185. [PubMed: 11334784]
- (a) Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Science 1995;269:1069. [PubMed: 7652554] (b) Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T. Science 1998;280:1723. [PubMed: 9624044]
- 3. (a) Kim E, Chufán EE, Kamaraj K, Karlin KD. Chem. Rev 2004;104:1077. [PubMed: 14871150] (b) Chufán EE, Puiu SC, Karlin KD. Acc. Chem. Res 2007;40:563. [PubMed: 17550225]
- 4. (a) Collman JP, Boulatov R, Sunderland CJ, Fu L. Chem. Rev 2004;104:561. [PubMed: 14871135]
 (b) Collman, JP.; Boulatov, R.; Sunderland, CJ. The Porphyrin Handbook. Kadish, KM.; Smith, KM.; Guilard, R., editors. Vol. Vol. 11. USA: Elsevier Science; 2003. p. 1-49.
- (a) Cracknell JA, Vincent KA, Armstrong FA. Chem. Rev 2008;108:2439. [PubMed: 18620369] (b) Willner I, Yan Y-M, Willner B, Tel-Vered R. Fuel Cells 2009;9:7.
- (a) Anson FC, Shi C, Steiger B. Acc. Chem. Res 1997;30:437.
 (b) Shin H, Lee D-H, Kang C, Karlin KD. Electrochim. Acta 2003;48:4077.
- 7. (a) Blanford CF, Heath RS, Armstrong FA. Chem. Commun 2007:1710. (b) Mano N, Soukharev V, Heller A. J. Phys. Chem. B 2006;110:11180. [PubMed: 16771381]
- 8. (a) Zhang J, Anson FC. J. Electroanal. Chem 1993;348:81. (b) Watanabe H, Yamazaki H, Wang X, Uchiyama S. Electrochim. Acta 2009;54:1362.
- 9. Thorum MS, Yadav J, Grewirth AA. Angew. Chem., Int. Ed 2009;48:165.
- 10. Weng YC, Fan F-RF, Bard AJ. J. Am. Chem. Soc 2005;127:17576. [PubMed: 16351066]
- 11. For the catalytic reduction of O₂ by chemical reductants with cobalt porphyrins and cobalt corroles, see: (a) Fukuzumi S, Okamoto K, Gros CP, Guilard R. J. Am. Chem. Soc 2004;126:10441. [PubMed:

15315460] (b) Kadish KM, Frémond L, Shen J, Chen P, Ohkubo K, Fukuzumi S, Ojaimi ME, Gros CP, Barbe J-M, Guilard R. Inorg. Chem 2009;48:2571. [PubMed: 19215120]

- 12. Karlin KD, Kaderli S, Zuberbühler AD. Acc. Chem. Res 1997;30:139.
- (a) Mair RD, Graupner AJ. Anal. Chem 1964;36:194. (b) Fukuzumi S, Kuroda S, Tanaka T. J. Am. Chem. Soc 1985;107:3020.
- 14. The O₂ concentration in an O₂-saturated acetone solution (11 mM) was determined by the spectroscopic titration for the photooxidation of 10-methyl-9,10-dihydroacridine by O₂; see (a) Fukuzumi S, Imahori H, Yamada H, El-Khouly ME, Fujitsuka M, Ito O, Guldi DM. J. Am. Chem. Soc 2001;123:2571. [PubMed: 11456926] (b) Fukuzumi S, Ishikawa M, Tanaka T. J. Chem. Soc., Perkin Trans. 2 1989:1037.
- 15. The turnover number (TON = 7) based on 1 was determined under the catalytic conditions as shown in Figure S3.
- (a) Zhang CX, Kaderli S, Costas M, Kim E-i, Neuhold Y-M, Karlin KD, Zuberbuhler AD. Inorg. Chem 2003;42:1807. [PubMed: 12639113] (b) Fry HC, Scaltrito DV, Karlin KD, Meyer GJ. J. Am. Chem. Soc 2003;125:11866. [PubMed: 14505408]
- 17. Note that the spectra recorded were taken as difference spectra in which the final spectrum was subtracted; recovery of bleaching absorption at 780 nm corresponds to the formation of Fc^{*+} (see SI Figure S4)
- 18. The value of turnover frequency (TOF = 17 s⁻¹) was obtained in the catalytic four-electron reduction of O₂ by Fc^{*} (1.0 mM) with 1 (5.0×10^{-6} M) in the presence of HClO₄ (0.1 mM) in acetone at 298 K at 300 ms (TON = 5) as shown in Figure S5b.

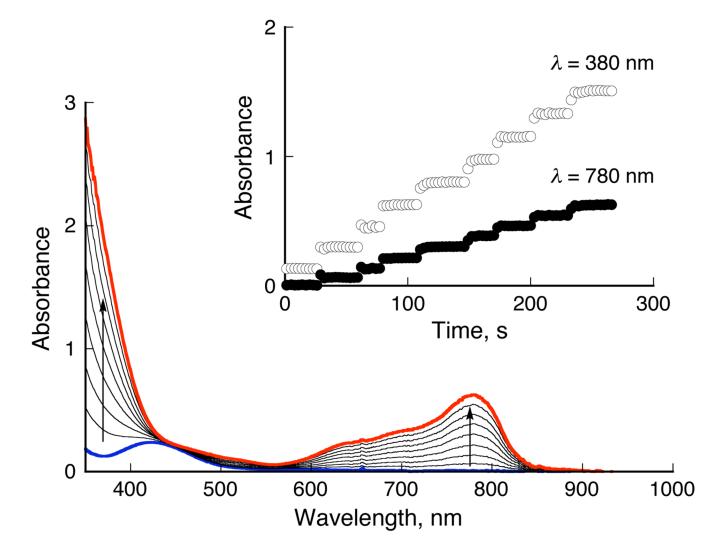
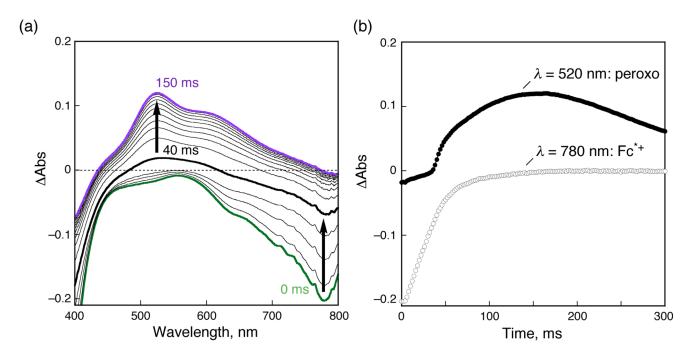



Figure 1.

UV-vis spectral change in four-electron reduction of O_2 by Fc^{*} (1.5 mM) with $\mathbf{1}$ (9.0 × 10⁻⁵ M) in the presence of HClO₄ in acetone at 298 K. Inset shows the change in absorbance at 380 and 780 nm due to Fc^{*+} by stepwise addition of HClO₄ (0.18 – 1.44 mM) to an O₂-saturated acetone solution ([O₂] = 11 mM) of Fc^{*} and $\mathbf{1}$.

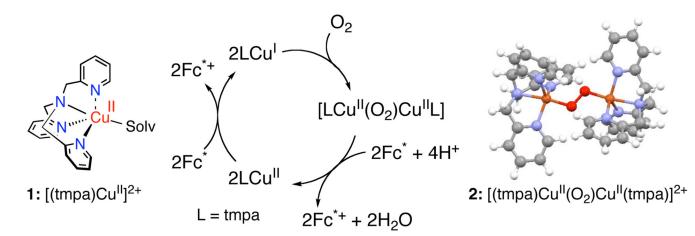

Fukuzumi et al.

Figure 2.

(a) Formation of the peroxo species 2 ($\lambda_{max} = 520 \text{ nm}$) in electron transfer from Fc^{*} (1.0 mM) to 1 (0.12 mM) in the presence of HClO₄ (0.35 mM) in aerated acetone at 298 K. (b) Time profile of the absorbance at 520 nm (\bullet) and 780 nm (\circ) due to 2 and Fc^{*+}, respectively.

Fukuzumi et al.

Scheme 1.