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Abstract
The control and eventual eradication of human malaria is considered one of the most important global
public health goals of the 21st Century. Malaria, caused by intraerythrocytic protozoan parasites of
the genus Plasmodium, is by far the most lethal and among the most prevalent of the infectious
diseases. Four species of Plasmodium (P. falciparum, P. malariae, P. ovale, and P. vivax) are known
to be infectious to humans, and more recent cases of infection due to P. knowlesi also have been
reported. These species cause approximately 300 million annual cases of clinical malaria resulting
in around one million deaths mostly caused by P. falciparum. The rapid emergence of drug-resistant
Plasmodium strains has severely reduced the potency of medicines commonly used to treat and block
the transmission of malaria and threatens the effectiveness of combination therapy in the field. New
drugs that target important parasite functions, which are not the target of current antimalarial drugs,
and have the potential to act against multi-drug-resistant Plasmodium strains are urgently needed.
Recent studies in P. falciparum have unraveled new metabolic pathways for the synthesis of the
parasite phospholipids and fatty acids. The present review summarizes our current understanding of
these pathways in Plasmodium development and pathogenesis, and provides an update on the efforts
underway to characterize their importance using genetic means and to develop antimalarial therapies
targeting lipid metabolic pathways.
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INTRODUCTION
The pathological stage of malaria occurs following the invasion and subsequent destruction of
human red blood cells by Plasmodium species. During a 48-hour intraerythrocytic lifespan, a
single P. falciparum parasite invades a human red blood cell and, as it grows, consumes most
of its host hemoglobin and initiates several nuclear divisions to produce a syncytium of up to
36 nuclei. Subsequently, the parasite undergoes cytokinesis followed by cellularization,
thereby enveloping each new daughter parasite with a plasma membrane. It then completes its
feast by destroying the host cell, releasing the newly made parasites in a state competent to
repeat the cycle. This rapid growth and multiplication is fueled by precursors supplied by the
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host. Of these, fatty acids, serine, ethanolamine, and choline are of particular importance as
they are the major building blocks used by the parasite in the synthesis of its structural and
regulatory phospholipids. In addition to the transport of exogenous fatty acids, the parasite
expresses all the enzymes for synthesis of fatty acids. Out of the biochemical, genetic, and
pharmacological studies performed in P. falciparum and P. berghei, it became evident that the
metabolic pathways of the synthesis of phospholipids and fatty acids play a crucial role in the
growth and proliferation of Plasmodium species during the various stages of their life cycle.

BIOSYNTHESIS OF THE MAJOR PHOSPHOLIPIDS
Plasmodium infection is followed by a marked increase in the phospholipid content and a
significant change in the lipid composition of the infected erythrocyte [Vial and Ben Mamoun,
2005], a phenomenon that is consistent with their need for large amounts of new membranes
to achieve successful growth and proliferation. Like the majority of eukaryotes,
phosphatidylcholine (PtdCho) is the major phospholipid in P. falciparum membranes. In most
eukaryotes, including various protozoan parasites, phosphatidylcholine is synthesized by two
routes. Synthesis can occur from choline via an enzymatic cascade (the de novo cytidine
diphosphate (CDP)-choline pathway) involving three enzymes: choline kinase, CTP
phosphocholine cytidylyltransferase, and choline/ethanolamine-phosphotransferase. The
second route is from phosphatidylethanolamine (PtdEtn) via three transmethylation reactions
that involve one or two phospholipid methyltransferases. Labeling studies in P. knowlesi-
infected erythrocytes suggested that the methylation of PtdEtn into PtdCho occurs in this
parasite [Moll et al., 1988]. Surprisingly, no phospholipid methyltransferase activity has been
detected in P. falciparum extracts and no genes encoding homologs of phospholipid
methyltransferases have been found in the P. falciparum genome [Pessi et al., 2004]. Consistent
with these observations, analysis of the membrane composition of purified P. falciparum
parasites revealed high levels of phosphatidylethanolamine (35–45%) in this parasite [Vial and
Ancelin, 1998]. High levels of this phospholipid have also been reported in isolated merozoites
of Babesia bovis, another apicomplexan parasite [Florin-Christensen et al., 2000]. However,
the finding that P. falciparum is capable of normal growth when cultured in the absence of
exogenous choline [Divo et al., 1985; Mitamura et al., 2000; Witola and Ben Mamoun,
2007] indicated the existence of an alternative pathway for the synthesis of phosphatidylcholine
in this parasite.

CDP-Choline Pathway
The de novo CDP-choline (Kennedy) pathway for the synthesis of PtdCho (Fig. 1) initiates
with the transport of choline from host serum into the infected erythrocyte, a process that
involves the remnant erythrocytic choline carrier and the new permeation pathway induced by
the parasite [Ancelin et al., 1991;Kirk et al., 1991]. A poly-specific organic cation transporter
(OCT) functionally distinct from the known dedicated eukaryotic choline carriers, and whose
gene has yet to be identified, mediates choline entry into the parasite [Biagini et al.,
2004;Lehane et al., 2004]. Choline is then phosphorylated to phosphocholine by a parasite-
specific choline kinase (PfCK), and subsequently coupled to CTP to generate CDP-Cho by a
CDP-choline cytidylyltransferase (PfCCT) and further converted into PtdCho by a parasite
CDP-diacylglycerol-cholinephosphotransferase (PfCEPT) in the presence of diacylglycerol.
A similar de novo pathway exists in Plasmodium parasites for the synthesis of PtdEtn from
ethanolamine [Vial and Ben Mamoun, 2005]. In mammalian cells, CCTs contain a conserved
catalytic domain followed by a membrane-binding region and a phosphorylation site (Fig. 2).
These enzymes are amphitropic, operating in an inactive soluble state and an active membrane-
bound state [Attard et al., 2000;Davies et al., 2001]. In Plasmodium, CCT is the rate-limiting
step enzyme of the PtdCho pathway. The P. falciparum enzyme consists of 899 amino acids
and harbors an unusual duplication of the catalytic and membrane-binding domains (Fig. 2).
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Genetic studies in the rodent malaria parasite P. berghei failed to isolate knockout parasites
lacking PbCK, PbCCT, PbECT, or PbECPT genes [Dechamps et al., unpublished data]. These
findings suggest that these genes might play an essential function in P. berghei intraerythrocytic
development and survival. Genetic studies in the human malaria parasites are needed to
determine the importance of the genes involved in the CDP-choline pathway and validate them
as possible drug targets.

Phosphatidylcholine Biosynthesis From Serine/Ethanolamine in P. falciparum
The mechanism of P. falciparum phosphatidylcholine biosynthesis from non-choline
precursors was demonstrated by lipid analysis following labeling of parasite-infected
erythrocytes with radiolabeled ethanolamine or serine [Pessi et al., 2004]. Analysis of parasite-
extracted lipid fractions revealed the formation of both phosphatidylethanolamine and
phosphatidylcholine, whereas analysis of the soluble metabolites revealed the formation of
phosphocholine but not choline from these precursors [Pessi et al., 2004]. Furthermore,
addition of S-adenosylmethionine (SAM) and phosphoethanolamine to parasite protein
preparations resulted in the production of phosphocholine [Pessi et al., 2004]. The combined
results of these studies suggested that P. falciparum possesses an alternative pathway for the
synthesis of phosphatidylcholine from serine and ethanolamine, which involves the
methylation of phosphoethanolamine to form phosphocholine (Fig. 1). This pathway, which
was termed the serine decarboxylase–phosphoethanolamine methyltransferase (SDPM)
pathway [Pessi and Ben Mamoun, 2006], is also found in plants and nematodes [Bolognese
and McGraw, 2000; Brendza et al., 2007; Charron et al., 2002; Nuccio et al., 2000b; Palavalli
et al., 2006], but is absent in mammals, thus making it an excellent target for the development
of new antimalarial drugs. Ethanolamine can be obtained in limited amounts from plasma and
in larger quantities following serine decarboxylation [Elabbadi et al., 1997] by a parasite-
encoded serine decarboxylase from serine either transported from the host or obtained from
degradation of host hemoglobin. Ethanolamine formed via this reaction is subsequently
phosphorylated into phosphoethanolamine, which serves as a substrate for PtdEtn biosynthesis,
or is converted into phosphocholine and incorporated into PtdCho via the SDPM pathway.

Isolation and Functional Characterization of P. falciparum Phosphoethanolamine
Methyltransferase

The P. falciparum enzyme responsible for the synthesis of phosphocholine from
phosphoethanolamine (PfPMT) was identified by searching the P. falciparum genome database
for proteins that contained a SAM-binding domain and shared sequence homology with plant
phosphoethanolamine methyltransferases (PMTs). PfPMT, the gene encoding this enzyme,
was cloned from P. falciparum genomic DNA. Cloning and characterization of PfPMT cDNA
indicated that it encodes a polypeptide of 266 amino acids [Pessi et al., 2004]. PfPMT is
expressed throughout the intraerythrocytic life cycle of the parasite with maximum expression
detected during the trophozoite stage, at the peak of membrane biosynthesis [Pessi et al.,
2004]. Genome sequencing efforts have thus far identified homologs of PfPMT in many species
of plants, two species of African clawed frogs (Xenopus laevis and X. tropicalis), nematodes
(Caenhorhabditis elegans and C. briggsae), zebrafish (Danio rerio), the florida lancelet
(Brachiostoma floridae), and two other Plasmodium parasites (P. vivax and P. knowlesi). Based
on their primary structure and distribution of their predicted catalytic domains, these enzymes
can be divided into 4 classes: Class I includes the malarial enzymes, which are 264 (P. vivax
and P. knowlesi) to 266 (PfPMT) amino acids in length and contain a single SAM-dependent
catalytic domain; Class II is comprised of bipartite enzymes containing between 450–580
amino acids and harboring two SAM-dependent catalytic domains. This class includes PMTs
from plants, frogs, zebrafish, and Florida lancelets; Class III and IV include enzymes from C.
elegans and C. briggsae that are twice the size of the malarial enzymes but contain a single
SAM-dependent catalytic domain located either at the N-terminal (Class III) or C-terminal
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(Class IV) end (Fig. 3). The amino acid sequence of PfPMT shows no specific organelle
targeting signals, and no recognizable transmembrane domains. Analysis of the available
genomes of various Plasmodium species indicates the presence of orthologs of PfPMT in P.
vivax and P. knowlesi, and their absence in the rodent malaria parasites P. berghei and P.
yoelii. Importantly, no homologs of PfPMT have been found in human or other mammalian
databases, and PfPMT does not share homology with eukaryotic phosphatidylethanolamine
methyltransferase proteins. Immunoelectron and immunofluorescence microscopy studies
revealed that PfPMT localizes to the Golgi apparatus of the parasite [Witola et al., 2006]. This
is the first enzyme in this pathway to be localized, and it is consistent with at least the
transmethylation reaction occurring in the Golgi apparatus. The subcellular localization of the
rest of the enzymes involved in the phosphatidylcholine/phosphatidylethanolamine synthesis
pathways remains to be determined. When expressed in E. coli, recombinant PfPMT was shown
to catalyze the conversion of phosphoethanolamine into phosphocholine using SAM as a
methyl donor [Pessi et al., 2004]. Neither ethanolamine nor phosphatidylethanolamine acted
as substrates for PfPMT, implying that phosphoethanolamine is the primary methyl acceptor
of this enzyme [Pessi et al., 2004].

Functional analysis of PfPMT activity in vivo was determined using yeast as a surrogate
system. Wild-type yeast cells inherently lack phosphoethanolamine methyltransferase activity.
Expression of a codon-optimized PfPMT gene in yeast conferred phosphoethanolamine
methylation activity on these cells [Pessi et al., 2005]. Furthermore, the expression of PfPMT
in pem1Δpem2Δ yeast, which lack the ability to convert phosphatidylethanolamine to
phosphatidylcholine and hence are auxotrophic for choline [Kodaki and Yamashita, 1987;
Summers et al., 1988], restored the ability of these cells to grow in the absence of choline
[Pessi et al., 2005; Reynolds et al., 2008]. Analysis of the phospholipid content revealed that,
unlike wild-type yeast cells, PfPMT-expressing pem1Δpem2Δ yeast cells failed to synthesize
the intermediates of the methylation of PtdEtn (monomethyl- and dimethyl-
phosphatidylethanolamine). The growth of these complemented cells was ameliorated by the
addition of choline, and required an active CDP-choline pathway. Altogether, these findings
are consistent with phosphatidylcholine being synthesized via the CDP-choline pathway
following the PfPMT-dependent production of phosphocholine from phosphoethanolamine
[Pessi et al., 2005], and suggest that the in vivo activity of PfPMT is directly coupled to the
CDP-choline pathway.

Regulation of the SDPM Pathway
Unlike other organisms, the regulation of phospholipid metabolism in P. falciparum has only
started to be elucidated. Studies by Elabbadi and colleagues indicated that distinct pools of
PtdEtn are synthesized by P. falciparum from different precursors and via the de novo pathway
from ethanolamine or following PtdSer decarboxylation, suggesting a possible
compartmentalization of these metabolic pathways. However, it remains to be determined
whether the genes encoding enzymes of the CDP-ethanolamine pathway or the PtdSer
decarboxylase gene are regulated by their precursors. Evidence for the regulation of synthesis
of PtdCho by its precursors has been established using wild-type and transgenic P.
falciparum parasites. It was shown that exogenous choline leads to repression of transcription
of PfPMT as well as the induction of its proteasomal degradation [Witola and Ben Mamoun,
2007]. Addition of exogenous choline to cultures of wild-type parasites produced a dose-
dependent reduction in the amount of both PfPMT transcript and protein [Witola and Ben
Mamoun, 2007]. The choline-mediated transcriptional response was not evident in transgenic
parasites expressing PfPMT under the transcriptional control of a heterologous promoter,
whereas PfPMT protein degradation persisted in these parasites. These findings suggest that
the promoter of PfPMT may contain elements important for transcriptional regulation by
choline (or its phosphorylated form), and that this substrate may also regulate PfPMT
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expression posttranscriptionally. Interestingly, the proteasome inhibitor, bortezomib, inhibited
choline-induced repression of the PfPMT protein, indicating that proteasome activity is
responsible for PfPMT degradation in the presence of choline [Witola and Ben Mamoun,
2007]. Studies to dissect the promoter of PfPMT are underway and may shed light on the
mechanism of transcriptional regulation of this gene.

Inhibition of PfPMT Activity
The complete absence of phosphoethanolamine methyltransferase activity in mammalian cells
bolsters PfPMT as a possible target for development of antimalarial compounds. Initial studies
on PfPMT suggested that the enzyme activity was modulated by its own reaction product,
phosphocholine [Pessi et al., 2004]. This finding intimated that PfPMT may also be inhibited
by phosphocholine analogs. Indeed, hexadecylphosphocholine (miltefosine) inhibits PfPMT
activity by 50% when present at a concentration of 50 μM and by 90% in the presence of 100
μM hexadecylphosphocholine [Pessi et al., 2004]. Parasite proliferation assays showed that
hexadecylphosphocholine is capable of inhibiting parasite growth, with an IC50 value of ~80
μM [Pessi et al., 2004]. However, whether the inhibition of PfPMT by
hexadecylphosphocholine accounts for its antimalarial activity remains to be determined.
Structure-function studies in yeast taking advantage of the ability of PfPMT to complement
the choline auxotrophy of the pem1Δpem2Δ mutant [Pessi et al., 2005] identified three residues
(Asp-61, Gly-83, and Asp-128) in and near the catalytic domain that play essential roles in
PfPMT activity [Reynolds et al., 2008]. Efforts are underway to determine the structure of
PfPMT by NMR. These studies will aid in the understanding of the importance of these residues
in PfPMT activity and will help in the rational design of specific PfPMT inhibitors.

PfPMT Plays an Important Role in P. falciparum Development and Multiplication
To determine the functional role of PfPMT in intact parasites, the PfPMT locus was disrupted
to create a pfpmtΔ null mutant lacking PfPMT activity. Parasites lacking PfPMT display delay
growth, altered DNA replication, reduced multiplication rate, and increased cell death [Witola
et al., 2008]. The viability of pfpmtΔ knockout parasites is most likely due to the availability
of residual choline in human red blood cells, which allows synthesis of phosphatidylcholine
via the de novo pathway from choline. Interestingly, whereas choline is important for the
survival of pfpmtΔ, its addition up to 10-times its physiological concentration did not
complement the growth, replication, and multiplication defects of these knockout parasites
[Witola et al., 2008]. This suggests that although the SDPM and CDP-choline pathways provide
the same initial precursor (phosphocholine) for the synthesis of phosphatidylcholine, their
functions are not completely redundant. These studies also suggest that inhibition of the initial
steps of phosphatidylcholine biosynthesis would require compounds that inhibit both PfPMT
activity and choline transport or phosphorylation. Screening of various chemical libraries is
currently in progress to identify further compounds that efficiently inhibit PfPMT.

Arguments for and Against PtdEtn Transmethylation in Malaria Parasites
Biochemical and genetic studies in different species [Aktas and Narberhaus, 2009; Arondel et
al., 1993; Kanipes et al., 1998; Keogh et al., 2009; Nuccio et al., 2000a; Vance et al., 2007]
revealed the presence of PtdEtn methyltransferases capable of converting PtdEtn into PtdCho.
In Plasmodium, such an activity has been proposed to exist based on a study in P. knowlesi-
infected erythrocytes, which showed that radiolabeled PtdEtn (introduced by phospholipid-
transfer proteins) can be converted into PtdCho [Moll et al., 1988]. However, the corresponding
genes coding for such a PEMT activity have not been identified in any Plasmodium species.
Furthermore, deletion of the PfPMT gene in P. falciparum parasites abolishes the incorporation
of ethanolamine into PtdCho [Witola et al., 2008], suggesting that either PtdEtn
transmethylation does not occur in P. falciparum, or that if such a reaction exists, it is catalyzed
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by PfPMT or requires a functional PfPMT enzyme. Thus far, biochemical and genetic analyses
all appear to indicate that PfPMT does not catalyze the transmethylation of PtdEtn. First, unlike
yeast extracts, P. falciparum extracts used in a PtdEtn transmethylation reaction in vitro failed
to catalyze such a reaction. Second, purified recombinant PfPMT was found to catalyze the
methylation of phosphoethanolamine but not PtdEtn. Third, using yeast as a model system it
was shown that PfPMT complementation of pem1Δpem2Δ mutant growth defect in the absence
of choline is ameliorated by ethanolamine supplementation and requires an active CDP-choline
pathway. Thus, in P. falciparum available data do not support the existence of a direct
methylation of PtdEtn to form Ptdcho. As to the study by Moll and colleagues [Moll et al.,
1988], further biochemical and genetic studies in P. knowlesi are needed to determine whether
the PMT ortholog can catalyze PtdEtn transmethylation and to identify a putative PEMT gene.

FATTY ACID BIOSYNTHESIS
Malaria parasites were thought to acquire all of the fatty acids required for blood stage growth
through scavenging [Holz, 1977; Scheibel and Sherman, 1988; Vial et al., 1990]. This view
came into question when sequencing of chromosome 2 from Plasmodium falciparum revealed
the genes encoding two proteins typically associated with fatty acid biosynthesis in prokaryotes
[Gardner et al., 1998, 1999]. These proteins, ACP (acyl carrier protein) and KASIII (β-
ketoacyl-ACP synthase III), were subsequently shown to be targeted to the apicoplast,
implicating this organelle as a possible site for de novo fatty acid biosynthesis [Waller et al.,
2000]. By the time the P. falciparum genome was completed in 2002 [Gardner et al., 2002],
genes encoding five other fatty acid biosynthesis enzymes had been identified and it appeared
as though the parasites contained a complete Fatty Acid Synthase (FAS) capable of generating
fatty acids from simple precursors.

The seven proteins found in the P. falciparum genome comprise a dissociated type II FAS.
This type of FAS pathway is found in microorganisms and in the endosymbiont organelles of
some eukaryotes (such as plant chloroplasts) [Harwood, 1996; Magnuson et al., 1993; Rock
and Cronan, 1996]. The central hub of a type II FAS is the small, soluble protein ACP (Fig.
4). Nascent fatty acids are covalently linked to ACP through a thioester bond and are further
modified by the FAS enzymes in this form. In a typical type II FAS pathway, MCAT (malonyl-
coenzyme A:ACP transacylase) transfers a malonyl group from malonyl-CoA to ACP.
Malonyl-ACP is then the substrate for KASIII, which catalyzes the decarboxylative
condensation of the malonyl group with an acetyl group donated by acetyl-CoA. The product
of KASIII is then reduced to acyl-ACP by the sequential action of KAR (β-ketoacyl-ACP
reductase), HAD (β-hydroxyacyl-ACP dehydratase), and ENR (enoyl-ACP reductase). Further
elongation of the acyl chain requires KASII (β-ketoacyl-ACP synthase II) followed by KAR,
HAD, and ENR. These four enzymes form an elongation cycle that extends the acyl-ACP
product by two carbons at a time and consumes malonyl-ACP (produced by MCAT). Substrate
specificity, particularly of the ketoacyl-ACP synthases, ultimately determines the chain length
of fatty acid produced by a type II FAS [Magnuson et al., 1993].

The Role of the Type II FAS in Malaria: Changing Paradigms
What is the role of fatty acid biosynthesis during the blood stages of malaria? This question
has been unexpectedly difficult to answer. Early experiments led to the conclusion that P.
falciparum does not synthesize fatty acids [Oaks et al., 1991]. However, the discovery of the
type II FAS led to a revised hypothesis. The thought was that plasma lipids are scavenged
(particularly the fatty acids palmitate and oleate) [Mitamura et al., 2000], but that key FAS
products, such as lipoic acid, would have to be produced by the type II FAS pathway during
the blood stages (lipoic acid was recently shown to be scavenged by P. falciparum during the
blood stages) [Allary et al., 2007]. The biocide triclosan was initially used to validate the
essential role of the type II FAS enzyme ENR. Triclosan was shown to inhibit ENR enzymatic
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activity, to inhibit the in vitro growth of P. falciparum in culture, and to inhibit the in vivo
growth of the rodent malaria, P. berghei [Surolia and Surolia, 2001]. Importantly, triclosan
was found to inhibit the incorporation of radiolabeled acetyl-CoA into newly synthesized fatty
acids, demonstrating the apparent mechanism of antiparasitic activity [Surolia and Surolia,
2001]. Taken together, these studies were interpreted as pharmacological validation of FAS
pathway enzymes as drug targets for blood-stage malaria.

Ultimately, it was pursuit of ENR as a drug target that led to a reexamination of the role that
the type II FAS plays in malaria biology. The overall correlation between inhibition of enzyme
activity and the inhibition of parasite growth proved to be poor, and an effort was made to
genetically validate ENR as a target [Yu et al., 2008]. The P. falciparum enr gene was knocked
out by double crossover homologous recombination without any observable growth defect,
and no shift in the susceptibility of this strain for triclosan. Clearly, triclosan must have a
different target in vivo. A key experiment demonstrated that the incorporation of radiolabeled
acetyl-CoA into fatty acids was unaltered in the ENR knockout parasites [Yu et al., 2008]. This
result indicated that some other metabolic pathway, such as fatty acid elongation, is probably
responsible for the observed incorporation of acetyl-CoA [Spalding and Prigge, 2008].

Despite the presence of the type II FAS in malaria, the original conclusion that blood-stage
parasites do not synthesize fatty acids may have been correct all along. Indeed, transcript levels
of several type II FAS genes are very low during the blood stages. But even this conclusion
requires a second look. A recent study examined the in vivo expression profiles of P.
falciparum parasites collected from 43 patients in Senegal [Daily et al., 2007]. This study
identified a population of parasites in which the genes encoding metabolic enzymes, including
those comprising the type II FAS, were upregulated. The implications of this observation are
still being discussed [Lemieux et al., 2009; Wirth et al., 2009], but it may be the case that there
is a role for type II FAS in vivo that is not observed in culture conditions.

An unexpected result derived from recent genetic studies is that malaria type II FAS is critical
for liver stage development. Vaughan and coworkers generated FAS gene knockouts in the
rodent malaria parasite P. yoelii [Vaughan et al., 2009]. The behavior of pyhadΔ and
pykasIIΔ strains was analyzed in different stages of the malaria life cycle. No phenotype was
observed during the blood stages and mosquito stages; however, these strains were unable to
complete liver stage development. Detailed examination showed that the knockout parasites
are able to infect hepatocytes and develop normally until morphological abnormalities are
observed during the second day of development [Vaughan et al., 2009]. Yu and coworkers
conducted similar studies in another rodent parasite, P. berghei [Yu et al., 2008]. They observed
a similar block in late liver stage development when analyzing the behavior of pbenrΔ parasites.
However, pbenrΔ parasites were able to complete liver stage development in some cases,
leading to blood stage infection, albeit with a significantly delayed patency [Yu et al., 2008].
It is not clear if breakthrough infections occur in pbenrΔ parasites and not in pyhadΔ and
pykasIIΔ strains due to differences between the two parasite species, or due to differences
attributable to the genes chosen for deletion. In any case, it now appears as though the type II
FAS found in malaria parasites is critical for liver stage development, and that FAS enzymes
may be appropriate targets for prophylactic drugs.

Type II FAS as an Antimalaria Drug Target
The discovery of the type II FAS in malaria generated considerable interest as a drug target
because this pathway differs considerably from the type I FAS found in humans [Waller et al.,
2003]. Within a few years after the initial report on triclosan activity, all seven proteins of the
P. falciparum type II FAS had been biochemically characterized. Early work with pure
recombinant proteins showed that ACP, MCAT, and KASIII function to initiate fatty acid
biosynthesis and use acetyl-CoA and malonyl-CoA as carbon sources (Fig. 4) [Prigge et al.,
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2003; Waters et al., 2002]. Subsequently, HAD [Sharma et al., 2003] and KAR [Pillai et al.,
2003] were shown to be active using acetoacetyl-CoA and β-hydroxybutyryl-CoA as surrogate
substrates in lieu of the corresponding ACP-linked physiological substrates. Finally, KASII
activity and substrate specificity for various acyl-ACP species were described [Lack et al.,
2006]. In an effort to facilitate drug discovery efforts, crystal structures have been determined
for ACP [Gallagher and Prigge, 2009], KAR [Wickramasinghe et al., 2006], HAD [Kostrewa
et al., 2005; Swarnamukhi et al., 2006, 2007], and ENR [Freundlich et al., 2005, 2006, 2007;
Muench et al., 2007; Perozzo et al., 2002; Pidugu et al., 2004].

Inhibitors have been reported for several of the type II FAS enzymes from P. falciparum [Lu
et al., 2005]. Compounds with low micromolar IC50 values were reported for KAR
[Wickramasinghe et al., 2006] and HAD [Sharma et al., 2003]. However, most of the drug
discovery effort has focused on KASIII and ENR. The natural product thiolactomycin (TLM)
inhibits bacterial β-ketoacyl-ACP synthase enzymes (FabH, FabB, and FabF) and inhibited the
growth of P. falciparum with an IC50 value of 50 μM [Waller et al., 1998]. Several groups
evaluated TLM analogs and found compounds that inhibit parasite growth at low micromolar
concentrations [Jones et al., 2004; Prigge et al., 2003; Waller et al., 2003]. The establishment
of an enzyme-based screen yielded a collection of submicromolar KASIII inhibitors, 60% of
which are also effective at inhibiting the growth of cultured P. falciparum parasites [Lee et al.,
2009]. Drug discovery for ENR has largely focused on analogs of the biocide triclosan (TRC).
Two groups showed that the growth of P. falciparum is inhibited by triclosan with an IC50
value of approximately 1 μM [McLeod et al., 2001; Surolia and Surolia, 2001], and this
discovery led to extensive structure-based drug discovery efforts. Hundreds of TRC analogs
were synthesized and their inhibitory properties were evaluated in enzyme-based and parasite-
based assays [Chhibber et al., 2006; Freundlich et al., 2005, 2006, 2007; Kuo et al., 2003;
Nicola et al., 2007; Perozzo et al., 2002]. Although very potent inhibitors of ENR activity and
malaria growth were found, there was ultimately a poor correlation between these phenomena,
leading to the realization that type II FAS is not essential for the growth of blood-stage malaria
in vitro [Yu et al., 2008].

Unfortunately, the search for type II FAS inhibitors has so far focused on the erythrocytic stages
of malaria [Lu et al., 2005]. Typically, potent inhibitors of malaria FAS enzymes have been
subjected to further selection for activity against cultured blood-stage P. falciparum. Ironically,
this selection process probably enriched the population of off-target inhibitors and diminished
the pool of compounds capable of inhibiting ENR in vivo. As discussed above, type II FAS
enzymes may be appropriate targets for liver-stage therapeutics. As this new hypothesis is
being pursued, there is a strong rationale for retesting potent inhibitors of malaria FAS
enzymes, this time in a liver-stage malaria model.

Targeting the Synthesis of Plasmodium Phospholipids
One of the fundamental goals in the study of Plasmodium membrane biogenesis is to discover
new metabolic pathways and key steps that play an important function in parasite development,
proliferation, differentiation, and pathogenesis, and are either absent in humans or different
enough from their human counterparts to be targeted for the development of novel antimalarial
drugs. The establishment of an in vitro culture system for P. falciparum by Trager and Jensen
[1976] made it possible to identify nutrients that the parasite actively transports in order to
synthesize new membranes. Compounds that mimic the structure of membrane precursors such
as fatty acids, ethanolamine, serine, or choline were thus tested for their antimalarial activity
and found to inhibit parasite proliferation with IC50 values in the low micromolar range [Vial
et al., 1984]. Biochemical analyses revealed that these analogs are transported into the
parasitized erythrocyte and incorporated into the parasite membranes. By doing so, these
compounds dramatically alter the lipid composition and physico-chemical properties of the
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membrane leading to parasite death [Beaumelle and Vial, 1988]. Unquestionably, the most
advanced approach targeting lipid metabolism in Plasmodium relates to the inhibition of
PtdCho biosynthesis by large molecules possessing one or two quaternary ammoniums and
are structural analogs of choline. The first compounds within this category that were tested
against P. falciparum were commercially available and inhibited parasite proliferation with
IC50 values of 0.7–10 μM [Ancelin et al., 1985]. Metabolic studies revealed that these
compounds block the entry of choline into the infected erythrocyte and cause a specific decrease
in the biosynthesis of PtdCho [Ancelin and Vial, 1986]. The excellent antimalarial activity of
this class of compounds paved the way for a more rationale approach to design new structural
analogs and optimize them in order to select derivatives with more potent antimalarial activity
in vitro. These studies led to the discovery that a molecular variation involving duplication of
pharmacophoric groups (“twin-drug”) considerably increased the antimalarial activity with
IC50 values in the sub-nanomolar to nanomolar rangs. Bis-ammonium salts were generally
100-fold more active than mono-ammonium salts [Calas et al., 2000]. SAR studies highlighted
the importance of the spacer that separates the 2 cationic heads and the role of steric hindrance
and lipophilicity of the N-substitution. In a second generation, the pyrolidinium moiety of the
intrinsically potent lead compound, G25, was substituted by a less toxic thiazolium group that
is present in vitamin B1 [Hamze et al., 2005]. Proof of concept of realistic antimalarial
pharmacology with potent antimalarial activity was obtained in rodent malaria and in non-
human primate models under very severe conditions of parasitemia and short course treatment
[Wengelnik et al., 2002]. An important feature of the biscationic choline analogs was their
ability to accumulate by several hundred-fold in malaria-infected erythrocytes, which makes
them potent and specific agents against hematozoan-infected erythrocytes including Babesia
[Richier et al., 2006]. This accumulation does in part occur in the Plasmodium food vacuole,
where the compound associates with heme. Heme binding was shown to be critical for drug
accumulation and likely contributes to the antimalarial activity of these compounds [Biagini
et al., 2003].

Thus far, all efforts to unravel the mechanism of action of these compounds at different stages
of the intraerythrocytic life cycle highlighted the pathways for the synthesis of PtdCho as the
main targets. The compounds were found to inhibit choline entry into infected erythrocytes.
However, because choline is not essential for P. falciparum intraerythrocytic development and
survival, the inhibition of choline uptake alone cannot account for the antimalarial activity of
these compounds. Transcriptome profiling to characterize the global response of P.
falciparum to the bisthiazolium choline analogue T4, demonstrates cell cycle arrest and a
general induction of genes involved in gametocytogenesis but no apparent transcriptional
changes in genes involved in the PtdCho biosynthetic pathways. On the other hand, proteomic
analysis revealed a significant decrease in the level of the Cho/Eth-phosphotransferase
(PfCEPT) involved in the final step of synthesis of PtdCho. This effect was further supported
by metabolic studies [Le Roch et al., 2008]. Other enzymes of the CDP-choline and SDPM
pathways have also been shown to be inhibited by these compounds albeit at higher
concentrations. Recently, genetic studies in P. falciparum and P. berghei have been crucial in
the validation of candidate genes as possible targets of specific antimalarial drugs. Such genetic
strategies are needed to identify primary target(s) of choline analogs. Nevertheless, the
possibility that choline analogs may have multiple targets may represent a major strength of
these inhibitors, as it could help delay the development of resistance. The development of this
exciting new class of compounds is currently being conducted by Sanofi-Aventis. Phase 2
clinical trials of the bisthiazoliums salts T3/SAR97276 [Vial et al., 2004] are under way for
parenteral cure of severe malaria. This clinical candidate is structurally unrelated to existing
antimalarial agents, and acts through new independent mechanisms of action. Its unique
properties are of tremendous interest as anti-infectious agents.
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CONCLUSIONS
The metabolic machineries for the synthesis of phospholipids and fatty acids have stimulated
great interest as potential targets for the development of novel antimalarial drugs, largely due
to their importance for the growth, proliferation, and pathogenesis of Plasmodium parasites.
In addition, the enzymes comprising these pathways are either absent from humans, or
markedly different from their human counterparts. With the advances made during the past
few years in the genetic manipulation of different Plasmodium species, it is becoming possible
to validate specific steps and networks in these metabolic pathways as targets for the
development of new antimalarial therapeutic strategies. The success of the chemical approach
that led to the synthesis of potent antimalarial quaternary ammonium compounds highlights
the importance of these pathways as drug targets. Thus far, only a few genes encoding lipid
metabolism enzymes have been genetically ablated to validate their role in parasite growth and
survival. From these limited genetic analyses, we have learned about the importance of these
metabolic machineries not only during the intraerythrocytic stage but also during sexual
differentiation and development in the mosquito and in hepatocytes. Thus, combining
biochemical and metabolic knowledge with more advanced genetic, genomic, and structural
analyses will set the stage for the design of novel drugs or combination therapies to block both
malaria infection and transmission.
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Fig. 1.
SDPM and CDP-choline pathways for phosphatidylcholine biosynthesis in P. falciparum. The
cytidine diphosphate (CDP)-choline pathway is shown in gray. The SDPM pathway is
represented in black. Cho: choline; HB: hemoglobin; Ser: serine; Etn: ethanolamine; CDP-Etn:
CDP-ethanolamine; CDP-cho: CDP-choline; SD: serine decarboxylase; PfEK: P. falciparum
ethanolamine kinase; PfCK: P. falciparum choline kinase; PfPMT: P. falciparum
phosphoethanolamine methyltransferase; PtdEtn: phosphatidylethanolamine; PtdCho:
phosphatidylcholine; PfCEPT: P. falciparum choline/ethanolamine-phosphate transferase;
PfECT: P. falciparum CTP: phosphoethanolamine cytidylyltransferase; PfCCT: P.
falciparum CTP: phosphocholine cytidylyltransferase.
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Fig. 2.
Comparison between P. falciparum and human CCT and ECT sequences. Cat: catalytic
domain; Memb: membrane-binding domain; P: phosphorylation domain of the human CCT.
Only Plasmodium CCT is duplicated, while all ECTs described so far are duplicated.
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Fig. 3.
Schematic representation of the structure of the four classes of PMT enzymes. The four motifs
(I, p-I, II, and III) of each PMT catalytic domain(s) are indicated as black boxes.
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Fig. 4.
Type II FAS pathway as found in P. falciparum. MCAT catalyzes the production of malonyl-
ACP, which is a substrate for both KASII and KASIII. KASIII catalyzes the condensation of
malonyl-ACP with acetyl-CoA, forming acetoacetyl-ACP. This product enters an elongation
cycle catalyzed by KAR, HAD, ENR, and KASII. The KASII reaction extends the carbon chain
by 2 carbons, noted by increasing the number (n) of CH2 groups in the acyl chain by 2 (n+2).
MCAT: malonyl-coenzyme A:ACP transacylase; KAS: β-ketoacyl-ACP synthase; KAR: β-
ketoacyl-ACP reductase; HAD: β-hydroxyacyl-ACP dehydratase; ENR: enoyl-ACP reductase.
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