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Abstract

In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based
on the technique of optimal mass transport (also known as the “earth-mover’s metric”). This is a
classical problem that concerns determining the optimal way, in the sense of minimal transportation
cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area
preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an
angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport
procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal
mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete
exterior calculus in our computations.

Index Terms

Texture mapping; optimal mass transport; parametrization; spherical wavelets

1 INTRODUCTION

In this paper, we employ an approach for texture mapping based on the technique of optimal
mass transport (OMT), also known as the “earth mover’s problem.” The original transport
problem, proposed by Gaspard Monge in 1781, asks how best to move a pile of soil or rubble
to an excavation or fill with the least amount of work. The problem was analyzed and given a
modern formulation by the Soviet mathematician and econometrist Kantorovich [43] in the
1940s and so is known now as the Monge-Kantorovich (MK) problem. OMT has found uses
in numerous fields including fluid and continuum mechanics, automatic control, statistical
physics, shape optimization, expert systems, meteorology, econometrics, data compression,
and image processing; see [55], [70], and the references therein.

The texture mapping methodology is based on mapping an image either synthesized or digitized
onto a given surface. There is plenty of literature on this topic in the computer graphics
community, e.g., see [23] and the references therein. We will not review all the literature on
this subject in this present work, but only some of the more relevant works for the approach
taken here. We begin by noting that the mathematical basis of this mapping determines whether
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the image provides the object with the appearance of surface texture, a specular reflection, or
some other effect. In this paper, we will focus only on mappings such as texture mapping that
are a function of surface location and not those, for example, based on surface orientation.

1.1 Connection of Optimal Mass Transport to Texture Mapping

In discrete settings, we often represent surfaces as a collection of samples with their
connectivity, typically in the form of a simplicial mesh. Many of the operations we wish to
perform on the resulting discrete surface, for processing, analysis, or visualization (such as
texture mapping), may be greatly simplified if we perform them in a corresponding canonical
domain with the same topology. For example, the surface of the brain is a topological sphere,
but is highly convoluted. If one can find a “nice” bijection of the brain surface onto the sphere,
this could be very useful for various types of visualizations [69]. Therefore, in general, we wish
to find a bijection of the discrete surface lying in 3D space, with a simpler model (e.g., spherical
space in the simply connected compact case), such that a certain distortion measure is
minimized. This mapping procedure assigns two coordinates to each of the vertices of the
original mesh. This procedure is also known as parameterization. The surface to which the
mesh is mapped to is typically referred as the parameter domain. Parameterization of polygonal
geometric surfaces may be used for image mapping [28], a collection of techniques that
includes texture mapping [11], [36], [37], reflection or environment mapping [8], bump
mapping [9], and light mapping [51].

The main challenge in mesh parameterization is to produce a corresponding 2D triangulation
that best matches the geometry of the 3D mesh (by minimizing some measure of distortion),
yet is still bijective. In this context, bijectivity is assured if we don’t get triangles flipping in
the mapping process. In this paper, we will show how we can find an optimal mapping, i.e., a
mapping which will minimize some predefined measure of distortion, using the OMT
formulation.

1.2 Related Work

Surface parameterization was initially introduced to the computer graphics community as a
method for mapping textures onto surfaces. Over the last two decades, it has gradually become
a common tool, useful for many other mesh processing applications, such as detail mapping
and synthesis, morphing and detail transfer between two (or more) objects, creation of aligned
objects databases, multiresolution analysis, remeshing, mesh compression, and many more
(see [64], [39] for a comprehensive survey). The literature of course is huge, and so in our
survey, we decided to only include those works that are most relevant to the approach adopted
in the present paper.

Our interest in parameterization arose from our work in medical imaging [5], [54]. A significant
portion of the surfaces of 3D anatomical structures represents topological spheres (simply-
connected compact surfaces). Therefore, a good bijective mapping of minimal distortion from
such a surface to a sphere may be utilized for registration and visualization. As alluded to
above, one of the structures for which such a mapping is particularly useful is the surface of
the human brain. After registration, the spherical representation can be analyzed on the sphere
using such spherical multiresolution functions such as spherical harmonics or spherical
wavelets. Depending upon the application, numerous methods for parameterizing meshes have
been developed, targeting diverse parameter domains and focusing on different
parameterization properties.

Some key works on parameterization have focused on planar parameterization of meshes with
disk-like topology. A number of more recent papers on this subject (e.g., [16], [22], [48],
[49], [53], [58], [63]) have proposed certain distortion measures and described methods for
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their minimization. The parameterization problem is more complicated when the mesh does
not have the topology of a disk. One way to circumvent this problem is to cut seams in the
surface mesh and then use the methods designed for disks ([29], [62], [65]). A polygonal
boundary may be formed by removing an arbitrary triangle from a closed mesh as in [34],
[66]. A more elaborate boundary may be formed by cutting along mesh edges. This, however,
usually introduces discontinuities, where the edges are cut and may sometimes increase the
distortion of the parameterization.

An alternative to cutting the mesh and creating a boundary is a method based on the introduction
of cone singularities, first proposed by Kharevych et al. [44]. The main idea here is that instead
of introducing artificial boundaries to absorb the undesired curvature, the entire Gaussian
curvature of the mesh is redistributed so that it is concentrated at a few designated places,
referred to as the “cone singularities.” Once the curvature is redistributed, the edge lengths of
a 2D embedding having this target curvature can be determined. The main difference between
this method, in which the cut is performed after the new metric is computed, and the techniques
presented above, in which the cut is performed before the new metric is computed, is that this
approach guarantees that edges on both sides of the cut will be mapped to edges of the same
length, so the flattened version of the mesh may be “zippered” back together in the plane at
the boundaries. This reduces the discontinuities in the parameter plane. Some recent
publications that employ this methodology are those of Ben-Chen et al. [7] and Springborn et
al. [66]. The difference between these two methods is the precise algorithm used to manipulate
the curvature distribution. These approaches produce parameterizations, which minimize
conformal distortion without introducing too much stretch. However, in our work in which we
focused on genus zero anatomical surfaces, we preferred to use a mapping to the sphere without
introducing seams. This way we could use the sphere as a common domain for registration and
analysis of anatomical structures from different patients without any additional constraints on
feature points.

Several methods for direct parameterizations on a topological sphere have also been developed.
We classify these parameterizations into three groups, based on the type of parametric
distortion minimized: methods that do not explicitly consider the problem of distortion,
methods that minimize angular distortion, and methods that minimize area distortion. In
practice, most existing parameterization techniques belong to the first group, see [46], [1]. For
instance, the technique proposed by Alexa [1] is a heuristic iterative procedure, which attempts
to converge to a valid parameterization by applying local improvement (relaxation) rules. Here,
one starts by computing an initial guess and then moving the vertices one at a time, first
computing a 3D position for the vertex using a barycentric formulation, and then projecting
the vertex to the unit sphere. This process works well in many cases, but there is no guarantee
that it will converge, and, even if it does, the resulting embedding may not be bijective. An
interesting alternative has been proposed by Shapiro and Tal [61] using a multiresolution
technique. This method begins with a simplification of the mesh until it becomes a tetrahedron
(orat least, convex). The simplified model is then embedded in the sphere, and then the vertices
are inserted back one by one so that the bijectivity of the mapping is preserved. While this is
quite an efficient and stable process, it is difficult to optimize the parameterization.

Methods that attempt to rigorously minimize the angular distortion include those of [32],
[33], [34], [35], [41], [63]. For example, in [34], the authors first cut out one triangle, then
conformally map the remaining surface onto an infinite plane, and finally, use the inverse stereo
projection to map the plane to the sphere. This conformal method was applied to texture
mappings in [35]. The presented approach works quite well in practice even for dense meshes
and we will use it as a starting point for our algorithm. However, it should be noted that maps
that are bijective and conformal for smooth surfaces do not guarantee an embedding when
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applied to piecewise linear surfaces (meshes) and sometimes produce triangle flips. For
instance, the stereographic projection in [34] can flip thin obtuse triangles [39].

Gu et al. [33] introduce a nonlinear optimization method, which is based on minimizing the
harmonic energy, to compute global conformal parameterizations for genus zero surfaces.
Their optimization is carried out in the tangent spaces of the sphere. Hence, there is no
stereographic projection and the method is claimed to be more stable than that of [34]. However,
Gu et al. employed “projected” Gauss-Seidel iterations to obtain the parameterization, which
were shown by Saba et al. [57] to decrease the residual for only a finite number of iterations.
As the result approaches a bijective solution, the scheme ultimately becomes unstable, the
residual increases, and the system collapses to a degenerate solution. In order to avoid
instability, Gu et al. use a certain trial and error approach to adjust the damping parameter, in
order to obtain a value for which the procedure may be terminated sufficiently close to a
bijective solution before diverging. Hence, the resulting parameterization is only approximate.

Gotsman et al. [30] showed how to correctly generalize the method of barycentric coordinates,
with all its advantages, to the sphere. They provide a quadratic system of equations, which is
a spherical equivalent of the barycentric formulation. Using appropriate weights in this scheme
can generate a bijective conformal mapping. Saba et al. [57] introduce a method for efficiently
solving the system proposed in [30].

Zayer et al. [71] introduce a parameterization method, which cuts the mesh along a line
connecting user-prescribed poles. The mesh is then topologically equivalent to a disk and an
initial parameterization is found by solving a Laplace equation in curvilinear coordinates. The
parameterization distortion is then reduced using a variant of quasiharmonic maps. The
distortion along the seam is also reduced by tangential Laplacian smoothing.

Another method that takes angular distortion into account has been proposed by Sheffer et al.
[63]. This is a highly nonlinear optimization procedure utilizing the angles of the spherical
triangulation (as opposed to the vertex positions). Here, the authors specify a set of constraints
that the angle values have to satisfy to define a planar triangular mesh. They search for angles
that are as close as possible to the original 3D mesh angles and satisfy those constraints, and
then convert the solution angles into actual vertex coordinates. Using this method, they can
define constraints on the angles and even on the areas of the triangles. However, since this
method seems to lack an efficient numerical computational procedure, it may not be very
practical for large meshes. Finally, another procedure for conformal mapping, which uses
redistribution of Gaussian curvature, is the discrete Ricci flow [41]. This method also requires
a nonlinear solver.

A major concern with conformal mappings is the distortion in scale. A method for minimizing
the area distortion was introduced by Degener et al. [14]. This approach is an extension of a
previous method “MIPS” [40], which attempts to minimize angle distortion by optimizing a
nonlinear functional that measures mesh conformality. Here, the authors add a term that
measures area distortion to their energy functional. They mediate between angle and area
deformations by changing the powers of the components in the proposed functional.

1.3 Our Contribution

In general, there may be several natural measures for the “goodness” of the mapping. From
one point of view, we wish to obtain a mapping that preserves the local geometry of the original
surface and this can be obtained using a conformal (angle preserving) mapping as in [34],
[35], [31]. On the other hand, it is reasonable to require the mapping to be area preserving.
However, in general, it is not possible to map a simply connected compact surface with non-
constant Gaussian curvature to the sphere in a way that preserves both angles and areas. Such
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a mapping would have to be an isometry and, thus, curvature-preserving [17]. Therefore, as a
compromise, in this paper, we propose a method for calculating an area preserving mapping
that minimizes the geometrical distortion. This mapping is optimal in the sense that it is both
area preserving and attempts to minimize the angle distortion. In general, for a surface which
is a topological sphere, there is a unique (up to Moebius transformation) mapping that is angle
preserving, but there are many area preserving mappings. Therefore, we will try to find an area
preserving map, which gives the smallest distortion of the mesh in the sense of optimal mass
transport.

This will be performed via a three-step approach. We assume that all our surfaces are compact
simply connected, that is, topological spheres. This assumption will be in force unless stated
otherwise throughout this paper. We first start with conformally mapping the given surface
Q onto the unit sphere S2 using a conformal mapping method, such as the one proposed in
[34], [4]. The area distortion of this mapping will be interpreted as a density function p on
S2. The second step is to find a mapping from S2 with density p to S2 with a constant density.
We will use the method of Moser ([52], [13]) in this step. This mapping will transport the
density p to area, and so, a composition of this mapping with the mapping from the first step
will give us an area preserving mapping from Q to S2. (See Section 2 for details.) This composite
mapping will be used as an initial MP mapping for the third step. In this step, we rearrange the
area preserving mapping of the second step to make it optimal in the mass transport sense. The
composition of the conformal mapping and the optimal mass preserving one will be the required
area preserving diffeomorphism to be used for texture mapping. In order to get fast and stable
convergence to the optimal map, we use a multiresolution scheme.

The outline of the remainder of this paper is as follows: In Section 2, we sketch the analytical
procedure to find the optimal mapping. In Section 3, we discuss some relevant implementation
issues. In Section 4, we describe the steps we perform to obtain the texture mapping, in Section
5, we give some illustrative examples of our scheme, and in Section 6, we present an evaluation
of the running time and distortion measures of our method. Finally, in Section 7, we summarize
our work and give some possible future research directions.

2 SKETCH OF RELEVANT MATHEMATICAL THEORY

In this section, we outline the mathematical justification of our mapping procedure. This is
based on the idea of using a minimizing flow to compute the optimal L2 mass transport map
as in [34], [4], and its extension to the case of a compact surface [18], [19]. It should be noted
that optimal mass transport theory may be carried out on a general Riemannian manifold
[21], [70]. For the purpose of texture mapping in the present work, we only consider the genus
zero compact surface (topological sphere), since it allows us to use a computationally efficient
implementation via spherical wavelets and is an important case in the texture mapping
literature.

2.1 Mass Preserving Maps and the Monge-Kantorovich Problem

We first give a precise mathematical formulation of the Monge-Kantorovich problem [21],
[70]. Accordingly, consider two oriented compact Riemannian manifolds Qg and Q1, each with
a corresponding positive density function defined over it, denoted by pg and pg, respectively.
We assume that the total mass associated with each of the manifolds is equal, i.e.,

JagHot0) dx=[ o m ) dy, )
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where dx and dy are the standard area forms induced by the Riemannian metric on Qg and
Qg, respectively. If this assumption is not satisfied, we can always scale one of the density
distributions to make the total amount of mass equal.

We wish to find a smooth mass preserving transport map that takes the first distribution into
the second one u : (Qg, 1) — (21, K1), i.e., a diffeomorphism which satisfies

Ho=IVulpy o u. @

Here, |Vu| denotes the determinant of the Jacobian map Vu and o represents composition of
functions. This equation is often referred to as the Jacobian equation, which constrains the
mapping to be mass preserving (MP) with respect to the given density functions. A mapping
u that satisfies this property may, thus, be thought of as defining a redistribution of a mass of
material from one distribution (Qg, pg) to another distribution (Q4, ). We assume that the
total surface areas of Qg and Q4 are equal. Then, we say that a diffeomorphism is area
preserving if it maps the area form of Qg to the area form of Q; (the area forms are defined
with respect to the corresponding Riemannian metrics [17]).

There may be many such mappings and we want to choose an optimal one in some sense. This
can be obtained by incorporating into the problem a penalty function of the following form:

M(u)= [ @ (x, u(x))o(x) dx, ®

where @ (x, u(x)) is a suitable positive convex function, typically taken to be the geodesic
distance (or its square) on the given manifold between x and u(x). (Here, dx denotes the area
form defined with respect to the Riemannian metric on the manifold.) The contribution of this
functional to the problem is to place a penalty on the distance the map u moves each bit of
material, weighted by the material’s mass. An optimal MP mapping (when it exists) is one that
minimizes this functional over all while satisfying the mass preserving mappings.

A fundamental theoretical result [21] shows that under certain mild conditions, a unique
optimal MP map u : (Qg, pp) — (Q1, pg) exists. Inthis paper, we will present a simple algorithm
for the construction of the optimal MP map in the case of the sphere.

2.2 Transforming a Diffeomorphism to S2 into an Area Preserving Mapping

Let us assume that we have some initial area distorting (e.g., conformal) diffeomorphism f from
some compact simply connected surface Q to the unit sphere S2. We can quantify the change
of area as a density function p at each point of the surface so that the integral on the flattened
surface (the unit sphere) will give us the area measure of the original surface:

dex:fS2 u(x)dx. 4)

By change of variables, it is easy to see that this density function is the determinant of the
Jacobian of f 1, i.e., p = |V,

Without loss of generality, we can assume that the total surface area of Q equals that of S2
(4m). Consider the problem of finding a smooth mass preserving map that takes the density p
over S2 into one of constant density 1 on S2:
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g:(S% ) — (S, 1).

This means that that g will take pdx to dx, where dx is the standard area form on S2. One can
see then that g o f will give us an area preserving mapping from the original surface Q to the
sphere. Note that we have

IVel=p. ®)

Such a mapping can be constructed using a method formulated in [52], [13], which will be
further explained in Section 4.

2.3 Optimal Area Preserving Mappings

We now specialize the Monge-Kantorovich to the case of the sphere S2. We will use the gradient
flow ideas described in [4], [18], [19] in our solution. So we want to minimize a functional of
the form

M (9= @ (x,8(0) p(x) dx ©

over MP mappings g : (S?, 1) — (S2, 1). (Again, we will take @ to be the geodesic distance or
the square thereof.) As above, dx is the area form of the standard metric on the sphere. Suppose
that we have constructed an initial MP mapping as above (e.g., using [52], [13]), which will
be denoted, henceforth, by g°. Using this mapping, we will rearrange the density in the domain
of the map in order to minimize the cost functional M(g), while constraining g so that it
continues to satisfy (2).

In our approach, we introduce a smooth, u preserving, family of diffeomorphisms st : (S2, )
— (S2, ) and define the family of maps gt via

g():gr os'.
See Fig. 1. For t = 0, we define s° to be the identity map. The idea given in [34], [4] is to use
the family of maps s to rearrange the initial MP map g° in such a manner to converge to the
optimal solution. The family will be defined via a certain gradient flow defined for the

minimization of the functional (6). We now give the details.

If the maps g' : S — S2 evolve so that

L (0)=g'(s"(x)),

where st: §2 — S2 preserves the measure p(x)dx, and where

g5,
= (s'(x)),

then the g' satisfy the transport equation
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0,g+v - Vg=0. (7)

We can accordingly write the evolution of the cost functional as follows:

OM(g" —f.z,u(X)Uf(x) - D, (x, g'(x)) dx.

o (8)

The maps st will preserve the measure p(x)dx if and only if the velocity field o' is divergence
free, i.e., satisfies

V - (uv')=0. (9)

Since S2 is two-dimensional, the general divergence-free vector field is of the form

uv'=— JVH(x), (10)
where J is the rotation by +90 degree and H is some “Hamiltonian function.” See [18], [19]
for all the details.
In general, using (10), one can compute that

Mgy =- JUVH) - @u(x, g dx
:fﬂ(VH) - JD,(x, g)dx
:—vaV : (J(I)_‘-(x,g')) dx-

Then, in order to obtain a gradient flow, one sets

H=V - (JD(x,g") (v

so that the evolution of the cost function will be decreasing. In this setting, the maps should
evolve by the following initial value problem:

{ 2oty - Vg'=0

U= — L JV{V . (JD.(x, ")}

1(x) (12)

2.4 Incorporating a Multiresolution Scheme to Our Flow

We now employ a wavelet representation to modify the gradient flow as proposed in the
previous section. Accordingly, we can utilize a spherical wavelets basis y;j m, such as the second
generation biorthogonal wavelets introduced by Sweldens [67], [68], to represent H:

H= " jm(0) ¥ jm(0).
L (13)
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These wavelet functions can be defined intrinsically on the manifold and do not depend on its
parameterization. Wavelet functions y; , represent functions on a regular grid at multiple levels
of detail. Here, j indexes the scale (resolution of analysis), where higher j corresponds to higher
resolution analysis, and m indexes the spatial location of analysis.

Any function g can be decomposed as a superposition of the biorthogonal basis ;j m using a
set of dual basis functions y;j m:

CFZ@LW Q) wj.mzzyj.m(/’j,ms
Jm Jm (14)

where yj n denote the expansion coefficients. Therefore, using this biorthogonal wavelet basis
to represent H as >'j m vjm, Wjm leads to the following evolution of the cost:

d N ) ) NV t .
o M(g)= %y,.,,,m [ 0@V - (J0s(x. ) dx. -

This, in turn, leads one to choose H as in (13) with

Yim®) =[ TV - (JDx(x, ") dx
:<‘Zj.m(-x)’ V. (J(I).\‘(-x’ gl))> (16)

so that

a t
2 M(8)== D im0,

Jim

Thus, in this case, the maps should evolve by the following initial value problem:

g8+ - Vg'=0,
v'=- /ﬁ‘]vz'yj.m(l)wj.m(x)’
s (7

where yj m(t) is as defined in (16).

In our gradient descent formulation, we can group the wavelet functions y;j n according to their
resolution level (j). Each of these groups can span any function defined over the manifold at a
different resolution. We can then run our gradient flow at each resolution level separately,
going from coarser to higher resolution, until it converges. This gradient flow will be obtained
by iterating the following steps (starting with J = 1) until the MK cost functional ceases to
decrease (or until | H2 dx < ¢ for some tolerance & > 0):

1. Using the basis vectors {yjm|1 <j<J, Vm}, follow the steepest descent.

2. Increase J by 1, so as to include basis functions corresponding to the next level of
resolution.

Moreover, the wavelet decomposition creates a natural setting for using multigrid methods,
which we use to increase the efficiency of our method. In this case, we will first perform a few
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iterations (“relaxations”) using the expansion coefficients at all resolution levels. Then we will
carry out several iterations, but every few iterations, we will pull out the coefficients of the
highest resolution levels from the new representation, leaving a smoothed representation of
our functions (this is equivalent to performing low-pass filtering). After reaching the lowest
resolution level and performing a few iterations, we start operating in the opposite direction,
by adding the coefficients of a higher resolution level every few iterations, until we reach the
finest representation level. This will be referred to as the V-cycle. We perform a few such cycles
until we obtain convergence to the solution.

2.5 Flow on S2

In the case of the sphere, with ®(x, y) as the geodesic distance from x to y, we have

O (x, y)=arccos(x - y).
®, is the projection of the derivative of ®(x, y) as function from R3 x R3 — R onto the tangent
plane to S2 at x, therefore,

y—(x-yx

J1-(x-y)2

O, (x, )= -

Since Jy =x x y and

(x-yP+x x =12 =1,

we have

XX g

JO,(x,8)=— < gl

Therefore, in this setting, the maps should evolve by the initial value problem described in
(17), where for yj m (t) defined as in (16), we have

XX g -
Y jim(D) ZfSZV' mlﬂj_n,(x)dx

:<‘Z’j~m(x)’v' ﬂ:igl>' (18)

In the case of the sphere, we can use for the expansion the spherical wavelet basis that was
introduced by Schrdder and Sweldens [59], [60], which will explicitly be described in Section
3. Our flow stops when V - (J @y (X, gY)) is orthogonal to all the basis components. These points
will now be described in the following section.

3 IMPLEMENTATION ISSUES

In this section, we will focus on how we maintain the correctness of the aforementioned
mathematical derivation when we proceed to discrete settings.
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3.1 Multiresolution Basis

As alluded to above, in our implementation, we used the construction of the spherical wavelet
basis introduced in [59], [60]. These are second generation wavelets, adapted to manifolds with
nonregular grids. In the construction of these wavelets, a lifting scheme is used to obtain locally
supported, biorthogonal spherical wavelets and their associated fast transforms. The
construction of spherical wavelets relies on a recursive partitioning of the sphere into
(spherical) triangles. This can be done starting from a Platonic solid of triangles (with 4
triangles forming a tetrahedron, 8 triangles forming an octahedron, or 20 triangles forming an
icosahedron), and recursively subdividing the triangles into four child triangles at each stage
of the recursion (quadtrees), as shown in Fig. 2.

On this mesh, we denote the set of all vertices obtained after j € J subdivisions by K (j). The
(j + L)th resolution mesh is obtained by introducing new nodes, identified by M (j), which
subdivide existing edges (typically at their midpoint). The complete set of nodes in the (j + 1)
th resolution mesh is given by K(j + 1) = K(j) U M(j).

Atresolution level j, a scaling function ;i is defined for every vertex k € K (j). One commonly
used scaling function is the hat scaling function that varies linearly from the value 1 at vertex
k to 0 at its immediate neighboring vertices. The scaling functions satisfy the refinement
relation, therefore, each scaling function ¢j x can be written as a linear combination of scaling
functions of the next finer level:

©ik= Z Rtk
leK(j+1)
with {hj lj € 3, k € K(j), | € K(j + 1)} defining a finite filter.

If g : S2 — R is a function defined on S2, we can approximate the function q at a resolution j
by an expansion of the form

q:Zﬂj.ktﬁj.k-
%

The coefficients A are called scaling coefficients and formally given by the inner products
Ak = ((pJ K. @), Where ¢ is the dual scaling function which satisfies

(@it 011 1=01 .

The scaling coefficients represent the low-pass information of the original signal. Scaling
coefficients of lower resolution levels represent smoother versions of the data.

If we wish to perform a multiresolution expansion, we can do so by writing the approximation
using wavelet functions that are located at the mesh subdivision points y;j , instead of the
scaling functions. For the hat scaling function, the corresponding wavelet functions may be
written as

wj.m:(PjJrl.m_ Z SjmkPjk-

keK(j,m)
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The weights sj m « are chosen so that the resulting wavelet has a vanishing integral (for details,
see [67], [68]). For g € Ly, we can write the expansion

qzzyj.mll’j.nr

Jjm

The coefficients yj  are called wavelet coefficients and formally given by the inner products
Yjm = (a, \I/j,m), where yj n, is a dual wavelet function.

The intermediate wavelet coefficients represent band pass information and the highest
resolution wavelet coefficient represents the high-pass information. The coarsest level scaling
function and all wavelet scaling functions construct a basis for the function space L,. See Fig.
3 for examples of spherical wavelets and a scaling function.

3.2 Discretization

Our approach for discretizing the gradient flow (17) has its mathematical foundation in Discrete
Exterior Calculus (DEC) theory that was proposed in [38], [15]. The power of this method is
the careful definition of discrete differential quantities, designed to respect structural
relationships such as vector calculus identities. This is quite different from previous methods,
which focused on satisfying the continuous equations at a discrete set of spatial and temporal
samples, but failed to preserve important global structures and invariants. Both fluid mechanics
and electromagnetism make heavy use of line integrals, as well as surface and volume integrals.
Pointwise evaluations or approximations for such quantities may not be the appropriate discrete
analogs, since the defining geometric properties underlying their physical meaning cannot be
enforced naturally. Instead, one should store and manipulate those quantities at their
geometrically meaningful locations; one should consider values on vertices, edges, and faces
as proper discrete versions of pointwise functions, line integrals, and surface integrals,
respectively.

The main idea behind this approach is the representation of fields through measurements on
cells: a 0-form represents a scalar function through its values at vertices (0-dim cells), while a
1-form represents a tangent vector field through its line integral along edges (1-dim cells). This
implies that tangent vector fields are specified as a single scalar per edge on the mesh. A 2-
form represents area density through its area integral over triangles (2-dim cells). All relevant
computations are then performed on these coefficients and the results are reconstructed with
piecewise linear (PL) interpolation.

This theory defines discrete differential k-forms on triangular meshes and expresses relevant
operators such as divergence, curl, gradient, and Laplacian, as simple sparse matrices acting
on intrinsic (coordinate-free) coefficients “living” on vertices, edges, and triangles. This
concept greatly simplifies the implementation as all variables are intrinsic. It also ensures that
the approach works for general manifolds without any changes.

Our main concern when we cross over to the discrete setting is to maintain the MP property of
our velocity vector field. In the continuous case, we set the velocity field to be

. JVH()
Ho

s
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so that pgo! is divergence free, and thus, satisfies the MP requirement. In the discrete setting,
we have to choose the gradient and the divergence operators so that they satisfy this property,
i.e., we must show that using the DEC definitions, one has

V- (JVH)=0,

where H is a scalar function that takes its values on the vertices. This is done in Appendices A
and B.

4 ALGORITHM FOR TEXTURE MAPPING

Once we find the optimal mapping from a general simply connected compact surface Q to the
sphere S2, we can use the inverse mapping to “paint” the surface with any texture defined on
the sphere. We assume that the total surface area of Q has been normalized to be 4x.
Summarizing, the steps we need to perform to find the optimal mapping are as follows (see
Fig. 4):

«  We construct a conformal mapping f from Q to the sphere S2. (This is unique up to
Moebius transformation.) We define a density function on S2 that corresponds to area
distortion of this mapping. This density function is p = [Vf1|.

«  Wefindan initial MP mapping g° : (S, ) — (S?, 1). The composition of this mapping
and the conformal mapping produced an area preserving mapping from a general
surface to the sphere.

«  We minimize the cost functional M (g) of the map g° by evolving the map g° over
time according to the gradient flow (17).

The composition gt o f will give us the required area preserving mapping from Q to the
sphere. We can then synthesize an image on the sphere, attributing a color to every vertex or
triangle, and use the inverse mapping (g* o f)~1 to map this image onto the original surface.

In the following sections, we will elaborate on the implementation of each of these steps.

4.1 Finding the Conformal Mapping

We employ the method for conformal mapping proposed in [5]. We briefly outline the relevant
steps. The idea is to remove a triangle, solve the Dirichlet problem, and thus, conformally map
the remaining surface onto the complex plane, and finally, use the inverse stereo projection to
map the plane onto S2. The boundary is mapped to a triangle around the “North Pole” of S2.

More precisely, we start with a manifold represented by a triangular mesh with N vertices from
which we remove one triangle AABC and then perform the following steps:

e  Calculate the matrix D.

D is a sparse and symmetric N x N matrix whose nonzero elements Dpq (P # Q) are

PQ

1
D, =- 7 (cot ZR+cot £S),

where £R is the angle at the vertex R in the triangle APQR and £S is the angle at the
vertex S in the triangle APQS (see Fig. 4a).
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R

Note that Dpqg # 0 only if P and Q are connected by some edge in the triangulation.
The diagonal elements Dpp satisfy

> D,,=0.
E

e Calculate the vectors a and b.

The variables aand b are sparse N vectors with an entry for each vertex. Their nonzero
elements are found at the vertices A, B,C of the triangle AABC that we removed from

the mesh:
0 0 ¢ AABC
—1 _
a= TBA 0=A
ma ¢=B
0 0=C,
0 0 ¢ AABC
1-6 _
p={ TC,F 0=A
T Q=B
cm 2=C

where E is the orthogonal projection of C on AB (see Fig. 4a) and

(B-A,C - A)
92—2.
1B - All
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B

»  Solve the linear system of equations:
Dx=a,
Dy=b.

*  Map the x and y coordinates from the plane to the unit sphere using inverse
stereographic projection:

2x 2y 27

XHiy = | —s, ——, —— —
(1+r2 14727 1412

As noted above, the conformal mapping distorts the area of the surface (see Fig. 5, where the
nose of the “Max Planck” image is mapped to a smaller area with proportion to his eyes). We
quantify the change of area as the density function p at each point on S2 so that the integral on
the flattened surface |52 udx will give us the area measure of the original surface. In continuous
settings this density function is the determinant of the Jacobian of f1:

u=Iv .

In the discrete settings, we calculate the area distortion for each triangle as the ratio of the area
of the triangle on the original surface Q to the area of its corresponding triangle on the flattened
surface S after the conformal mapping.

4.2 Finding the Initial MP Mapping

For a general domain, the initial MP mapping can be obtained using the method proposed by
Moser [52]. We won’t repeat here the derivation of Moser’s method for finding an area
preserving mapping, but rather just give the final algorithm that is applicable to all of our
examples. Details may be found in [52], [13]. As mentioned above, the area preserving mapping
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from the original surface to the sphere will be the composition of the mapping g and the
conformal mapping f. The mapping g is calculated by solving two differential equations on the
sphere. We first solve

A®=1 — pu (x)
for ®, with
p=IV L
and then set
)
A

for t € [0, 1]. Finally given the family u, we solve for g; from the ODE

d
Eg/:uz °&

with gg taken to be the identity mapping. Then, g = g is our required mapping.

After performing Step 2, we have an area preserving mapping with respect to the original
domain g o f. However, this area preserving mapping is still not optimal in the transport sense
defined above. In the next step, we will evolve this mapping to the optimal one.

4.3 Finding the Optimal MP Mapping

We now use the MP mapping obtained in Step 2, from now on, denoted by g, as the initial
mapping for the optimal transport algorithm. We will evolve g° over time to obtain gt using
the gradient descent flow as defined by the initial value problem (17). As t goes to infinity,
gt will converge to the optimal mapping.

We start by calculating p as the area distortion of every face after the conformal mapping. p
is calculated as the ratio of the original area of each triangle face to its area on the sphere after
conformal mapping. It should be emphasized that this calculation is performed after we scale
the original surface so that its surface area is 4r (same as the area of the unit sphere). We then
find the vertices of the dual mesh (denoted by Xg) as the circumcenters of the triangles.
Henceforth, all quantities referring to the dual mesh will be denoted by a subscript d and those
referring to the primal mesh will be denoted by a subscript p. The vectors of the initial mapping
g0 are interpolated at the vertices of the dual mash and denoted by gg4. The mapping g° at the
original vertices will be denoted by gp. The following steps are performed iteratively until we
converge to the optimal mapping.

Ug X 8d
We calculate m at the dual mesh vertices and then calculate the value of the function
Xa X 8d
Hp, at the vertices of the original mesh as the divergence of m. Then, we find the
coefficients of its representation after the spherical wavelet transform. We will next use only
some of these coefficients—at each iteration, we choose the coefficients according to our stage
in the multigrid algorithm (this concept will be clarified in the next paragraph). We perform
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the inverse transform using these coefficients only. We then calculate our velocity field (at the

1 1
vertices of the dual mesh) as Y@= ~ ﬂ_dJVHp: - ,u_dxd X VH, Note that the result of the

computation of the gradient is given at the vertices of the dual mesh.

We next update gq according to this velocity field as gg — dt V g - vg. This update is found by
first interpolating gq at the vertices of the primal mesh x, and then calculating the Jacobian of
gp using our formulation for the gradient calculation. Here, dt is the time step. The process is
now repeated with the updated g4. We use smaller time steps when we update our mapping
using higher resolution coefficients. The algorithm is sketched in pseudocode (1).

Algorithm 1
Perform One Step Toward Optimal MP Mapping

1 function OMT (gg, res)
2 for all triangles do
P empge 4 8d
I xg X gd”
end for
for all vertices do
H, < V - (tempy) {for Divergence see Appendix V 111}
gp < Interpolate(gg) {linear interpolation}

gp < Normalize (g,)

© 00 N oo U N~

end for

10 a« SWfwd(Hp) {Spherical wavelet transform, see [59]}
11 forallj>resdo

12 gy« 0

13 end for

14 H, < SWhak(a) {Spherical wavelet transform, see [59]}
15 for all triangles do

16 1 . .
vy~ Exd XV Hp {for Gradient see Appendix V 111}
17 gq«gq—dt - Vg, - vy {Jacobian using Gradient operation}

18  end for

19  end function

The repetitions of the above steps are performed while using a different set of wavelet
coefficients each time. As mentioned in Section 2, we cluster the wavelet functions y;j m
according to their resolution level (j). Then, as explained in Section 2.4, we perform several
V-cycles until we obtain convergence to the solution (see Fig. 6). These steps are summarized
in pseudocode (2).

Algorithm 2
Calculate Optimal MP Mapping

1 function OMTCycles
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2 for i =1 to 100 do {or repeat until convergence}
3 forres=1,2,3,4,5,4,3,2,1do

4 {for all resolution levels, forth and back}

5 gq < OMT (gg, res)

6 end for

7 end for

8

end function

5 EXAMPLES

In this section, we give some examples illustrating our use of optimal mass transport for texture
mapping. We should note that in some previous work [35], conformal mapping theory was
applied to the problem of texture mapping, and so in the examples below, we explicitly compare
the optimal mass transport approach to this one. In Fig. 13, we also compare texture mapping
using our parameterization to texture mapping and using the parameterization proposed in
[57] and [30].

Some of the textures we used were created directly on the sphere, such as the case of the circles
pattern, or images taken with an omnidirectional camera, as can be seen in Fig. 7. However,
most of the images were created on a 2D rectangle and then mapped to the sphere using the
(inverse) equirectangular projection. The equirectangular projection maps the longitudes and
latitudes directly into the x and y coordinates on the plane, respectively. The poles (zenith,
nadir) are mapped to the top and bottom edges and are stretched to the entire width of the
image. Areas near the poles get stretched horizontally. This projection is easy to use because
of the simple connection between the pixel coordinates on the plane and its azimuth and zenith
angles on the sphere. However, it is neither area preserving nor conformal. Therefore, a
preliminary step of correcting a given texture image has to take place in order to account for
this distortion. This correction can be performed by transforming the azimuth angles. Assume

that the image values are mapped vertically onto lines of latitude (—E<0 < 7—r) and mapped
horizontally onto lines of longitude (—z < ¢ <m). In order to correct the distortion, there is no
need to modify 0, but ¢ is scaled as we approach the two poles by cos(6). In Fig. 8, one can
see the lines on the 2D image that correspond to the lines of longitude after the transformation.
An example of this mapping can be seen in Fig. 9.

Once we have the synthesized texture over the sphere, we use the inverse of our mapping
(derived via optimal mass transport) to map this texture from the sphere to the 3D object as
described above. In the mapping results in Figs. 10 and 11, one can see how our mapping
corrects the area distortion with respect to the conformal but still manages to minimize the
geometrical distortion. Note that in Fig. 10, the conformal mapping maintains the shape of the
circles but may scale them differently, so that in some places, the circles are very large, while
in others, they are quite small. In our mapping, all the circles are practically the same size,
whereas the geometrical distortions are local and small. In Fig. 11, one can see the same effect
for the puzzle texture. In Fig. 12, this improvement in quality is even more striking, since in
this case because of the high curvature changes, the conformal mapping causes major area
distortions, and almost all the land of the earth is mapped to a small portion of the bucket. Our
mapping places the north pole on the bottom inside the bucket and the south pole on the bottom
of the bucket from outside, so the rest of the world is evenly spread on the whole surface. In
Fig. 13, texture mapping using our method is compared to the texture mapping results obtained
using the parameterization method proposed in [57] and [30] for the Stanford bunny. In this
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case, while the extremities of the bunny’s ears impose on most other parameterization methods
a very dense parameterization, in our method, this is avoided. However, in this case, the
geometrical distortion is fairly noticeable, despite being local.

6 EVALUATION

We experimented with our code using a Matlab and mexed C++ implementation on a standard
2 GHz CPU with 2 GB RAM processor. Most of the code was implemented in Matlab, except
for some spherical wavelet transform functions.

In order to quantify the distortion of the parameterization, we compute both the angle and area
distortion metrics defined using the signed singular values of the Jacobian of the transformation
for each triangle, as presented in [40], [14], and [49]. Small angular and area distortions are
indicated by a distortion value approaching 2. We ran our algorithm, referred to as MK, on a
variety of inputs, in order to evaluate the computation time and convergence rate. We compared
the results of the MK algorithm with the results obtained after running the algorithm of Haker
et al. [34] and that of Moser’s [52]. We also compared our results to those obtained using the
method of Gotsman et al. [30] with Tutte weights and Mean-Value weights (using the
implementation of Saba et al. [57]). The values of the distortion measures obtained by the
various algorithms are summarized in Tables 1 and 2. One can see that the proposed algorithm
produces maps with very small area distortion that also minimizes the angular distortion.

Running time of our algorithm for meshes of varying sizes is summarized in Table 3. The
experiments we performed show that the number of iterations required for convergence is not
determined solely according to the mesh size, and is in fact, even more affected by the
extremities of the excrescences of the meshes. It should be noted that in our research within
the medical imaging field, the meshes we use are those of anatomical structures, which do not
have such extremities, and thus, we did not have to deal with this issue. However, we note that
in case of such large extremities, besides longer computation time, triangle flipping may also
occur in the Moser algorithm, as discussed below.

The calculation that dominates the computation time is that of finding the coefficients of the
spherical wavelets representation. Otherwise, the computations in each iteration of the
algorithm can be performed in parallel, therefore, an implementation on a GPU would probably
eliminate most of the increase in running time versus mesh size that is evident in Table 3.

The convergence behavior of our algorithm for the Squirrel example is shown in Fig. 14.
Obviously, one can see that the convergence rate is not linear and it takes a few hundred
iterations to converge to the optimal solution. However, after several hundred iterations, the
algorithm reaches a solution that is fairly close to the optimal solution.

It should be noted that our method is immune to triangle flipping. In the continuous setting,
this is imposed by the bijectivity of our mapping (that can easily be shown using the maximum
principle). In the discrete setting, we enforce bijectivity by using an implementation of the
differential equations according to the DEC theory. As shown in Appendix B, this
implementation allows us to maintain the mass preserving property of our velocity field even
in the discrete settings, and thus, prevent triangle flipping. However, since the methods
described in [34] and [52] are not bijective in the discrete settings, triangle flipping may occur
in the preparation stages for our algorithm. Our algorithm cannot recover from triangle flipping
in these stages. Therefore, for meshes with large extremities in which triangle flipping may
occur (rarely in the method of [34] and more often in the method of [52]), an additional step
of fixing these flips has to be applied to the mesh. Of course, this step may come at the cost of
locally increasing the distortions.
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7 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel method for the parameterization of 3D objects. In the
proposed method, we find the optimal mapping in the sense that it is the area preserving
mapping produced via optimal mass transport. The optimal mass transport map is found via a
gradient flow directly computed on the sphere, implemented using a multiresolution scheme
for fast convergence. We have also shown how we can use our method to map textures onto
closed compact simply connected surfaces and compared our results to texture mappings
derived from conformal mapping theory.

There are several directions that we plan to pursue in future work. First of all, we believe that
we can improve the rate of convergence of our algorithm by refining the multigrid scheme.
Further, we want to extend our methodology to higher genus surfaces. This is not completely
straightforward since in this case, the general divergence-free vector field (on a two-
dimensional surface) involves a harmonic term. In the simply connected case, this does not
appear. In general, for a surface of genus g, the space of such harmonic forms has dimension
29. However, we believe that this is tractable and this extension will make our method
applicable for texture mapping on more complicated surfaces. It should also be noted that an
algorithm for computing harmonic 1-form group basis of a high genus surface has been
introduced by Gu and Yau based on Hodge theory in [32].

Finally, we plan to apply our algorithm to real medical data including brain structures such as
the caudate nucleus and hippocampus (whose surfaces are topological spheres) to support the
work in statistical shape analysis for our research in schizophrenia.

APPENDIX A
DEC OPERATORS

In our implementation, we use the formulation of the DEC theory in [38]. Here, we repeat some
of the key points in the derivation of the gradient and divergence operators.

A.1 Gradient

For a function f (a primal 0-form), the gradient can be computed in the interior of the triangles
(the primal simplices) by first interpolating the function from the primal vertices to the interior
using affine, barycentric interpolation functions, and then taking the gradient. Since the
interpolation is affine, the gradient is a constant vector, and we can associate it with the dual
of the simplex.

The set of interpolating functions we use is defined as follows. The interpolation function o;
has the value 0 at all vertices other than vertex i and the value 1 at vertex i. The piecewise linear
interpolation of the discrete function f at a point x in any triangle AABC can be written as

Nasc@= D [ ().

m=A,B,C

Taking the usual gradient of this smooth function in AABC, we have

Vi lusc@= D [0m) V().

m=A,B,C (19)

In general, we have
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Z Vo (x)=0.

m=A,B,C

By substituting this into (19), we get

VT lusc@= D" (fm) = FC)Vpm().

m=A.B

The gradient value is independent of which vertex is chosen as the distinguished vertex C. The
gradient of the interpolating function in triangle AABC is perpendicular to the edge opposite

1
the vertex from which the interpolating function stems, and its magnitude is 7, where h is the
length of the perpendicular line from the vertex to the edge, as shown in Fig. 15.

A.2 Divergence
Let us denote the directed edges stemming from a vertex i by ejj forj=1,2, ..., n, where n is

the number of mesh triangles that contain the vertex i. We denote by e; an edge perpendicular
to ejj that connects the circumcenters (the dual vertices) of the triangles adjacent to the edge
gjj- (Note that this is not a directed edge.) Each of these edges has two triangles adjacent to it.
We denote the two triangles adjacent to an edge e;j by Aijk for k = 1, 2. The divergence of a
vector field V at vertex x; can then be calculated as

1 coiseon | sz
V. xi:A—izj:Zk:V(Aljk)e,'j |Aijk 0 €3]

where A; is the area of the VVoronoi cell around vertex i (this is the area of the region bounded

by the edges e; at vertex i) and &;j is the unit vector pointing in the direction of the directed
edge e;jj. Note that this formula corresponds to the net flow per unit volume of an infinitesimal
volume about a point, which is the physical intuition of divergence. A more detailed
explanation of this formula may be found in [38].

APPENDIX B
PROOF OF MP PROPERTY

Here, we show that, if we use the operators defined in Appendix A for the gradient and
divergence, we maintain the MP property of our velocity field, which is defined as

o IVH @)
Ho

If we take our gradient and divergence operators as proposed in the DEC theory (see Appendix
A for the formulations of these operators and their justification), we can show that

V. (JVH)=0
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if H is a scalar function that takes its values on the vertices. The notation used in the following
proof is elaborated in Fig. 16. Without loss of generality, we need only consider the contribution
to the divergence at vertex x, from triangle AABC.

Our velocity field v is calculated as follows. First, we calculate the gradient of the scalar
function H:

VH| e =(H(C) = H(A))Ve.(x)+(H(B) — H(A))Vep, (). (20)

We calculate the gradients of the interpolating functions as

V(pB(X) :a sicn B’

__ bt
Vgc((x) Tasin (y)"

Substitution of these two expressions into (20) gives us

VA _HOO) - H(A)AL+H(B) - H(A)El
MBE g sin (B) asin (y) ’ 1)

Therefore, the velocity field, obtained by 90 degree rotation of the above, is

H(C) - H(A)A_ H(B) - H(A)fb\

puv=—JVH= = - .
asin (B) asin (y) (22)

We now take the divergence of our velocity field:

V- (uu)=pv - (I, -+l - b). (23)

Using the properties of the circumcenter, we get

l= gCOt 62)

and

b
l,,:zcot B).

Substitution of these two equations into (23) results in

V() =uv- (.-t - b)

(24)

H(C)-H(A H(B)-H(A
:(a:i—n(ﬂ()) (% . Cot(y)+§ - cos(a) cot(ﬁ)) - ((HiT(y()) (% - cot(y) cot(oz)+§ . cot(ﬁ))
_ h(C)-h(A)

T 2asin (B) *

(c - cot ()+ b [sin(@) sin(B) — cos(y)]) - HELD. ([sin(y) sin(a) - cos(B)]+b cot(B)).
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V- (uv)

c b
Now, using the sine formula g, (5, ~sin (3), We get

L gl cos () cos (7) i H(B)-H(A . cos () cos (8)
"L;néf-(“ L _p. y+b-mn@ﬁ)——Ll_Ll(c.mn@”_c. B .y, w)

sin (y) sin (B) 2a sin (y) * sin (y) sin (B)

:(H(C) - H(A))M — (H(B) _ H(A)) ¢ sin (@)

2a sin (B) 2a sin (y)

=1(H(C) - H(A)) - 3(H(B) — H(A))
=3(H(C) - H(B)). (25)

Recall thaltl (H(C) — H(B)) is the contribution to the divergence at vertex x from one of its
adjacent triangles. If we sum over the contributions from all surrounding triangles, we will get
that the value of the scalar function H at each of the surrounding vertices will show up once
with a positive sign and once with a negative sign—and will, therefore, cancel out, adding to
a total divergence of zero.
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Fig. 1.
An illustration of the rearrangement of the map.
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Fig. 2.
Two subdivision steps starting from a spherical icosahedron.
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Fig. 3.
Some examples of spherical wavelets and a scaling function.
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Fig. 4.
A block diagram of the algorithm for the optimal mapping calculation.
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(a) (b)

500 T - . :

(c)

Fig. 5.

(a) The initial three-dimensional “Max Planck” surface. The color indicates the mean curvature
(red indicates positive mean curvature—convex areas, while blue indicates negative mean
curvature—concave areas, and green indicates mean curvature values close to zero—saddle
points). (b) “Max Planck” after conformal mapping to the sphere. The colors of every point
are the same color as the corresponding point in (a). (c) Area ratio histograms for the “Max
Planck” surface before versus after conformal flattening.
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Fig. 6.

(a) “Max Planck” after area preserving mapping obtained using our gradient descent method.
This mapping causes minimal local geometry distortion in the sense described in the text. (b)
The area ratio histogram for the “Max Planck” surface before the mapping versus after the
optimal area preserving mapping. (c) The blue arrows show the vector field that moves the
vertices to create the optimal mapping on the nose area.
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Fig. 7.
Texture synthesized over the sphere.
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Fig. 8.
2D image lines corresponding to the lines of longitude (see text).
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Fig. 10.
Circles mapped onto the squirrel using (a) conformal mapping and (b) our optimal MP

mapping.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2010 June 16.

Page 37




1duasnuely Joyiny Vd-HIN 1duosnuey JoyIny vd-HIN

1duasnuely Joyiny vd-HIN

Dominitz and Tannenbaum Page 38

(@) (b)

Fig. 11.
Puzzle mapped onto “Max Planck” using (a) conformal mapping and (b) our optimal MP

mapping.
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(c) (d)

Fig. 12.
The globe mapped onto the bucket using ((a) and (c)) conformal mapping and ((b) and (d)) our
optimal MP mapping.
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Fig. 13.

Circles mapped onto the Stanford Bunny using the parameterization method of Gotsman et al.
[30] with (a) mean value weights and (b) Tutte weights. (¢) Mapping using the conformal
parameterization of Haker et al. [35] and (d) texture mapping using our optimal MP
parameterization.
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Fig. 14.
The evolution of the cost M as defined in (6) versus the iteration number.
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C

B

The gradient of the interpolating function ¢a.

Fig. 15.
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Fig. 16.
Notation for the MP proof.
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Performance Statistics

TABLE 3

Model #of faces # of iterations  time(sec)
Squirrel 5k 814 971
Gargoyle 20k 1687 1451
Max-Planck 25k 2120 2460
Skull 40k 1371 2132
Bunny 70k 2530 3093
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