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Abstract
Model reactions offer a chemical mechanism by which formation of a sulfenyl amide residue at the
active site of the redox-regulated protein tyrosine phosphatase PTP1B protects the cysteine redox
switch in this enzyme against irreversible oxidative destruction. The results suggest that
“overoxidation” of the sulfenyl amide redox switch to the sulfinyl amide in proteins is a chemically
reversible event, because the sulfinyl amide can be easily returned to the native cysteine thiol residue
via reactions with cellular thiols.

Intracellular concentrations of hydrogen peroxide (H2O2) increase under conditions of
oxidative stress and during some normal signal transduction processes.1–3 An important
mechanism by which cells issue temporary responses to such transitory increases in H2O2
levels involves reversible oxidation of cysteine residues on critical “sensor” proteins.4,5 The
ability of cysteine residues to serve as reversible redox switches relies upon the unique ability
of the γ–sulfur atom in this amino acid to cycle easily between (at least) two oxidation states
under physiological conditions. Specifically, oxidation of a cysteine thiol by H2O2 yields a
sulfenic acid residue (reaction i, Scheme 1A) that can, over time, be returned to the native thiol
by reactions with biological thiols (reaction ii, Scheme 1A).4–8

Protein sulfenic acid residues also have the potential to undergo further reaction with hydrogen
peroxide to generate the corresponding sulfinic acid (reaction iii, Scheme 1A).4–9 This reaction
is irreversible, except in the case of some peroxiredoxins8 and, therefore, yields an
overoxidized, “broken” redox switch. Alternatively, in some proteins, the initially-formed
sulfenic acid intermediate undergoes reaction with a neighboring “back door” cysteine thiol to
generate a disulfide linkage (reaction ii, Scheme 1B).10–13 Rudolph and Sohn provided
evidence that, at least in the context of the phosphatase Cdc25B, disulfide formation protects
the enzyme against irreversible overoxidation.10,11 There are at least two possible mechanisms
underlying this protection. First, the disulfide may be relatively resistant to further oxidation
(reaction iii, Scheme 1B).10,11 Second, if “overoxidation” does occur, the resulting
thiosulfinate likely could be converted cleanly back to the native cysteine residues by reactions
with biological thiols (reaction v, Scheme 1B).14
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Protein tyrosine phosphatases (PTPs) are important targets of intracellular H2O2.15–17 These
cysteine-dependent enzymes catalyze the removal of phosphoryl groups from tyrosine residues
on their protein substrates.15–17 Accordingly, PTPs work in tandem with protein tyrosine
kinases to regulate critical signal transduction cascades by modulating the phosphorylation
status and, in turn, the functional properties of proteins involved in these pathways.15–17 The
catalytic activity of some PTPs is subject to redox regulation as part of normal cell signaling
processes.15–17 For example, the enzyme PTP1B, a major negative regulator of the insulin
signaling pathway, is inactivated by a burst of H2O2 that is produced upon binding of insulin
to its cell-surface receptor.18,19 Subsequent reactions with cellular thiols slowly return the
enzyme to its active form.18,19 This transient oxidative inactivation of PTP1B serves as a
“timing device” that increases phosphorylation levels on the insulin receptor and insulin
receptor substrates, thus potentiating cellular responses for a defined period of time following
insulin stimulation.18,19

For some time, it was widely assumed that redox regulation of PTPs involved either sulfenic
acid or disulfide intermediates, as shown in Scheme 1. However, recent studies in the context
of PTP1B revealed a new mechanism for redox regulation of PTP activity in which the initially-
formed sulfenic acid undergoes reaction with the neighboring amide nitrogen to yield a cyclic
sulfenyl amide (known, more formally, as an isothiazolidin-3-one, reaction ii, Scheme 2).20–
22 As required for a functional redox switch, reactions with biological thiols can convert the
sulfenyl amide back to the catalytically active thiol form of the enzyme (reaction iii, Scheme
2).20–22 Importantly, sulfenyl amide formation subsequently has been observed in other
proteins and it has been suggested that this posttranslational cysteine modification can occur
in cells.23,24

Like other cysteine-based redox switches, the sulfenyl amide residue has the potential to
undergo “overoxidation” to sulfinyl and sulfonyl derivatives (reactions iv and vii, Scheme 2).
Therefore, complete understanding of this redox switch requires consideration of the reactivity
of these higher oxidation states under physiologically relevant conditions. In the work
described here we employed small organic molecules to model the reactivity of protein sulfinyl
and sulfonyl amides that are potential “overoxidation” products of the sulfenyl amide redox
switch. Classic25–28 and modern29,30 studies have employed model compounds to define the
inherent reactivity of critical functional groups found at enzyme active sites. Such studies
provide insight regarding the chemical mechanisms of enzyme catalysis and lay a foundation
for understanding how protein microenvironments alter inherent organic reactivities to achieve
observed enzyme function.

The present studies build upon our previous use of compound 1 to model the reactivity of the
protein sulfenyl amide residue found in PTP1B.22 For these studies, it may be important that
the pKa of the corresponding thiol (5) and, thus, the leaving group ability of the sulfur residue
in 1 resembles that of the catalytic cysteine residue in PTP enzymes.22

The “overoxidized” sulfenyl amide model compounds 2 and 3 for use in the present studies
were prepared by oxidation of 1 22 with dimethyldioxirane (Scheme 3).31 We first examined
the reactivity of the sulfinyl amide 2 with thiol. Incubation of 2 (10 mM) with 2-
mercaptoethanol (150 mM) in aqueous sodium phosphate buffer (300 mM, pH 7) for 2 h gave
the thiol derivative 5 in high isolated yield (85%).32 Similar results were obtained when 2 was
mixed with thiol in methylene chloride containing catalytic amounts of triethylamine as a base.
These reactions presumably proceed via the thiosulfinate, sulfenic acid, and disulfide
intermediates shown in Scheme 4.33 Consistent with this idea, HPLC analysis at early times
in the reaction between 2 (50 µM) and 2-mercaptoethanol (500 µM) in sodium phosphate buffer
(50 mM, pH 7, containing 30% acetonitrile by volume) revealed an intermediate whose
retention time and mass match that of the disulfide 4 at m/z 316 for (M+H)+ (Fig. 1). Further,
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when the reaction was conducted using only two equivalents of thiol, HPLC analysis showed
the disulfide to be a major final product alongside unreacted starting material and 5. The thiol,
2-mercaptoethanol, is converted to the corresponding disulfide in this reaction.

The reaction of 2 (50 µM) with excess thiol (1 mM) in sodium phosphate buffer (50 mM, pH
7, containing 50% acetonitrile by volume) occurs with a pseudo-first-order rate constant of 5.5
± 0.2 × 10−3 s−1 (t1/2 ~ 2 min). This corresponds to an apparent second-order rate constant of
5.5 ± 0.2 M−1 s−1 (Fig. 2). These results offer the prediction that “overoxidation” of the sulfenyl
amide redox switch to the sulfinyl amide in proteins is a chemically reversible event, because
the sulfinyl amide can be easily returned to the native cysteine thiol residue via reactions with
thiols (reaction v, Scheme 2).

In the absence of thiol, the sulfinyl amide 2 undergoes a relatively slow reaction with water to
yield the corresponding sulfinic acid derivative 6 in 88% yield (Scheme 5, aqueous sodium
phosphate buffer, 50 mM, pH 7, 12 h, 24 °C).34 Compound 6 was characterized as its methyl
ester derivative 7 following treatment of the reaction mixture with excess methyl iodide.35 The
hydrolysis of 2 (50 µM) in sodium phosphate buffer (50 mM, pH 7, containing 50% acetonitrile
by volume) occurs with a pseudo-first-order rate constant of 4.5 ± 0.2 × 10−4 s−1, corresponding
to a half-life of 26 min (Fig. 3). In contrast, the parent sulfenyl amide 1 is stable under these
conditions (no significant decomposition observed over 24 h). These results forecast that
protein sulfinyl amide residues can undergo chemically irreversible hydrolysis to the sulfinic
acid (reaction vi, Scheme 2); however, rate measurements in the context of this model
compound suggest that if water and physiological concentrations of thiol (1–10 mM) enjoy
equal access to the sulfinyl amide, thiol-mediated recovery of enzyme activity will be
approximately 10–100 times faster than irreversible loss of activity due to hydrolysis. It is
interesting to note that thiosulfinates may be similarly labile to hydrolysis.36,37

Finally, we examined the reactivity of the sulfonyl amide 3.38 HPLC analysis revealed that
this compound is stable in aqueous sodium phosphate buffer (50 mM, pH 7, containing 40%
acetonitrile by volume) either in the presence or absence of the thiol, 2-mercaptoethanol. This
suggests that exhaustive oxidation of the sulfenyl amide to the sulfonyl amide (Scheme 2,
reaction vii) likely represents chemically irreversible destruction of the sulfenyl amide redox
switch.

In conclusion, these studies offer chemical insight regarding possible functional roles of
sulfenyl amide formation in redox-switched proteins. Sulfenyl amide formation has the
potential to protect a single-cysteine redox switch against irreversible overoxidation in much
the same way that disulfide formation protects dithiol redox switches from oxidative
destruction. In both cases, further oxidation to the sulfinyl form yields an intermediate that
readily can be resolved by reactions with biological thiols to regenerate the native cysteine
residues (Scheme 6). Thus, irreversible oxidative destruction of these switches requires
conversion to the sulfonyl derivatives which presumably requires relatively harsh oxidizing
conditions (Scheme 6). In contrast, a sulfenic acid redox switch has no failsafe mechanism.
The sulfenic acid group is prone to further oxidation4–9 and, in this case, conversion to the
sulfinyl oxidation state represents irreversible destruction of the redox switch.
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Figure 1.
Reaction of 2 with 10 equiv 2-mercaptoethanol in aqueous buffer: A) Compound 2 alone in
buffer B) 1 min after addition of thiol C) 25 min after addition of thiol. Compound 2 (2.5 µL
of a 10 mM stock in CH3CN) was added to a mixture containing sodium phosphate buffer (50
µL, 500 mM, pH 7.0), water (275 µL), 2-mercaptoethanol (25 µL of a 10 mM stock in water),
and acetonitrile (147.5 µL) at 25 °C (final concentrations: 2, 50 µM; buffer, 50 mM, pH 7.0;
thiol, 500 µM; acetonitrile, 30% by volume). The disappearance of 2 was monitored at 254
nm. Aliquots (40 µL) from the reaction mixture were injected onto a C-18 Varian Microsorb-
MV column, 100 Å sphere size, 5 µm pore size, 25 cm length, 4.6 mm i.d. eluted with a solvent
system composed of water with 0.5% acetic acid v/v (A) and acetonitrile (B), at a flow rate of
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0.8 mL/min. The column was eluted with 70:30 A/B for 4 min and then ramped to 50:50 A/
B over 4 min, held at 50:50 A/B for 7 min, and then ramped back to 70:30 A/B over the next
3 min. The peak at 10.2 min was identified as the mixed disulfide 4. The identity of 4 was
confirmed by co-injection with an authentic standard22 and by LC/MS analysis which showed
that the compound displays an m/z of 316 corresponding to that expected for the [M+H]+ ion
of 4. The early peaks in the chromatogram correspond to buffer salts, 2-mercaptoethanol, and
the disulfide of 2-mercaptoethanol.
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Figure 2.
A representative plot for the disappearance of 2 in the presence of thiol. Compound 2 (2.5 µL
of a 10 mM stock in CH3CN) was added to a mixture containing sodium phosphate buffer (50
µL, 500 mM, pH 7.0), water (150 µL), 2-mercaptoethanol (50 µL of a 10 mM stock) and
acetonitrile (247.5 µL) at 25 °C. The mixture (final concentrations: 2, 50 µM; buffer, 50 mM,
pH 7.0; thiol, 1 mM; acetonitrile, 50% by volume) was vortex mixed and the disappearance of
2 (a is the peak area at time = t and a0 is the peak area at time = 0) monitored by reverse phase
HPLC at regular time intervals as described in the legend for Figure 1. From the slope of the
plot, a pseudo-first-order rate constant of 5.5 × 10−3 s−1 (t1/2 = 2 min) at 1 mM thiol was
obtained. This corresponds to an apparent second-order rate constant of 5.5 ± 0.2 M−1 s−1.
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Figure 3.
Representative plot for the disappearance of 2 in the absence of thiol. Compound 2 (2.5 µL of
a 10 mM stock in CH3CN) was incubated at 25 °C in a solution composed of sodium phosphate
buffer (50 µL, 500 mM, pH 7.0), water (200 µL) and acetonitrile (247.5 µL). The mixture (final
concentrations: 2, 50 µM; buffer, 50 mM, pH 7.0; acetonitrile, 50% by volume) was vortex
mixed and the disappearance of compound 2 (a is the peak area at time = t and a0 is the peak
area at time = 0) analyzed by reverse phase HPLC as described in the legend of Figure 1. The
pseudo-first-order rate constant of 0.027 ± 0.001 min−1 was obtained from the slope of the plot.
This corresponds to a half-life of 26 min for the hydrolysis of 2 under these conditions.
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Scheme 1.
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Scheme 2.

Sivaramakrishnan et al. Page 11

Bioorg Med Chem Lett. Author manuscript; available in PMC 2011 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 3.

Sivaramakrishnan et al. Page 12

Bioorg Med Chem Lett. Author manuscript; available in PMC 2011 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 4.
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Scheme 5.
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Scheme 6.
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