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Abstract
Introduction—The new view of cognitive neuropsychology that considers not just case studies of
rare severe disorders but also common disorders, as well as normal variation and quantitative traits,
is more amenable to recent advances in molecular genetics, such as genome-wide association studies,
and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding
emerging from multivariate quantitative genetic studies across diverse learning abilities is that most
genetic influences are shared: they are ‘generalist’, rather than ‘specialist’.

Methods—We exploited widespread access to inexpensive and fast Internet connections in the
United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development
Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for
the first time, language.

Results—Genetic correlations remain high among all of the measured abilities, with language as
highly correlated genetically with g as reading and mathematics.

Conclusions—Despite developmental upheaval, generalist genes remain important into early
adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes
of small effect that influence learning abilities and disabilities.
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Learning abilities and disabilities: Generalist genes in early adolescence
In the past, cognitive neuropsychology has tended to focus on case studies or relatively small
samples (Caramazza & Coltheart, 2006), which limited the field's ability to take advantage of
developments in genetics. Where genetic factors were considered, they were generally
characterized as chromosomal or single-gene abnormalities, or innate species-wide processes.
A new, broader view of cognitive neuropsychology is that it represents the cognitive level of
analysis that lies between the brain and behavior and aims to provide a full description and
explanation, not just of normative species-wide processes and dramatic disruptions of these
normal processes, but also of normal variation within species. Although chromosomal
abnormalities and single-gene disorders in humans and genetic engineering studies in non-
human species can be used to investigate genetics at the normative level of analysis, recent
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developments in genetics are most useful for investigating normal variation in human behavior
seen as quantitative traits and as common disorders that represent the extremes of these normal
distributions (Plomin & Davis, in press). For example, in molecular genetics, an advance that
has revolutionized research is genome-wide association studies in which hundreds of thousands
of common variations in DNA sequence are used to screen the genome for the DNA causes of
genetic influence (Wellcome Trust Case Control Consortium, 2007). One consistent finding
emerging from these studies is that complex traits and disorders are likely to be influenced by
very many genetic variants, each of small effect size (McCarthy et al., 2008).

Quantitative genetic methods, such as inbred strain and selection studies in non-human animals
and twin and adoption studies in the human species, emerged from the synthesis between
Mendelian and biometric genetics more than a century ago (Fisher, 1918). After the rediscovery
of Mendel's laws of inheritance in the early 1900s, Mendelians looked for single-gene effects
seen in Mendelian segregation ratios, whereas biometricians argued that Mendel's laws could
not apply to complex traits in plants or animals because these traits are distributed
quantitatively, not qualitatively, and showed no simple pattern of inheritance. The resolution
to this often bitter decade-long debate came with the realization that Mendel's laws of
inheritance of single genes also apply to complex traits if the traits are influenced by several
genes, each of which are inherited according to Mendel's laws. With just a few genes,
phenotypes begin to approach a normal distribution in the population. This notion that multiple-
gene effects lead to quantitative traits is the cornerstone of quantitative genetic theory and
methods (Fisher, 1918; Wright, 1921; Falconer & MacKay, 1996).

Quantitative genetic methods have primarily been used to discover the ubiquitous influence of
genetics on normal variation at all levels of analysis from the brain to cognition to behavior
(Plomin, DeFries, McClearn, & McGuffin, 2008). Importantly, quantitative genetics provides
the ‘bottom line’ of genetic influence on a trait regardless of how many genetic variants affect
the trait or how small and complex their effects might be. Much remains to be learned even
about this rudimentary question of how much genetics affects many cognitive and behavioral
domains. However, the greatest impact of quantitative genetics will come from research that
goes beyond this basic question to investigate how genes have their effect. A major example
is multivariate genetic analysis, which investigates not only the variance of traits considered
one at a time but also the covariance among traits. In this way, it indicates the extent to which
the same or different genes affect several traits, using a statistic known as a genetic
correlation (Neale, Boker, Xie, & Maes, 2006), which can be thought of as the probability that
a gene associated with one trait is also associated with another trait. The genetic correlation
can constrain explanations of cognitive neuropsychology. For example, it is reasonable to
suppose that genetic effects will be specific to the substantially different cognitive processes
involved in reading and mathematics, which would produce a low genetic correlation between
the cognitive processes. A low genetic correlation indicating genetic specificity would lead to
attempts to identify the genetically driven differences in brain processes that underlie these
cognitive differences.

However, a very different result is emerging from multivariate genetic research on learning
abilities and disabilities: Most genetic effects appear to be general in that the same genes affect
different learning abilities and disabilities. A review of multivariate genetic research on
learning abilities found that genetic correlations varied from 0.47 to 0.98 between reading and
mathematics (three studies), from 0.67 to 1.0 between reading and language (five studies), and
from 0.59 to 0.98 between language and mathematics (two studies) (Plomin & Kovas, 2005).
The average genetic correlation was about 0.70, suggesting that a gene associated with reading,
for example, would have a 70% chance of also being associated with mathematics or with
language.
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Moreover, the general effects of genes appear to extend beyond specific learning abilities such
as reading and mathematics to other cognitive abilities such as verbal abilities (e.g., vocabulary
and word fluency) and non-verbal abilities (e.g., spatial and memory). The average genetic
correlation between specific learning abilities and general cognitive ability (g), which
encompasses these verbal and non-verbal cognitive abilities, is about 0.60 (Plomin & Kovas,
2005). These findings have led to a Generalist Genes hypothesis (Plomin & Kovas, 2005),
which has far-reaching implications for cognitive neuropsychology (Kovas & Plomin, 2006).

Although the Generalist Genes hypothesis has consistent support from multivariate genetic
analyses, it was only recently tested by direct test measures in a sample large enough to
conclusively establish the magnitude of the genetic correlations between learning abilities. In
order to be able to test large numbers of individuals efficiently and inexpensively, we developed
an online test battery that includes measures of reading, mathematics and g. One major
advantage of this method of administration is that adaptive branching within each test allows
the use of hundreds of items to test the full range of ability, while requiring individual children
to complete only a relatively small number of items to ascertain their level of performance.
We used this test battery to assess a UK-representative population sample of 2541 pairs of 10-
year-old twins from the Twins Early Development Study (TEDS), by far the largest twin sample
with cognitive test data (Haworth et al., 2007). Multivariate genetic analysis showed substantial
genetic correlations between learning abilities: 0.57 between reading and mathematics, 0.61
between reading and g, and 0.75 between mathematics and g, providing strong support for the
Generalist Genes hypothesis (Davis et al., 2008).

The purpose of the present study was to test the Generalist Genes hypothesis at age 12 in an
even larger sample of twins. The difference between our previous analysis at age 10 and our
present analysis at age 12 is greater than suggested by the interval of two years because 12
years marks the transition to adolescence, which involves brain changes (Ernst & Mueller,
2008; Spear, 2000) in addition to obvious hormonal changes. Underlying these physiological
transformations are altered patterns of gene expression. Although changes in gene expression
profiles do not necessarily entail changes in which DNA variants are associated with learning
abilities, the upheaval may herald a shift in the relative importance of each of the variants, with
some becoming more important while others, previously influential, become relatively
ineffectual. These shifts have the potential to fundamentally affect the genetic architecture of
learning abilities and disabilities at this age.

Moreover, three other improvements increased the scope of the present study to test the
Generalist Genes hypothesis. First, at age 10, we assessed reading with a single test, whereas
the present study at age 12 included a battery of four reading measures. Second, our previous
study at age 10 did not include measures of language, nor has any other genetic research after
infancy and early childhood. For this reason, we developed a language battery suitable for 12-
year-olds that assesses both receptive spoken language and metalinguistic ability through three
tests: syntactic, semantic, and pragmatic language; the language battery presents material orally
to avoid confounding with reading ability, which is assessed through tests of reading
comprehension, fluency and accuracy (Haworth et al., 2007). A final improvement is the use
of a latent factor approach in our model-fitting analyses. In our previous study, we created
composite measures of mathematics and g and conducted an analysis of just three measures –
reading, mathematics and g. In contrast, in the present study we used a latent factor approach
that included information from 14 tests, not just composite measures: four tests of reading,
three tests of mathematics, three tests of language, and four tests of g. This latent factor
approach made it possible to conduct more powerful multivariate genetic analyses at the level
of the latent factors representing reading, mathematics, language and g because the latent
factors are independent of test-specific and uncorrelated error variance associated with each
method of measurement.
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Our hypothesis was that the Generalist Genes hypothesis would be supported despite the major
transformations that occur during the transition from childhood to adolescence. Because we
used a latent factor approach that excludes uncorrelated measurement error, we expected
genetic correlations to be even greater in our present study at age 12 than in our previous study
at age 10. Because language has not previously been included in tests of the Generalist Genes
hypothesis after the language-learning era of early childhood, we had no hypothesis about the
extent to which language conforms to the Generalist Genes hypothesis.

METHODS
Participants

TEDS recruited families of twins born in England and Wales in 1994, 1995 and 1996 (Oliver
& Plomin, 2007). Since then, the sample has remained representative of the UK population
(ascertained by comparison with census data from the Office of National Statistics; (Kovas,
Haworth, Dale, & Plomin, 2007). Although twins have the option of participating or not during
each phase of data collection, the pairs that do participate remain representative of the larger
sample. Informed consent is obtained by post or online consent forms, and a test administrator
is then assigned who telephones the family and generally assists and encourages. Ethical
approval for TEDS has been provided by the Institute of Psychiatry ethics committee, reference
number 05/Q0706/228.

We excluded from the analyses children with severe current medical problems and children
who had suffered severe problems at birth or whose mothers had suffered severe problems
during pregnancy. We also excluded twins whose zygosity was unknown or uncertain or whose
first language was other than English. Finally, we included only twins whose parents reported
their ethnicity as ‘white’, which is 93% of this UK sample. The present analyses are based on
5434 twin pairs (1945 monozygotic pairs, 1760 same-sex dizygotic and 1729 opposite-sex
dizygotic).

Measures
At age 12, the twins participated in web-based testing. Widespread access to inexpensive and
fast internet connections in the UK has made online testing an attractive possibility for
collecting data on the substantial samples necessary for genetic research, especially for
multivariate genetic research. The advantages and potential pitfalls of data collection over the
internet have been reviewed in detail elsewhere (Birnbaum, 2004). For older children, most of
whom are competent computer users, it is an interactive and enjoyable medium. As described
above, adaptive branching allows the use of hundreds of items to test the full range of ability,
while requiring individual children to complete only a relatively small number of items. In
tests where it is appropriate, streaming voiceovers can minimize the necessary reading. In
addition, the tests can be completed over a period of several weeks, allowing children to pace
the activities themselves, although they are not allowed to return to items previously
administered. Finally, it is possible to intersperse the activities with games. All of these factors
help to maintain children's engagement with the tests. More details about the measures and
their psychometric properties are available in Haworth et al. (2007).

General cognitive ability (g)—The twins were tested on two verbal tests, WISC-III-PI
Multiple Choice Information (General Knowledge) and Vocabulary Multiple Choice subtests
(Wechsler, 1992), and two non-verbal reasoning tests, the WISC-III-UK Picture Completion
(Wechsler, 1992) and Raven's Standard and Advanced Progressive Matrices (Raven, Court, &
Raven, 1996; Raven, Court, & Raven, 1998), all administered online.
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Reading—Four measures of reading ability were used: two measures of reading
comprehension and a measure of reading fluency presented on the Web, and a fourth measure
administered over the telephone.

Reading comprehension: The twins completed an adaptation of the reading comprehension
subtest of the Peabody Individual Achievement Test (Markwardt, 1997), which we will refer
to as PIATrc. The PIATrc assesses literal comprehension of sentences. The sentences were
presented individually on the computer screen. Children were required to read each sentence
and were then shown four pictures. They had to select the picture that best matched the sentence
they had read, using the mouse. All children started with the same items, but an adaptive
algorithm modified item order and test discontinuation depending on the performance of the
participant. The internet-based adaptation of the PIATrc contained the same practice items, test
items and instructions as the original published test.

As well as the PIATrc, we assessed reading comprehension using the GOAL Formative
Assessment in Literacy for Key Stage 3 (GOAL plc., 2002). The GOAL is a test of reading
achievement that is linked to the literacy goals for children at Key Stage 3 of the National
Curriculum. Questions are grouped into three categories: Assessing Knowledge and
Understanding (e.g. identifying information, use of punctuation and syntax), Comprehension
(e.g. grasping meaning, predicting consequences), and Evaluation and Analysis (e.g.
comparing and discriminating between ideas). Within each category, questions about words,
sentences, and short paragraphs are asked. Because we were primarily interested in
comprehension skills, we used questions from the two relevant categories, Comprehension,
and Evaluation and Analysis, with 20 items from each category. Correct answers were summed
to give a total comprehension score.

Reading fluency: Reading fluency was assessed using an adaptation of the Woodcock-Johnson
III Reading Fluency Test (Woodcock, McGrew, & Mather, 2001) and the Test of Word Reading
Efficiency (TOWRE, Form B; (Torgesen, Wagner, & Rashotte, 1999). The Woodcock-
Johnson is a measure of reading speed and rate that requires the ability to read and comprehend
simple sentences quickly e.g. “A flower grows in the sky? - Yes/No”. The online adaptation
consists of 98 yes/no statements; children need to indicate yes or no for each statement as
quickly as possible. There is a time limit of 3 minutes for this test. Correct answers were
summed to give a total fluency score.

The TOWRE, a standardized measure of fluency and accuracy in word reading skills, includes
two subtests, each printed on a single sheet: A list of 85 words, called Sight-word Efficiency
(SWE), which assesses the ability to read aloud real words; and a list of 54 non-words, called
Phonemic Decoding Efficiency (PDE), which assesses the ability to read aloud pronounceable
printed nonwords. The child is given 45 seconds to read as many words as possible. Twins
were individually assessed by telephone using test stimuli that had been mailed to families in
a sealed package with separate instructions that the package should not be opened until the
time of testing. The same tester, who was blind to zygosity, assessed both twins in a pair within
the same test session.

Mathematics—In order to assess mathematics, we developed an internet-based battery that
included questions from three components of mathematics. The items were based on the
National Foundation for Educational Research 5-14 Mathematics Series, which is linked
closely to curriculum requirements in the UK and the English Numeracy Strategy (NferNelson
Publishing Co. Ltd., 1999). The presentation of items was streamed, so that items from different
categories were mixed, but the data recording and branching were done within each category.
The items were drawn from the following three categories: Understanding Number, Non-
Numerical Processes and Computation and Knowledge. Understanding Number requires an
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understanding of the numerical and algebraic process to be applied when solving problems
(e.g., understanding that multiplication and division are inverse operations). For example,
“Look at the number 6085. Change the order of the figures around to make the biggest number
possible”. Another example is, “Type the missing number in the box: 27 + 27 + 27 + 27 + 27
+ 27 = 27 × ___”. Non-Numerical Processes do not rely solely on memory but rather require
understanding of non-numerical mathematical processes and concepts, such as rotational or
reflective symmetry and other spatial operations. The questions do not have any significant
numerical content that pupils need to consider. Three examples follow: “Which is the longest
drinking straw? Click on it.” “One of these shapes has corners that are the same. Click on this
shape”. “Which card appears the same when turned upside down? Click on it”. Computation
and Knowledge assesses the ability to perform straightforward computations using well-
rehearsed pencil-and-paper techniques and the ability to recall mathematical facts and
terminology. These questions either are mechanistic or rely on memorization of mathematical
facts and terminology. The operation is stated or is relatively unambiguous. Three examples
follow: “Type in the answer: 76 - 39”. “All 4-sided shapes are called? Click on the answer
(Squares, Rectangles, Parallelograms, Kites, Quadrilaterals)”. “Type in the answer: 149 + 785
= ?”. The mathematics battery is described in detail elsewhere (Kovas, Petrill, & Plomin,
2007).

Language—In order to assess receptive spoken language, standardized tests were selected
that would discriminate children with language disability as well as being sensitive to
individual differences across the full range of ability. Furthermore, an aspect of language that
becomes increasingly important in adolescence – and which shows interesting variability at
this age – is metalinguistic ability, which is knowledge about language itself (Nippold,
1998). For this reason, the three measures selected for testing included one with low
metalinguistic demands designed to assess syntax (Listening Grammar) and two with higher
demands that assess semantics (Figurative Language) and pragmatics (Making Inferences).

Syntax: Syntax was assessed using the Listening Grammar subtest of the Test of Adolescent
and Adult Language (TOAL-3) (Hammill, Brown, Larsen, & Wiederholt, 1994). This test
requires the child to select two sentences that have nearly the same meaning, out of three
options. The sentences are presented orally only.

Semantics: Semantics were assessed using Level 2 of the Figurative Language subtest of Test
of Language Competence (Wiig, Secord, & Sabers, 1989), which assesses the interpretation
of idioms and metaphors; correct understanding of such non-literal language requires rich
semantic representations. The child hears a sentence orally and chooses one of four answers,
presented in both written and oral form.

Pragmatics: Level 2 of the Making Inferences subtest of the Test of Language Competence
(Wiig et al., 1989) assessed an aspect of pragmatic language, requiring participants to make
permissible inferences on the basis of existing (but incomplete) causal relationships presented
in short paragraphs. The child hears the paragraphs orally and chooses two of four responses,
presented in both written and oral form.

Statistical analyses
According to the quantitative genetic model (Plomin et al., 2008), twins reared together
resemble each other due to the additive effects of shared genes (A) or shared (common)
environmental factors (C). For identical or monozygotic (MZ) twins, the correlation between
their genes is 1.00, whereas for non-identical or dizygotic (DZ) twins, the correlation is .50
because DZ twins on average share half of their segregating alleles. The correlation between
twins for shared environment is, by definition, 1.00 for both MZ and DZ twins growing up in
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the same family, while non-shared environmental influences (E) are uncorrelated and
contribute to differences between twins. For the twin analyses, standardized residuals
correcting for age and sex were used because the age of twins is perfectly correlated across
pairs, which means that, unless corrected, variation within each age group at the time of testing
would contribute to the correlation between twins and be misrepresented as shared
environmental influence. The same applies to the sex of the twins, since MZ twins are always
of the same sex. The assumptions of the classical twin model, and their validity, have been
discussed in detail elsewhere (Boomsma, Busjahn, & Peltonen, 2002; Visscher, Hill, & Wray,
2008).

As well as examining twin correlations in R (http://www.r-project.org), we used standard
ACE model-fitting analysis in Mx (Neale et al., 2006) where ACE stands for additive genetic
influences (A), shared or common environmental influences (C), and non-shared
environmental (E) influences, as above. Model-fitting analysis specifies a correlational
structure (a model) using matrix algebra. This model is a hypothesis about the structure of the
dataset, and is derived from what we know about how MZ and DZ twins are related to each
other (see above). By fitting the model to the data using an iteration process, we can assess its
‘goodness of fit’ and estimate the contributions of A, C and E.

To explore shared genetic and environmental etiology, we fitted a common pathway model to
raw data (Figure 1; Neale et al., 2006). This model derives latent factors for each domain using
maximum-likelihood factor analysis. It fixes the variance of these latent factors at 1 and
partitions them into A, C and E components. It also partitions the covariance between the latent
factors in the same way. Similarly, residual variance at each age is partitioned into A, C and
E components. Earlier studies indicated very little difference in ACE estimates between males
and females (Kovas, Haworth, Dale, & Plomin, 2007), implying no significant differences in
etiology, so we combined DZ same-sex and DZ opposite-sex twin pairs for the individual
differences analysis. Even though the genetic and environmental etiology of the sexes is
similar, this does not preclude differences in mean performance for males and females.

RESULTS
Phenotypic analyses

Table 1 presents the measure means and standard deviations, subdivided by sex and zygosity.
It also presents the results of an analysis of variance testing the effects of sex and zygosity on
the measures. Although our large sample gives us around 90% power to detect a difference in
means as small as 0.1 standard deviations, in each measure age and sex accounted for less than
3% of the variance, and more often less than 1% (indexed by the coefficient of determination,
R2). Factor loadings of the individual measures onto the latent factors (the bottom of Figure 2)
are consistently high ranging from 0.44 to 0.87 with a mean of 0.67. They are also generally
similar, indicating that each constituent measure contributes similarly to the factor.

Univariate genetic analyses
Intraclass correlations (twin similarity coefficients) are presented in Table 2 for the MZ and
DZ twins at each age. Correlations between MZ twins were consistently higher than those
between DZ twins, suggesting a genetic contribution to each measure. The significance of
genetic influence is indicated by the lack of overlap between the confidence intervals for MZ
and DZ twins. As a first estimate of the effect size (heritability), doubling the difference
between the MZ and DZ correlations yields heritability estimates ranging from 22% to 74%
with a mean of 39%. Shared environmental influences are estimated as the extent to which MZ
resemblance exceeds heritability: they range from 1% to 26%, with a mean of 14%. The
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remainder of the variance is attributed to non-shared environmental influences (plus error of
measurement): ranging from 28% to 60%, with a mean of 47%.

Common pathway model
Figures 2, 3 and 4 depict results for the common pathway model used to investigate the shared
etiology. As explained above, this model partitions variance into latent factors representing
g, reading, mathematics and language, and residual variance specific to each measure. The
variance is then further partitioned into additive genetic (A), shared (common) environmental
(C) and non-shared environmental (E) influences. Confidence intervals for the estimates in
Figures 2, 3 and 4 are presented in Table 3.

Heritability of the latent factors (a2) is consistently high, accounting for more than half of the
variance: 57% for g, 70% for reading, 61% for mathematics and 52% for language. The
remainder of the variance in the latent factors is accounted for by environmental influences,
split between the shared (common) environment (c2) – 28%, 17%, 18% and 35% – and the
non-shared (unique) environment (e2): 14%, 13%, 21% and 13%.

Specific variance components (i.e., the variance not accounted for by the latent factors) are
shown alongside the latent factor variance components in Table 3. The specific heritability is
consistently low, ranging from nearly 0 to 0.03, with a mean of 0.013, indicating that all the
genetic variance on these measures is subsumed in the latent factors. Specific shared
environment is also low (0 to 0.02, with a mean of 0.0064). In contrast, specific non-shared
environment ranges from 0.21 to 0.54, with a mean of 0.39. As well as measure-specific non-
shared environmental effects, this component partly represents measure-specific measurement
error that is not subsumed into the latent factor for each domain.

Genetic correlations between latent factors are uniformly high, ranging from 0.75 to 0.91, with
a mean of 0.85 (Figure 2). The shared environmental correlations are even higher, ranging from
0.97 to 1.00, with a mean of 0.98 (Figure 3). Finally, non-shared environmental correlations
are moderate, ranging from 0.50 to 0.94, with a mean of 0.62. Interestingly, the non-shared
environmental correlation between g and language is substantially higher than the other non-
shared environmental correlations: 0.94, compared to a mean of 0.55 (Figure 4).

The genetic and environmental correlations are summarized in Table 4, alongside the bivariate
heritability and environmentality of the latent factors. Whereas the genetic correlation indexes
the genetic overlap between the latent factors independent of the heritabilities of the latent
factors, the bivariate heritability indexes the proportion of the phenotypic correlation between
the latent factors that is mediated by genetic effects. Genetic effects consistently account for
over half of the phenotypic correlation, ranging from 53% to 65%, with a mean of 61%. Shared
environment accounts for just over a quarter of the phenotypic correlation, ranging from 23%
to 34%, with a mean of 28%. Although the shared environmental correlation is even higher
than the genetic correlation, the mediation of the phenotypic correlation is lower because the
shared environment accounts for a smaller proportion of the variance of each of the latent
factors. Finally, the non-shared environment accounts for the remainder of the phenotypic
correlation, contributing from 8% to 14%, with a mean of 11%.

DISCUSSION
Generalist Genes

The high heritability of our latent factors confirms that genetic effects continue to be important
in the etiology of cognitive abilities and disabilities into early adolescence. However, going
beyond this, the high genetic correlations between the latent factors representing g, reading,
mathematics and language confirm that the genetic influences on these domains continue to
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be largely shared, in spite of accompanying hormonal and brain changes, with genes accounting
for most of the phenotypic correlation between these domains. This implies that when genes
influencing reading are found, for example, they are very likely to also be associated with
mathematics, general cognitive ability and language. These correlations are consistent with
various possible causal pathways (Kovas & Plomin, 2006); so far we do not have the evidence
to distinguish between them, but future research combining genetics with neuropsychiatry will
bring us closer to uncovering the mechanisms through which these genes have their generalist
influence. Finding strong genetic correlations suggests that in our search for genes influencing
learning abilities, we should not be looking for genetic variants influencing a specific trait
independent of other traits, because there will be relatively few such genes. Instead, we should
be seeking the generalist genes and exploring how they interact developmentally with the
environment through changes in gene expression and methylation to influence diverse brain
and cognitive outcomes. Despite this, a mean genetic correlation of 0.85 is not the same as a
correlation of 1.00; although the vast majority of genes are generalist, there are likely to be a
few that remain specific to one domain or another. Finding these genes will be an even greater
challenge than identifying the generalist genes, because they account for a smaller proportion
of the genetic variance.

Although the current paper considers the entire distribution of variation including the low end
of the distribution in g, reading, mathematics and language, our previous research has shown
that genetic factors influencing variation in the normal range also influence the extremes
(Kovas, Haworth, Dale & Plomin, 2007), so in addition to genes being generalist between
domains, they also make little distinction between ability and disability; in terms of cognition,
the abnormal is normal.

Shared Environment
Although the shared environment accounted for a relatively small proportion of the variance
in each of our domains, and mediated only around a quarter of the phenotypic correlation, the
very high shared environmental correlations (higher even than the genetic correlations) imply
that the shared environmental influences on each of the traits are almost entirely the same.
Although there has been some success, identifying the specific shared environments that
influence cognition is difficult, in part because what appears to be an environmental effect is
often partly genetically mediated, through the process of gene-environment correlation (Plomin
& Davis, 2006; Jaffee & Price, 2007). This correlation can be passive, where an individual
inherits both genes and the childhood family environment from a parent; active, where an
individual seeks out particular environments influenced by their genetic propensities; or
evocative, where genetically influenced behavior leads an individual to evoke certain reactions
from others in the environment. For this reason, if we are to identify the specific environments
that contribute to the development of cognition, it is best to couch the study within a genetically
sensitive design. It is likely that when we identify the shared environments – those that make
children growing up in the same family more similar – they will be substantially the same for
g, reading, mathematics and language.

Non-shared Environment
The non-shared environment has relatively little influence on our latent factors because
uncorrelated environments and measurement error are not included in the factor. This variance
appears as measurement-specific variance instead, in contrast to the genetic and shared
environmental influences where almost all of the variance is subsumed into the latent factor.
Similarly, although the non-shared environment is still substantially correlated across traits, it
is less correlated than genetic and shared environmental factors, implying that it is largely non-
shared environments that bring about unevenness in cognitive ability profiles. However, there
is one exception: the non-shared environmental correlation between g and language is much
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higher than the correlations among the other abilities. Because this is the first study to explore
the etiology of language in relation to other cognitive abilities at this age, this is an exciting
finding; it will be interesting to see whether this pattern continues as the TEDS twins progress
through adolescence. If so, it could have important implications for our understanding of the
development of human cognition and how it relates to the development of language, both
throughout childhood and throughout the course of evolution.

Conclusion
By testing g, reading, mathematics and language in a large sample of 12-year-old twins, we
have demonstrated that the Generalist Genes hypothesis continues to hold true into early
adolescence. This has implications affecting the hunt for the many genes of small effect that
are expected to influence human cognitive abilities, and also our conception of the pathway
from genes to brain to behavior. By understanding that the same genes act similarly on quite
different domains, we can begin to explore the mechanisms by which this genetic variation
influences the biochemical pathways and neurological networks involved in the day-to-day
life of the brain. In addition, we have made an unexpected finding – the non-shared
environment, which so often differentiates performance in different domains, appears to act
similarly on general cognitive ability and language performance in early adolescence: a clear
reminder that both genes and dynamic environments are important influences in the
development of human cognition.
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Figure 1. Common pathway model
A = Additive genetic effects; C = Shared (common) environmental effects; E = non-shared
environmental effects. Squares represent measured traits; circles represent latent factors. The
lower tier of arrows represents factor loadings; the second tier represents genetic and
environmental path coefficients; the curved arrows at the top represent correlations between
genetic and environmental latent factors.

Davis et al. Page 12

Cogn Neuropsychiatry. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Cross-trait genetic effects
Estimates of cross-trait additive genetic effects (A) are highlighted.
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Figure 3. Cross-trait shared environmental effects
Estimates of cross-trait shared environmental effects (C) are highlighted.
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Figure 4. Cross-trait non-shared environmental effects
Estimates of cross-trait non-shared environmental effects (E) are highlighted.
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Table 4

Cross-trait correlations and bivariate estimates from common pathway model

Measures Correlations

rA rC rE rP

g and reading 0.88 (0.84-0.88) 0.98 (0.88-0.99) 0.58 (0.48-0.68) 0.85 (0.83-0.86)

g and mathematics 0.86 (0.81-0.90) 0.97 (0.87-1.00) 0.54 (0.45-0.60) 0.82 (0.80-0.83)

g and language 0.91 (0.87-0.94) 1.00 (0.95-1.00) 0.94 (0.80-1.00) 0.94 (0.93-0.95)

Reading and mathematics 0.75 (0.71-0.75) 1.00 (0.90-1.00) 0.59 (0.52-0.67) 0.76 (0.75-0.78)

Reading and language 0.91 (0.86-0.96) 0.98 (0.88-1.00) 0.55 (0.43-0.55) 0.86 (0.84-0.87)

Mathematics and language 0.78 (0.73-0.78) 0.97 (0.87-1.00) 0.50 (0.41-0.55) 0.77 (0.75-0.78)

Mediation of rP

axayrA/rP cxcyrC/rP exeyrE/rP

g and reading 0.65 (0.58-0.72) 0.25 (0.19-0.31) 0.09 (0.07-0.09)

g and mathematics 0.62 (0.54-0.67) 0.27 (0.20-0.32) 0.11 (0.09-0.14)

g and language 0.53 (0.45-0.60) 0.34 (0.26-0.39) 0.14 (0.11-0.16)

Reading andmathematics 0.64 (0.56-0.70) 0.23 (0.16-0.29) 0.13 (0.11-0.15)

Reading and language 0.64 (0.57-0.66) 0.28 (0.21-0.34) 0.08 (0.06-0.83)

Mathematics and language 0.57 (0.50-0.65) 0.32 (0.25-0.37) 0.11 (0.09-0.13)

rA = genetic correlation; rC = shared environmental correlation; rE = non-shared environmental correlation; rP = phenotypic correlation; axayrA/
rP = proportion of phenotypic correlation accounted for by genetic factors; cxcyrC/rP = proportion accounted for by shared environmental factors;
exeyrE/rP = proportion accounted for by non-shared environmental factors; 95% confidence intervals in parentheses.
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