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Abstract: Typical packages used for coregistration in functional image analyses include automated image
registration (AIR) and statistical parametric mapping (SPM). However, both methods have limited-
dimension deformation models. A fully deformable model, which combines the piecewise linear regis-
tration for coarse alignment with demons algorithm for voxel-level refinement, allows a higher degree of
spatial deformation. This leads to a more accurate colocalization of the functional signal from different
subjects and therefore can produce a more reliable group average signal. We quantitatively compared the
performance of the three different registration approaches through a series of experiments and we found
that the fully deformable model consistently produces a more accurate structural segmentation and a
more reliable functional signal colocalization than does AIR or SPM. Hum Brain Mapp 27:747–754, 2006.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Accurate region identification is critical for intersubject
comparisons of functional brain images, particularly for

comparisons across groups. Traditional manual region seg-
mentation is not only labor intensive and time consuming,
(to the point of infeasibility with a large dataset and multiple
regions), but also introduces human subjectivity and often
requires extensive training [Kikinis et al., 1996]. Atlas-based
segmentation [Collins et al., 1995; Toga, 1999] overcomes
these drawbacks by labeling the anatomical structures for
individual brain images, in which the standard labeled atlas
brain image is warped to the individual brain image. The
anatomical information in the atlas is then carried into the
subject space by warping the atlas with the obtained spatial
transformation. In this case, the segmentation task is viewed
as a registration procedure and the key problem becomes
finding the optimal spatial transformation between the tem-
plate brain image and the individual brain image. Typical
packages used for coregistration of neuroimages in func-
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tional image analyses are automated image registration
[AIR; Woods et al., 1998] and statistical parametric mapping
[SPM; Friston et al., 1995]. However, both methods have
limited-dimension deformation models: AIR uses a polyno-
mial transformation model with limited coefficients,
whereas SPM uses the linear combination of smooth basis
functions.

A fully deformable registration technique [Yoo, 2004],
which combines the piecewise linear registration for coarse
alignment with the demons algorithm [Thirion, 1998] for
finer tuning, allows a higher degree of deformation and
enables a more accurate spatial deformation field. Recent
work from our group has suggested that a similar fully
deformable method [Chen, 1999] is more accurate than are
affine linear methods at hippocampus segmentation in Alz-
heimer’s disease patients [Carmichael et al., 2005].

In Hellier [2003], several image registration techniques
including the demons algorithm, ANIMAL [Collins and
Evans 1997], and the optical flow method with a multireso-
lution and multigrid minimization scheme [Hellier et al.,
2001], were evaluated based on their performances at inter-
subject registration. Unlike the current study, the compari-
son in Hellier [2003] was restricted to an analysis of ana-
tomic registration and did not address functional imaging
data. Previous studies have also looked at the impact of
registration on functional imaging data including magne-
toencephalography (MEG) data using rigid transformation,
piecewise affine transformation, and SPM [Hellier et al.,
2002]. A qualitative comparison of registration methods on
functional magnetic resonance imaging (fMRI) has also been
carried out [Gee et al., 1997], suggesting improvements with
a more highly parameterized registration. In the current
study, we quantitatively compare the performance of AIR,
SPM, and the fully deformable model not only in anatomic
space, by comparing the accuracy of the automatic seg-
mented region against the ground-truth region (i.e., hand-
drawn region) and the sharpness of the average brain image,
but we also extend the comparison into functional space by
comparing the effect-size of the colocalized blood oxygen-
ation level-dependent (BOLD) fMRI signal. The deformable
registration used here is publicly available (http://www.itk.
org), as are AIR and SPM. The Insight Segmentation and
Registration Toolkit (ITK) is a collection of C�� registration
and segmentation routines developed by the NIH for the
medical imaging community; it is freely available and fully
supported.

SUBJECTS AND METHODS

Subjects

Ten subjects (7 men; mean age 24.4 years; age range 20–32
years; all right-handed) participated.

Imaging Methods

Scanning was done on a 1.5T Signa scanner (GE Medical
Systems, Milwaukee, WI) with 3-D Spoiled Grass (SPGR)

(repetition time/echo time [TR/TE] � 5/25 ms, flip angle
� 40 degrees, field of view [FOV] � 24 � 18 cm, slice
thickness � 1.5 mm, matrix size � 256 � 192). Functional
scanning was carried out using a one-shot spiral sequence
(TR/TE � 35/2,000 ms, flip angle � 70 degrees, FOV � 24
cm, slice thickness � 3.8 mm, matrix size � 64 � 64 � 26).
Subjects carried out eight blocks of a learning task, in which
the stimuli appeared in one of four boxes across the screen
and the subjects were asked to respond as fast and accu-
rately as possible to the location of the stimuli with a key
press (using the index and middle fingers of the both
hands). An error for this task is defined as any trial in
which the subject pressed the incorrect key while re-
sponding to the location of a stimulus. The stimuli ap-
peared once every 2 seconds for 40 seconds, followed by
20 seconds of fixation.

Manual Segmentation of Brain Regions

The standard Montreal Neurological Institute (MNI) brain
colin27 [Holmes et al., 1998], which carries high anatomical
details and has a high spatial resolution (1 mm3 voxel size),
was used as the template. Two raters manually segmented
the right hippocampus and the right anterior cingulate cor-
tex (ACC) on the template colin27, which was used as the
atlas in atlas-based automatic segmentation [Lopez-Garcia et
al., 2003]. The same two raters also manually classified the
right hippocampus and right ACC on each subject, which
were used as the ground-truth region mask. The hippocam-
pus was manually traced in the sagittal view. The first
medial slice was the one that first showed the cerebral
peduncle separated from the upper pons and the most lat-
eral slice was the last showing gray matter from the hip-
pocampus. The posterior limit was set as the slice where an
ovoid mass of gray matter started to appear inferiomedially
to the trigone of the lateral ventricle. The alveus served as
the anterior and superior limit of the head of the hippocam-
pus. ACC tracings were made in serial coronal slices. The
sagittal and axial views were used as a reference to outline
the ACC. The posterior limit of the ACC was defined by a
vertical line perpendicular to the anterior commissure–pos-
terior commissure (AC–PC) plane and passing through the
AC. The cingulate and callosal sulci constituted the outer
and inner boundary, respectively. When a sulcus running
parallel and superior to the cingulate sulcus was present, the
paracingulate gyrus was included in the tracing.

Inter-rater reliability for the manual tracings of each one
of the two regions of interest (ROIs) was calculated using
intraclass correlation coefficient (ICC). The ICCs for the
three manually traced ROIs were 0.89 (right hippocampus)
and 0.97 (right ACC). To obtain intra-rater reliability a sub-
set of five MR images was retraced by the same rater after
3–4 weeks (mean 22.2 � 3.4 days). The ICCs for intra-rater
reliability were 0.99 (right hippocampus) and 0.93 (right
ACC).
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Registration Methods

This study evaluates the image registration accuracies of
three methods: AIR, SPM, and the fully deformable model.
The registration methods were used to coregister the 3D
SPGR image of each subject and the template colin27. Before
the registration the skull was stripped from both colin27 and
the subject’s 3D SPGR using the Brain Extraction Tool [BET;
Smith 2002]. We chose the AIR registration method, which
seemed to produce the best registration accuracy [Lopez-
Garcia et al., under review; Rosano et al., 2005]. In this
method we used AIR to first perform a 12-parameter affine
linear registration, followed by a second-order 30-parameter
nonlinear polynomial model. For SPM, we used the stan-
dard SPM registration method, which begins with an affine
linear registration similar to AIR and then proceeds with a
nonlinear registration using a spatial transformation model
consisting of a linear combination of low-spatial frequency
discrete cosine transform functions. The fully deformable
method we used has many degrees of freedom (number of
voxels � 3 � 107). This compares to 1,176 degrees of free-
dom for the SPM registration and 30 degrees of freedom for
the registration using AIR. Both methods have lower de-
grees of freedom and use a limited number of parameters to
describe the spatial deformation field; hence, they only allow
a certain degree of spatial transformation, which may lead to
inaccurate alignment between the individual brain image
and the template due to local anatomic variability or patho-
logic brain changes.

The fully deformable model in this study is similar to that
used by Chen [1999]. This was implemented using the reg-
istration library in ITK. This method starts with a grid-based
piecewise linear registration, and then uses demons regis-
tration algorithm as a fine-tuning procedure for a voxel-level
spatial deformation. In the demons algorithm, a Guassian
smoothing filter is used to smooth the deformation field
after each iteration, which is equivalent to an elastic con-
straint on the deformation. The choice of the standard devi-
ation � of the Gaussian smoothing kernel is a very important
issue, and it has been investigated in previous studies
[Cuadra, 2003] that suggested that a typical standard devi-
ation for two healthy brain images to provide a good regis-
tration is about 0.5–1 mm. In our model, � � 1 mm is used.
The fully deformable registration, which has many degrees
of freedom, allows more spatial deformation, which seems
to give it a particular advantage over the other two packages
when the brains are much different from the atlas, such as
aging brains.

Evaluation Experiments

In this section, we describe the three experiments that
were carried out to evaluate the relative accuracies of AIR,
SPM, and the fully deformable model. These experiments
test the accuracies of registration using: (1) atlas-based seg-
mentation of the hippocampus and anterior cingulate cortex;
(2) the smoothness of a mean image generated using the

three registration approaches; and (3) the effect-size of the
BOLD fMRI signal colocalized across subjects with these
registrations.

Experiment 1 (atlas-based segmentation)

In this experiment, the automatic segmented regions are
compared, using the overlap ratio, to the manually labeled
ground-truth region masks for all 10 subjects. The right
hippocampus and right ACC of each subject were estimated
through atlas-based segmentation (template3subject regis-
tration) with AIR, SPM, and the fully deformable model,
respectively. The overlap ratio quantifies how well the au-
tomatically segmented anatomical structures overlap with
the hand-drawn ground-truth masks. The overlap ratio is
defined as the ratio of overlapping voxels to total voxels, as
given below (also shown in Fig. 1):

overlap ratio

�
vol (B�B̂)

vol[(B � (B�B̂))�(B�B̂)�(B̂ � (B�B̂))]
(1)

where B is the ground-truth mask, and B̂ is the automatically
segmented set.

Experiment 2 (smoothness of mean image)

In Experiment 2, the 10 individual brain images were
warped into the template colin27 using each registration
approach, and then a mean brain image was created from
the resulting warped images. Misalignment or error from
the registration leads to a blurred mean brain image. Differ-
ences due to variability in individual anatomy also impact

Figure 1.
Illustration of the overlap ratio of automatic segmented region and
the hand-drawn ground-truth masks. It is defined as the ratio of
overlapping voxels to total voxels.
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registration accuracy. The brain images of the 10 subjects are
presented in Figure 2 to show the variability of individual
brain anatomy. Visual inspection and quantitative measure-
ment of the spatial correlation (smoothness) of the mean
brain image were used to evaluate the registration perfor-
mance across subjects.

The program 3dFWHM in AFNI [Cox, 1996], based on
algorithms described by Xiong et al. [1995], provides a way
to estimate smoothness of the mean brain images, in which
the spatial correlation between voxels along each axis is
characterized by full width half maximum (FWHM)x,
FWHMy, and FWHMz. By definition, the reported filter
width is the estimation of the FWHM of the Gaussian kernel
needed to produce the current smoothness; wider FWHM
means more smoothness and indicates more inter-subject
misalignment during the registrations. The filter widths re-
sulting from 3dFWHM therefore can be used as quantitative
smoothness measurements. The 3dFWHM algorithm as-
sumes an isotropic image of random variables, by definition
spatially uncorrelated. However, a brain image has spatial
correlation. The smoothness estimation of the mean brain
images from 3dFWHM therefore includes the inherent spa-
tial correlation of the anatomical images. The smoothness of
the anatomical template colin27 was estimated using 3dF-
WHM and used as the inherent smoothness. The smooth-

ness of the average brain images, generated using AIR, SPM,
and the fully deformable model were measured with 3dF-
WHM and compared to the inherent anatomical smoothness
(from colin27).

Experiment 3 (fMRI effect-size)

The registration accuracies from these three approaches
were also evaluated by comparing the functional MRI sig-
nals acquired on the auto-segmented dorsal anterior cingu-
late region (dACC). A consistent finding in fMRI studies of
cognitive control is that the dACC shows significant activity
when subjects make an error or have response conflict dur-
ing performance of a task [e.g., Carter et al., 1998]. We used
a recent fMRI study that we conducted on error and conflict
processing [Clark et al., 2002] to examine how the different
registration methods differ in their abilities to colocalize
across subjects the functional MR signal. In this event-re-
lated fMRI study of implicit learning, subjects were asked to
press a button as rapidly and accurately as possible based on
the position of a stimulus on the screen. Due to the time
pressure of the task subjects make on average 20% errors. As
expected, we found significant fMRI activation in the dACC
on error versus correct trials [Clark et al., under revision]. In
the current study, we compare the fidelity of dACC error

Figure 2.
Ten subject brain images used in
the three experiments. Varia-
tions in anatomical structures for
these subjects can be observed.
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signal when the dACC was identified using the three differ-
ent methods: AIR, SPM, and the fully deformable registra-
tion. The subjects who participated in the fMRI protocol
were 8 of 10 subjects whose structural images were com-
pared in experiments 1 and 2.

The ROI (the dACC taken as the ROI described in Carter
et al. [2000]) was automatically segmented using atlas-based
segmentation technique (template3subject) with AIR, SPM,
and the fully deformable model, for each subject. The signals
then were extracted on the segmented dACC after the func-
tional images were aligned to the anatomical images. The
fMRI signals were averaged across the ROI to produce an
average activation signal across dACC for each trial. Voxel
outliers were corrected using the criteria of one standard
deviation and the signal was normalized by the first time
point at each trial for each voxel. For each subject, the
average correct activation time series was generated by av-
eraging the activation time series across the correct trials and
the average error activation time series was generated from
the error trials, i.e., when the subject inadvertently pressed
the incorrect key. The peak activation differences from cor-
rect trials versus error trials from all the subjects were sta-
tistically examined using a paired two-tailed t-test.

Figure 3.
Mean overlap ratios of right anterior cingulate cortex (R ACC)
and right hippocampus (R Hi) across the 10 subjects were gener-
ated from atlas-based segmentation with AIR, SPM, and the fully
deformable model (Deform). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Figure 4.
Mean brain images from the 10
warped subject images (subject3
template) using AIR, SPM, and the
fully deformable model. The tem-
plate colin27 is also displayed for
comparison.
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RESULTS

The results for the three experiments are described in
the following sections. As predicted, the fully deformable
registration produced better results in all the three exper-
iments.

Experiment 1 (Atlas-Based Segmentation)

The mean overlap ratios across all the subjects for the right
hippocampus and the ACC are shown in Figure 3. For both
regions, the fully deformable model gives a higher mean
overlap ratio than AIR or SPM do, 7.3% higher for right ACC
and 15.6% higher for right hippocampus. A paired two-
tailed t-test of the overlap ratios of the deformable model
versus SPM was highly significant at t(9) � �5.182, P
� 0.00058 (right ACC) and t(9) � �6.372, P � 0.00013 (right
hippocampus). Similarly the t-test of the overlap ratios of the
deformable model against AIR are significant at t(9)
� �3.819, P � 0.0041 (right ACC) and t(9) � �3.8782, P
� 0.0037 (right hippocampus). There was no significant
difference in mean overlap ratios between AIR and SPM at
t(9) � 0.0494, P � 0.962 (right ACC) and t(9) � 0.1853, P
� 0.857 (right hippocampus).

Experiment 2 (Smoothness of Mean Image)

For visual inspection, the average brain images from AIR,
SPM, and the fully deformable model are shown in Figure 4;
the template colin27 is also shown for comparison. As can be
seen in Figure 4, the fully deformable model produces a
much sharper average brain image with very clear bound-
aries in which we can clearly identify the cortical sulci and
subcortical regions.

The smoothness measurements from 3dFWHM for the
average brain images are shown in Table I. As shown in
the Table, for the average brain image from the fully
deformable model the filter widths along three principal
axes resulted from 3dFWHM were very similar to the
3dFWHM results on the template colin27 and were much
smaller in all three dimensions than were measurements
of mean brain images from AIR or SPM. This indicates

that the fully deformable model introduces fewer inter-
subject registration errors than do AIR or SPM. The sec-
ond experiment thus shows the improved performance of
the fully deformable method over AIR or SPM at aligning
the individual images to the standard MNI reference im-
age.

Experiment 3 (Effect-Size of fMRI Signal)

As predicted there was a greater fMRI signal on the
error trials than the correct trials regardless of how the
region was segmented (i.e., AIR, SPM, or the fully deform-
able model). However, as can be seen in Figure 5, with the
fully deformable model we extracted higher group differ-
ence signals (average signals from error trials � average
signals from correct trials) than were extracted from AIR
or SPM. As shown in Table II, the paired two-tailed t-tests
of the eight subjects’ peak signals of average time series
for correct trials against for error trials was significant at
0.0034 for the fully deformable model, at 0.0295 for AIR
and at 0.0668 for SPM, so the t-test result were more
significant with the fully deformable method, suggesting

Figure 5.
An average of the peak fMRI activation difference across the eight
subjects. For each subject, peak activation difference is the percent
signal changes on the correct trials versus error trials. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

TABLE II. Statistical results on fMRI signals

Model t(7) P

AIR –2.7269 0.0295
SPM –2.1681 0.0668
Fully deform –4.3499 0.0034

The paired two-tailed t-test results on peak signal of correct time
series against peak signal of error time series based on the extracted
ROI using AIR, SPM, and the fully deformable model, respectively.
AIR, automated image registration; SPM, statistical parametric
mapping; Fully Deform, fully deformable model.

TABLE I. Smoothness measurements of the averaged
warped images

Methods/axes FWHMx FWHMy FWHMz

Colin27(template) 5.31 5.77 5.59
AIR 112.49 128.16 121.98
SPM 121.17 143.85 136.84
Fully deform 5.92 6.57 6.33

The smoothness of averaged warped images from AIR, SPM, and
the fully deformable model was measured by the full width half
maximum of the Gaussian smoothing filter along x, y, z axes
through 3dFWHM. The smoothness of the template was also mea-
sured as a comparison, which describes the inherent spatial corre-
lation of the template colin27.
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a more reliable extraction of the functional imaging sig-
nal.

DISCUSSION

In this article, we quantitatively evaluated the coregistra-
tion performance of AIR, SPM, and the fully deformable
model through a series of experiments. Compared with
AIR and SPM, the fully deformable model produced sig-
nificantly higher overlap ratios for right hippocampus
and right anterior cingulate cortex in experiment 1, which
demonstrates it can identify ROI more accurately. This
leads to a more accurate colocalization of the ROI for
functional images, thus it produces more reliable func-
tional signals in experiment 3. Experiments 1 and 3 are
based on template3subject coregistration, and experi-
ment 2 is based on subject3template coregistration. In
both situations, the fully deformable model shows a better
performance compared to that for AIR and SPM in coreg-
istration.

The fully deformable registration is computationally
intensive. On a G5 dual-processor Macintosh it took ap-
proximately 1 hour per brain, compared to approximately
10 minutes per brain for SPM (on an IRIX 64), and 2 hours
for AIR on an IRIX 64. In addition, the registration meth-
ods are sensitive to accurate skull stripping. In this study
we used BET [Smith, 2002], which was adequate for the 10
subjects in this sample. In other studies, we have found
some discrepancies that have led to certain registration
inaccuracies. Recently, we have improved the stripping
using an automated morphological method [Wu et al.,
2005]. This study is limited by a relatively small sample:
10 subjects for the first 2 experiments, and 8 for experi-
ment 3. Nevertheless, the results were significant.

Overall, our results show that the fully deformable regis-
tration can improve anatomic alignment of brain images
compared to that with SPM and AIR. Moreover, the im-
proved registration seems to lead to a more reliable mean
BOLD fMRI signal. Currently, standard fMRI analysis
pathways use AIR or SPM. Our results suggest that the
fully deformable model could improve the reliability of
the colocalized fMRI results; however, this comes at a cost
of increased complexity of registration and computation
time. Replication of these results in a larger sample is also
needed.
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