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ABSTRACT

Motivation: Experimental and predicted data concerning gene
transcriptional regulation are distributed among many heterogeneous
sources. However, there are no resources to integrate these data
automatically or to provide a ‘one-stop shop’ experience for users
seeking information essential for deciphering and modeling gene
regulatory networks.
Results: IntegromeDB, a semantic graph-based ‘deep-web’
data integration system that automatically captures, integrates
and manages publicly available data concerning transcriptional
regulation, as well as other relevant biological information, is
proposed in this article. The problems associated with data
integration are addressed by ontology-driven data mapping,
multiple data annotation and heterogeneous data querying, also
enabling integration of the user’s data. IntegromeDB integrates
over 100 experimental and computational data sources relating to
genomics, transcriptomics, genetics, and functional and interaction
data concerning gene transcriptional regulation in eukaryotes and
prokaryotes.
Availability: IntegromeDB is accessible through the
integrated research environment BiologicalNetworks at
http://www.BiologicalNetworks.org
Contact: baitaluk@sdsc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A large number of databases and datasets that annotate
transcriptional regulatory elements in general or from niche
areas of gene regulation have been developed; see the Nucleic
Acids Research list of databases on transcriptional regulator sites
and transcription factors (TFs) (Cochrane and Galperin, 2010).
TRANSFAC (Matys et al., 2006), for example, contains data on
TFs, TF binding sites (TFBSs), target genes, promoters and TF
classification in several model eukaryotic organisms; while FlyBase
(Grumbling and Strelets, 2006) and Arabidopsis gene regulatory
information server (AGRIS; Davuluri et al., 2003) are species-
centered resources. Resources providing curated information, such
as ORegAnno (Griffith et al., 2008) and Transcription Regulatory
Regions Database (TRRD; Kolchanov et al., 2002), co-exist with

∗To whom correspondence should be addressed.

resources that provide computationally derived data, such as TrsDB
(Hermoso et al., 2004) and DBD (Kummerfeld and Teichmann,
2006). In addition, there are general biological resources that contain
among other information data related to transcriptional regulation.
For example, PDB (Berman et al., 2000) and NDB (Berman
et al., 2002) contain structures of TFs and their complexes with
DNA; Pfam (Finn et al., 2008) and PROSITE (Hulo et al., 2006)
contain sequence patterns of TFs. Currently, information concerning
transcriptional regulation is dispersed among various resources,
many of which are not organized into databases but separate files
posted on the web. To fully use and navigate these data, integrated
systems are required.

The first data integration systems in molecular biology emerged
to bring together internal databases and analysis tools in order to
extract novel biological knowledge; examples include GeneExpress
(Kolchanov et al., 1999), which is specific to the domain of gene
transcriptional regulation, and FlyBase (Drysdale, 2008), which
is species-specific. Early systems integrated external databases
predominantly by means of URL links. Well-known link-based
integrating systems, aka portals or navigators, include Entrez (Sayers
et al., 2009), Ensembl (Hubbard et al., 2009), ISYS (Siepel et al.,
2001), the Biology Workbench (Subramaniam, 1998), SRS (Etzold
and Argos, 1993), Integr8 (Pruess et al., 2005), Galaxy (Giardine
et al., 2005) and BioMart (Haider et al., 2009). Such systems serve
for index information, allow querying and maintain relationships
among the entities from various databases.

With the development of biological ontologies, automatic
integration of heterogeneous data sources into data warehouses via
integrative data models became feasible. Data warehouses can be
separated into two groups. The first group comprises systems that
cover particular domains of biological knowledge including cPath
(Cerami et al., 2006) and PathSys (Baitaluk et al., 2006a, b), which
concern biological pathways; ONDEX (Kohler et al., 2006), which
stores data from gene expression microarray experiments; Ensembl
Regulatory Build (Hubbard et al., 2009), comprising annotations of
potential regulatory regions within the human genome; ChlamyCyc
(May et al., 2009), which stores data on Chlamydomonas reinhardtii;
SNPnexus (Chelala et al., 2009), comprising functional annotations
of SNPs in public databases; and RefDIC (Hijikata et al., 2007),
containing cross-reference information from the transcriptome and
proteome of immune cells. The second group comprises systems that
aim to address general problems of integration of heterogeneous
biological data and include Atlas (Shah et al., 2005), BioExtract
(www.bioextract.org), Biochemical Network Database (BNDB;
Kuntzer et al., 2007), BIOZON (Birkland and Yona, 2006), GUS
(Davidson et al., 2001) and InterMine (www.intermine.org).
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Data integrity, consistency, redundancy, connectivity,
updatability, expandability and complex and ‘fuzzy’ queries
are the problems associated with data integration (Birkland and
Yona, 2006), which arise from the nature of heterogeneous data
and the lack of unified ontology. Therefore, there is a need for
integration systems that are able to recognize different ontologies
and semantics of the data. In addition, since different databases
have various update cycles that can lead to format changes and the
discontinuance or addition of data, the integration systems need to
automatically and regularly scan databases for updates, recognize
format changes and update mapping and data exchange procedures
in order to maintain consistency of data. Yet the integration systems
should also provide an environment that allows users to integrate
their own data and customize the system. An ‘ideal’ integration
system should provide ad hoc queries that are broad enough and,
at the same time, domain-specific and user-friendly.

This study addresses the aforementioned problems of integrating
heterogeneous data in the domain of transcriptional regulation. There
are systems that integrate various data concerning transcriptional
regulation such as, BNDB (Kuntzer et al., 2007) and SNPnexus
(Chelala et al., 2009), which include data from TRANSFAC and
CoryneRegNet (Baumbach, 2007). However, there is no system
that integrates the full spectra of data concerning transcriptional
regulation, together with other relevant biological information,
which is currently available in upwards of 60 databases listed in
the Nucleic Acids Research depository (Cochrane and Galperin,
2010) under the category ‘transcriptional regulator sites and TFs’.
The two major projects in the domain, Ensembl Regulatory Build
(Hubbard et al., 2009) and ORegAnno (Griffith et al., 2008), do
not represent data warehouses per se, and their aims are distinct
from data integration. Ensembl Regulatory Build (Hubbard et al.,
2009) provides raw data concerning maps of open chromatin created
by DNase I hypersensitivity mapping, covalent modifications of
histone protein tails assayed by chromatin immunoprecipitation
and annotations of potential regulatory regions within the human
genome based on these data, obtained from the ENCODE project
(Birney et al., 2007). ORegAnno (Griffith et al., 2008) is an
open-source open-access database and literature curation system
for community-based annotation of experimentally identified DNA
regulatory regions, TFBSs and regulatory variants; it is integrated
with Ensembl, PubMed and dbSNP via curated cross references.

The present study proposes an approach for integrating
all publicly available genomic, transcriptomic, genetic and
functional data relevant to transcriptional regulation in
eukaryotes and prokaryotes. The resulting integration system,
IntegromeDB, has been implemented and is available within
the BiologicalNetworks integrated research environment at
http://www.BiologicalNetworks.org (Baitaluk et al., 2006b).
Information relating to integrated data can be searched by category
and data source, and includes quick searches of genes/proteins,
data statistics and data inconsistencies in public data sources
(http://www.integromedb.org). Data integration and mapping to the
internal database is fully automated and based on Semantic Web
technologies such as the Resource Description Framework (RDF;
http://www.w3.org/RDF/) and Web Ontology Language (OWL;
http://www.w3.org/TR/owl-ref/). The IntegromeDB ontology
developed by the authors is presented here, together with the system
architecture. The current version of IntegromeDB integrates in
excess of 100 000 different data types and features from more than

100 data sources concerning sequences and structures of TFs, their
orthologs and binding sites, promoters and other gene regulatory
regions, orthologs of target genes, disease relationships, mutations
and SNPs, gene expression data, gene function, pathways, protein–
protein interactions and other related information. IntegromeDB
enables researchers to integrate their own data into the system and
query them together with data extracted from other resources.

2 SYSTEM OVERVIEW
The architecture of the IntegromeDB system is presented in Figure 1.
The data integration pipeline contains the following main blocks
(Fig. 1A):

(1) Web crawler that automatically searches a list of web sites for
data to be integrated.

(2) Data Integration Server that does the following: (i) accepts
external data from the web crawler and stores them in the
temporary database TempDB; (ii) maps external data to
the IntegromeDB database schema, using the IntegromeDB
Ontology (Fig. 1B); and (iii) injects data from external tables
into the database (Fig. 1C).

(3) The internal database (also called IntegromeDB in Fig. 1A)
stores the integrated data according to the IntegromeDB
Ontology.

2.1 Data integration and mapping
The data integration and mapping procedure is fully automated and
does not require human intervention at any step, including data
collection by traversing external web sites and mapping external
data to the internal database schema.

To traverse web sites of interest, the SmartCrawler web crawler is
utilized (http://sourceforge.net/projects/smartcrawler/) to crawl the
links to a depth of 12. The 12-deep crawl provides a sufficiently
broad coverage and retrieves web pages that predominantly contain
information relevant to transcriptional regulation. Web crawler
searches for web pages, tables and relational databases that can be
accessed in any of the following ways: (i) directly by querying an
SQL database; (ii) through a HTTP GET operation executed against
a database; and (iii) invoking a web service provided by the database.
The data source to be integrated is assumed to be either a relational
(tab-delimited, Excel, SQL), XML or RDF file with a binding pattern
for every relationship disclosed.

The web crawler stores external data in the temporary database
TempDB (Fig. 1A) before they are mapped to the IntegromeDB
database schema, using IntegromeDB Ontology, and are finally
transferred into the database by DataIntegrator.

To map the data, the following four kinds of mapping relations
are considered:

• ‘OntologyClass’ mapping, which describes the type of objects
to be integrated. It maps data values from an external source to
an ontological term in IntegromeDB.

• ‘Attributes_for’ mapping, which specifies the attributes for
classes that must be integrated. It is a joinable relation that
links attributes to integrated objects that are mapped through
ontology to an internal OntologyClass.
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Fig. 1. The architecture of IntegromeDB. (A) Data integration pipeline, containing the main architectural blocks. (B) Data mapper, administered internally
and allowing mapping external data to internal database schema through ontologies. (C) Data integrator logic schema, shown on the example of three different
data types, regulatory elements (e.g. TATA box), genes (e.g. IL1 gene) and microarray experiments, that share the common ObjectID (e.g. GeneID) and are
joined through PK–FK relationships depicted in the ontology (D) into a single integrated table.

• ‘MetaNode_for’ mapping applies to meta-graphs, such as
pathways and organisms, and describes which OntologyClass is
a meta-graph of another OntologyClass, for example, a protein
being part of a particular pathway.

• ‘Relations_between’ mapping applies to the relationships
between objects, such as interactions, co-expression and co-
occurrence, and provides OntologyClasses between which the
relationship is integrated.

Data Mapper maps external biological data to the IntegromeDB
internal RDF-compatible (RDF; http://www.w3.org/RDF/) database
schema, transforming biological data into an RDF-compatible
format. To transform biological data into an RDF-compatible format
and create integrated views of data sources, the data integration
procedure includes automatic determination of Node IDs (primary,
graph and connector nodes) such as names and synonyms of
biological entities. Several algorithms have been implemented to
support relevant data ingestion using ‘ontology to data’ mapping,
primary key–foreign key (PK–FK) constraints, and ontological data
joins that are based on concept IDs rather than actual data. Figure 1C

illustrates how integrated data that are mapped to two different
ontological concepts, such as ‘TATA box’ and ‘Gene Expression’,
can be linked through the PK–FK constraint at the source. Local
views can be joined on the basis of ObjectIDs extracted from the
ontological source.

In the absence of clear evidence of/reference to a class from
the ontology, an automatic procedure that statistically evaluates
the content of the integrated table and assigns a term from the
IntegromeDB ontology to it is applied. For each distinct word and
word combination that is present in the table to be integrated, which
are terms in the IntegromeDB ontology, the statistical significance
of the term’s occurrence (P-value) is calculated using Fisher’s exact
test. The most significant term is assigned to the table.

2.2 Database schema
The IntegromeDB internal database schema is RDF-compatible
(RDF; http://www.w3.org/RDF/); i.e. it stores biological data in
an RDF-compatible format, the standard format of the Semantic
Web (Good and Wilkinson, 2006). The database architecture and

1653

http://www.w3.org/RDF/
http://www.w3.org/RDF/


[13:01 17/6/2010 Bioinformatics-btq231.tex] Page: 1654 1651–1661

M.Baitaluk and J.Ponomarenko

database schema are provided at http://www.BiologicalNetworks
.net/Database/tut0.php.

IntegromeDB’s internal database is a PostgreSQL database that
has been modeled as a node- and edge-typed labeled meta-graph (Hu
et al., 2007), where the labels are described by their own schema.
The data model has been introduced and described in detail (Baitaluk
et al., 2006a, b); therefore, a brief description is provided herein.
Objects such as proteins, ligands, molecular complexes and genes,
are represented by nodes; the relationships between objects such as
up/down-regulation, molecular transport, molecular synthesis and
enzymatic activity are represented by edges. The types of nodes and
edges are designated in the standard ontologies described further.
A label of a node or edge provides specific details about it. For
example, for a node ‘gene’, the gene’s name, ORF, chromosome,
coordinates and other physical, genetic and functional properties,
are specified in the label of the node. An edge ‘regulation’ between
a protein and a gene could be labeled by the nature of regulation
such as activation and the mechanism of regulation, for example,
phosphorylation.

To represent a wide variety of biological data, the IntegromeDB
internal database employs a graph-based model that dynamically
incorporates (Fig. 1C) new sets of nodes, edges or node/edge labels
into the database, and integrates the following four orthogonal data
types (Fig. 2B):

(a) Graphs that represent molecular interactions and ontologies;
for example, the protein–protein interaction network of
NFκB-1 factor with other four proteins, denoted ObjectID
6, 7, 8 and 9 (Fig. 2B). Relations between them could be as
follows: 144, 145, 146 and 147.

(b) Histograms that represent time–value structures including
gene expression data and metabolite concentrations; for
example, microarray expression data obtained in an
experiment with ID 18 (structured value in Fig. 2B) can be
associated with the genes with ObjectID 5, 6 and 7, coding
for NFκB-1 and its interacting proteins.

(c) Trees that represent classifications/ontologies and
phylogenies.

(d) Sequences that represent protein/DNA/RNA sequences and
protein structures; for example, in Figure 2B the object
NFκB-1 protein (ObjectID 5) has such attributes as the name
of the object (NFκB-1, ID 15), gene coding sequence (ID 10),
DNA-binding motif (ID 22), and a secondary structure of the
DNA-binding domain (ID 98).

The internal database of IntegromeDB internal database contains
specialized indexes that allow quick access to ancestor/descendant
relationships for transitive relationships, such as ‘subclass-of’ and
‘part-of’. To support ontological queries, IntegromeDB contains a
specialized query processing engine described further.

2.3 Ontology model
Databases use different ontologies and some do not use standard
ontologies. Therefore, to integrate heterogeneous resources, an
‘integrated’ ontology, IntegromeDB Ontology, which is available
as an OWL file at www.integromedb.org has been developed.

IntegromeDB Ontology (Fig. 2A) was developed by manual
selection of 34 ontologies that reflect current knowledge of

Fig. 2. IntegromeDB internal database. (A) IntegromeDB Ontology
integrating basic BioNets ontology with 34 OBO ontologies,
(B) Heterogeneous data of the database and data structures. The
color figure at the bottom left (generated in BiologicalNetworks) shows
the structure of NFκB-1 protein (ObjectID 5), fragments of NFκB-1 gene
and protein sequences (AttributeID 10, 22), as well as genes and proteins
(ObjectID 6, 7, 8, 9) interacting with NFκB-1 that are schematically
represented by circles. The color figure at the bottom right shows an image
from a microarray experiment (ID 18) that involved NFκB-1 gene and its
interactors (ObjectID 6, 7).

transcriptional regulation, from approximately 100 ontologies
provided by the OBO consortium (www.bioontology.org). The
selected ontologies include Sequence Ontology, GeneOntology,
BioPAX, Disease Ontology, Chemical Ontology, the Functional
Genomics Ontology, Phenotype and Trait Ontology and various
others provided by the OBO consortium (www.bioontology.org).
The selected ontologies were mapped to the BioNets ontology
(Baitaluk et al., 2006a) in order to accommodate terms and
inter-term relationships relevant to transcriptional regulation.
The resulting IntegromeDB Ontology complies with the
formal OWL, the World Wide Web Consortium standard
(http://www.w3.org/TR/owl-ref/). IntegromeDB Ontology is
a graph structure that is automatically generated by Protégé
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(http://protege.stanford.edu) and represents a semantic part of the
IntegromeDB internal database, in which ontological classes form
entities, and properties form attributes. IntegromeDB Ontology is a
graph, on which graph-like operations such as finding k-neighbors,
ancestors or descendants can be performed.

In OWL ontology, terms or classes are represented in hierarchies
of ‘is a’ relationships, but the actual definitions are constructed from
attributes assigned to each term/class. The OWL schema contains
classes that are represented as Object Types in the schema of the
IntegromeDB database (Fig. 2A). For example, the ontology class
‘TF’ is a subClassOf ‘Protein’. The general-purpose OWL schema
(Fig. 2A) serves as a glue to hold different areas of biological
knowledge together and is implemented so that any individual
ontology describing another type of biological knowledge, for
example, pharmacogenomics, can be introduced and modified with
minimum impact on the rest of the system.

Each ontology class has a number of attributes in the form of
‘restriction onProperty value’: cardinality (which is the number
of possible values for a property) and negation. For example,
NFκB TF is associated with at least one (cardinality) binding
site, yet NFκB has no (negation) transmembrane region. In this
instance, the computer differentiates between, NFκB TFs and,
for example, the ABCA4 transporter, which does not bind DNA
and has transmembrane regions. This description logic definition
matches accumulated knowledge, enabling automatic classification
and management of heterogeneous data.

2.4 Data query
The search engine layer transforms the user query into actual search
instructions and contains the following components:

(a) Query processor, which manipulates the user’s keyword
queries into an internal form (query processor structure and
internal query language will be published elsewhere);

(b) Index manager, which uses the Apache Lucene indexing
engine to create direct and inverted indexes of all integrated
data sources and contains the methods required to create,
update and access the indexes.

When the query results are ready, the module developed by the
authors, called the BioWEB ranker, calculates the ‘importance’
of every returned object or ontology class. The ‘importance’ is
measured as a weighted number of links an object or ontology class
has to other objects and ontology classes. BioWEB implements the
modified version of Google PageRank algorithm (Page et al., 1999)
to sort results in terms of the ‘importance’ score.

The web page www.integromedb.org allows integrated data to
be inspected without loading the BiologicalNetworks application. It
provides the following querying possibilities: (i) simple keyword/ID
search; (ii) wildcard search; (iii) multiple word structured search,
such as ‘obesity AND/OR diabetes’, ‘obesity AND diabetes’
or ‘obesity OR diabetes’. Examples of queries are available at
http://www.integromedb.org/tut0.php.

More extensive querying functionality is available in the
BiologicalNetworks application, which can be downloaded at
http://www.BiologicalNetworks.org. The specially designed query
interface supports structured advanced queries to allow querying of

any logical combination of bioentities, bioprocesses/relations and
their properties. For example, the context query:
(geneID in (:like(NuclSequence, ANY)) ):gene.geneID,
gene.enchancer
retrieves the set of objects (genes) that have attributes containing
the specified query phrase ‘sequences of enhancers.’

Other examples of context queries and queries by attributes
and databases/datasets, can be found in Supplementary Material 1.
The examples of queries provided are internal queries generated
in response to queries constructed using the tool in the
BiologicalNetworks application called ‘Comprehensive search by
attributes’ (it is located in the upper right corner of the program and
depicted by a binocular; see Fig. 4).

Searching by sequence is under development. Section 3
‘Integration of sequences with meta-graph data’ presents the
proposed approach to the problem of querying the database by
sequence.

2.5 Data provenance, reconciliation and consistency
Data are integrated into the system having been automatically
collected from databases listed in the NAR repository (Cochrane
and Galperin, 2010), using web crawling technologies. The full
list of databases that have been integrated so far is provided at
http://www.BiologicalNetworks.net/Database/tut5.php.

Data from databases that have been already integrated in the
system are updated monthly. In addition, the web crawlers are
continuously searching for and adding data from databases that
have not yet been integrated into the system. Web crawlers are
guided by the NAR Database depository (Cochrane and Galperin,
2010), which currently lists more than 1200 databases; 102 of which
have been integrated in IntegromeDB on 02/10/2010, including
all databases in the category ‘transcriptional regulator sites and
TFs’. Mass integration of databases from other categories is a
subject of data storage availability (the current size of IntegromeDB
exceeds 5TB). Current statistics concerning integrated data by
category are provided at www.integromedb.org. Also, statistics
calculated by contribution of integrated data sources can be found
at http://www.integromedb.org/stat.php.

To address the problem of data cleaning and conflict
resolution, reconciliation procedures that identify controversies or
inconsistencies in data have been developed. Examples of data
inconsistencies include, but are not limited to, the following:
(i) two different genes being assigned to the same synonym;
(ii) two genes with the same name pointing to different
chromosomal locations; (iii) two genes with different names
pointing to the same chromosomal location; and (iv) different
objects having names with a common string; for example,
p53, p53(361–393), p53(modified:Thr:212) and pCMX-mutant-
p53. These inconsistencies should be resolved by a curator, but
owing to limited human resources and fully automated data
integration, human intervention does not occur; details on retrieved
properties by data sources can be viewed for each gene/protein
by clicking ‘Details by Data Sources’ on the query result page at
http://www.integromedb.org.

To evaluate the quality of integrated data, inconsistencies in the
databases that were integrated in IntegromeDB were estimated.
Since calculation of all inconsistencies among gene/protein IDs
only, including their synonyms, would require more than 1013
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Fig. 3. Integration of genomic sequences with meta-graph data. (A) Integrated tables and visualization of the final integrated product on the sequence of
IL-1 gene (see Fig. 2). (B) Connection of MetaGraph part of the database (from Fig. 2B) to Sequence part of the database. (C) Five sample intervals
(regulatory regions) from the IL-1 upstream region for construction of an example RI-tree. Virtual backbone of the RI-tree and registration positions are
depicted. (D) Relational indexes lowerIndex and upperIndex. (E) Query preparation step for the query interval (11, 13) (shaded in gray): leftQueries (8, 10),
rightQueries (14, 16) and innerQueries (11, 13). The color figure was generated in BiologicalNetworks.

all-against-all comparisons, the number of inconsistencies was
estimated. Four databases, namely GeneCards, String, BIND
and Uniprobe, which are the largest contributors of mammalian
gene/protein IDs being integrated, were selected. All genes/proteins
from the 10 largest genomes were selected from these databases,
and for each gene/protein from the final dataset, comprising
∼400 000 IDs, bidirectional occurrences of names and synonyms
in the databases were calculated. Inconsistencies were found
in ∼3% of genes/proteins (∼12 000) and are documented at
http://www.integromedb.org. This level of inconsistency nearly
corresponds to that expected from manually curated data; users
should expect ∼3% of retrieved data to be inconsistent when
querying IntegromeDB.

3 INTEGRATION OF SEQUENCES WITH
META-GRAPH DATA

Data represented by graphs, histograms and trees—interaction
networks, 3D structures of node proteins, expression values
of mRNA products and molecular interaction types—can be
integrated into the labeled meta-graph database in a straightforward
manner (Fig. 2B; see also Fig. 2 in Baitaluk et al., 2006b).
However, integrating meta-graph data and sequence data requires

superimposing meta-data on genomic sequence elements to create
multiple annotations for the genomic sequences. This is not a trivial
task owing to the orthogonal nature of integrated data that are
represented by sequences, graphs and time/value dependencies.

Herein is a description of an approach to the problem
of integrating sequences with meta-graph data. Specifically,
Relational Interval (RI)-tree structures that are used for navigation
through sequences, including scroll upstream/downstream, get_next
gene/operon/chromosome, and annotation of multiple overlapping
sequences are described. However, a description of the suffix tree
structures used for sequence searches is beyond the scope of this
article. It should be noted that features described in this section are
currently implemented at the database level and are available as
binaries upon request; their implementation at the level of the user
interface will be described elsewhere.

Sequences (genomic/protein) are integrated with meta-graph data
using an ElementId–ObjectID connection table (Fig. 3A). Where
elements are sequence elements, for example, a core promoter,
TATA box or binding site, they are attributed to a particular
gene by means of known localization in the gene, according to
the GeneBank global position. Internal enumerations in integrated
databases such as TRANSFAC provides localization of a regulatory
region in respect to the transcription start and are recalculated
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accordingly. The connection table assigns sequence elements to
meta-graph objects, so that sequence elements, represented as a RI-
tree structure, become graph objects within the meta-graph database.
All heterogeneous data, which are integrated in the meta-graph
database, appear to be mapped on genomic intervals and vice
versa. As a result, DNA sequences, molecular interaction graphs,
3D protein structures, images of expression, and other meta-data
become annotated within the same context.

Figure 3 demonstrates how five sample intervals on the sequence
of the IL-1 gene are represented by an RI-tree and how navigation
queries are processed for such a tree. Let us consider five intervals:
C1(1, 5), C2(2, 9), C3(8, 17), C4(14, 19) and C5(21, 26) (Fig. 3A
and B). The virtual backbone with root value 16 covers the data
space from 1 to 31 nt (Fig. 3C). The five intervals are registered
at the nodes 4, 8, 16 and 24, respectively. The interval (1, 5) is
represented by the entries 4, 1 and C1 in the lowerIndex and by 4,
5 and C1 in the upperIndex, as 4 is the registration node and 1 and
5 are the start and end points of the interval, respectively (Fig. 3D).

To process an interval intersection query (start, end) based on
the RI-tree, two phases are distinguished, the query preparation
phase and the declarative query processing phase. The first phase
descends the virtual backbone from the root node down to the
start and the end, respectively (Fig. 3E). The traversal is performed
arithmetically, and the visited nodes are collected in two different
main-memory tables, leftQueries and rightQueries, both obeying
the unary relational schema (node). Nodes to the left of the start
could contain intervals that overlap the start and are inserted into
leftQueries. Nodes to the right of the end could contain intervals
that overlap the end and are inserted into rightQueries. Where these
nodes are taken from the paths, the set of all nodes between the start
and the end belong to the innerQuery, which is represented by a
single range query on the node values. All intervals registered at the
nodes from the innerQuery are guaranteed to intersect the query and
will, therefore, be reported without further comparison. The query
preparation phase is performed entirely in the main memory with
no I/O operations.

In the second phase, transient tables are joined with relational
indexes upperIndex and lowerIndex, as follows:

SELECT id FROM upperIndex AS i
JOIN :leftQueries USING (node)
WHERE i.end >= :start

UNION ALL
SELECT id FROM lowerIndex AS i

JOIN :rightQueries USING (node)
WHERE i.start <= :end

UNION ALL
SELECT id FROM lowerIndex // or upperIndex

WHERE node BETWEEN :start AND :end

The end point of each interval registered at the nodes in
leftQueries is compared with the start, and the start point of each
interval in rightQueries is compared with the end. The innerQuery
corresponds to a simple range scan over the intervals with the nodes
in the interval between the start and the end.

4 DATA ACCESS AND SYSTEM EVALUATION
This section describes how data in IntegromeDB can be accessed
and provides several examples of application of the system.

IntegromeDB is accessible through the BiologicalNetworks
application, which can be downloaded at http://www
.BiologicalNetworks.org. The web page www.integromedb.
org has been developed to allow the user a quick inspection of
integrated data for specific genes/proteins without loading the
BiologicalNetworks application.

4.1 Querying IntegromeDB web page
The web page www.integromedb.org provides keyword/ID,
wildcard and multiple word search capabilities, statistics on
integrated data by category and database, information relating to
retrieved properties by data sources for each gene/protein that can
be accessed from the query result page, and data inconsistencies in
public data. The web site was designed primarily for the purpose of
giving the user an opportunity to look at integrated data rather than to
provide complex data analysis capabilities, which are implemented
in the BiologicalNetworks application.

The remainder of this section, explores the IntegromeDB web site
search capabilities using two example queries: ‘relb AND diabetes
AND Alzheimer’ and ‘rela AND diabetes AND Alzheimer’. RelA
(p65) and RelB TFs belong to the family of NFκB factors; they
can form heterodimers with other NFκB factors, p50 (NFκB-1),
p52 (NFκB-2), c-Rel, and with each other, and RelA can form
homodimers. RelA is activated in the classical/canonical NFκB
activation pathway that is stimulated by pro-inflammatory cytokines,
such as TNF-α and IL-1, and pathogen-associated molecular
patterns (Hoffmann et al., 2006). In addition, RelB is released in
the alternative/non-canonical pathway that is activated by other
cytokines. The canonical and non-canonical pathways have distinct
regulatory functions: the canonical pathway is involved in innate
immunity and cell survival; the non-canonical pathway is important
in adaptive immunity, lymphoid organ development and B-cell
maturation (Bonizzi and Karin, 2004). However, inflammatory
processes involving both the canonical and non-canonical NFκB
activation pathways directly underlie insulin resistance in peripheral
tissues and astrocytes in the brain and play an essential role in the
etiology of Alzheimer’s disease and diabetes mellitus (Granic et al.,
2009).

The first query, ‘relb AND diabetes AND Alzheimer’, returns four
genes: Tnf, ESR1, CD40 and AhR. In comparison, EB-eye search
(http://www.ebi.ac.uk; Jones et al., 2008) for the same query returns
no entries from any database and Entrez (Sayers et al., 2009) returns
three genes: Tnf, ESR1 and CD40. Aryl hydrocarbon receptor (AhR)
protein, which was returned by IntegromeDB but not by Entrez,
interacts with RelB, and Ahr:RelB dimers regulate transcription of
many genes, functioning as coordinators of inflammatory responses
(Vogel et al. 2007; Vogel and Matsumura, 2009). Therefore, AhR
relates to RelB, diabetes and Alzheimer’s disease. One reason that
Entrez did not return the AhR gene is that it searches keywords,
publications and gene properties; while IntegromeDB searches
relations between publications to the database objects (genes)
associated with query words.

The second query, ‘rela AND diabetes AND Alzheimer’, returns
six genes: Tnf, K60 (IL-8), PTGS2, BAX, STMY3 and Mlana.
Entrez returns nine genes: PTGS2, Tnf (mouse), IL8, TNF, TP53,
SIRT1, PRKCD, ESR1 and PRKACA. The query results of Entrez
and IntegromeDB only have three common genes, but this can be
explained by the fact that Entrez is more up to date. However,
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Fig. 4. Screenshot of the BiologicalNetworks application providing access to IntegromeDB on the example of NFκB-1 query (complex layout). (1) Pathways
window, showing the result of search of pathways containing NFκB-1 and IL-1 genes in human. To speed up the search, the user can first select a species,
clicking the upper left look-up button. One of the selected pathways, Toll-like receptor signaling pathway, is displayed in the middle top window after selecting
it using the right mouse button. (2) Microarray data window, showing the result of search in the GEO database of experiments that involved NFκB-1, IL-1,
and MAPK1 genes. One of the selected experiments in which NFκB1, IL-1 and MAPK1 genes are over-expressed and co-expressed (Pearson’s correlation
>0.75) simultaneously is displayed in the middle bottom window. To do so, the user needs to select ‘Open’ in the menu, which is opened using the right mouse
button. On the displayed pathway, the genes are automatically colored according to the expression at a particular time point or experiment (the user needs to
select that in the pop-up menu, which appears after clicking the coloring tool on the upper tab above the microarray data window): red, up-regulated genes;
green, down-regulated; gray, not present in the selected experiment. (3) Property window, displaying the selected object’s (NFκB-1) properties collected from
all integrated data sources.

IntegromeDB returned three genes that were not found in Entrez:
BAX, STMY3, and Mlana. Therefore, we investigated these three
genes, searching the query result pages for the query words.

BAX (Bcl2-associated protein X) gene expression is regulated
by NFκB factors, specifically RelA (Grimm et al., 2005). It was
demonstrated that patients with diabetes (Varo et al., 2003) and
those with Alzheimer’s disease (Ait-ghezala et al., 2008) have a pro-
inflammatory state indicated by elevated levels of plasma sCD40L.
In addition, BAX mRNA levels are altered in peripheral blood
mononuclear cells from individuals with mild cognitive impairment
and Alzheimer’s patients (Gatta et al., 2009).

STMY3 (Stromelysin-3 precursor) gene expression is associated
with the expression of p53 in various cancers (Sharma et al., 2004).
p53 is directly regulated by RelA (Jeong et al., 2004). Elevated
levels of pro-apoptotic p53 and its oxidative modification by the lipid
peroxidation product, HNE, were reported in brain from subjects
with amnestic mild cognitive impairment and Alzheimer’s disease
(Cenini et al., 2008). In addition, polymorphisms in p53 are known
to be associated with diabetes (Szoke et al., 2009).

Mlana (Melan-A protein, MART-1) stimulates T-cells to increase
secretion of TNF-α (Elluru et al., 2008), which is a direct target of
RelA (Shakhov et al., 1990). Expression of TNF-α increases in both
diabetes (Gordin et al., 2008) andAlzheimer’s disease (Baranowska-
Bik et al., 2008).

Therefore, the three genes considered above are directly or
indirectly associated with RelA, Alzheimer’s disease and diabetes.

The fact that IntegromeDB found these genes, while Entrez
did not supports the aforementioned statement that IntegromeDB
approaches integration of data and searches differently from
Entrez. In particular, IntegromeDB integrates data objects
(genes) and performs searches by object properties rather than
searching keywords in publications. The examples considered
clearly demonstrate the power of the proposed approach: novel
knowledge concerning gene-disease associations was obtained using
IntegromeDB in a matter of minutes, and no other system could
reveal those associations.

4.2 BiologicalNetworks application
BiologicalNetworks serves as an environment for navigating,
visualizing and analyzing integrated data. Within the application,
the user can search pathways [Fig. 4(1)], microarray experiments
[Fig. 4(2)] and data on transcriptional regulation [Fig. 4(3)]. Figure 4
demonstrates how these three types of search can be integrated
and visualized: first, select the Toll-like receptor signaling pathway
that contains NFκB1 and IL-1 genes [Fig. 4(1)]; second, select a
microarray experiment that involved NFκB1, IL-1 and MAPK1
genes, and color the genes on the pathway according to their color on
the microarray image [this was done using the tool on the top panel
of the window that displays the microarray image, Fig. 4(2)]; third,
select the NFκB1 gene on the pathway and explore the properties
of this gene/protein that have been collected from all integrated
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databases [Fig. 4(3)]. The properties of any gene/protein available
in the integrated resources can be explored without examining
pathways or microarray data; the user can perform a simple search
in the search window or a complex search by attributes using the
tool ‘Search by attribute value’ located in the top right corner of the
application.

The rest of this section explains how to use BiologicalNetworks
to find murine genes that are common targets of c-Rel and RelA TFs
and contain experimentally identified binding sites. In addition, the
types of cells expressing the genes, the signals to which the genes
respond and co-expression of the genes can be identified. There are
many ways to use the application in order to find the aforementioned
data, and highlighted below is one such method.

First, the TFs of interest must be identified. In the top right corner
of the application select ‘Mus Musculus’ using a look-up menu
on the left of the search window, type ‘rela, c-rel’ (comma means
‘OR’, ‘c-Rel OR RelA’) in the search window and click ‘Search’.
The search results are shown in the middle bottom ‘Search Result
Window’, populating the IntegromeDB folder.

Second, target genes must be identified. In the result search
window, select the proteins with the names Rela and Rel (c-Rel)
(use Ctrl+left mouse to make the selection) and using the right
mouse button select ‘Build Pathway’ in the pop-up window to open
the ‘Build Pathway Wizard’. In the wizard, select the option ‘Find
targets for selected nodes’. The network of nodes appears in the
pathway window. The network can be zoomed and moved using
the mouse. In addition, in this window each node and its attributes
can be explored using the tool for node selection on the above
panel, depicted by an arrow. Select, using the tool, all nodes that are
common for c-Rel and RelA (when selected, the nodes are colored
blue).

Third, identify from the common targets (nodes selected at
the previous step) those with regulatory regions containing
experimentally identified binding sites. When the pathway window
is active, click on the image of the binocular in the right-hand corner
to launch the tool ‘Search by attribute value’. In the tool, expand
(do not select) ‘entity’, then ‘organism’, then ‘physicalEntity’ and
select ‘protein’. The tool will load attribute types for selected entities
(time of loading depends on how many attributes the selected entity
has). Attribute types can be sorted by name. Select, by clicking on
the right box depicting the plus sign, the attributes starting with
‘bs’, such as ‘bs_name’ (at the moment of writing this text, nine
such attributes appeared), ‘tf’, such as ‘tfbs_name’ (four attributes),
and the attribute ‘the_sequence_of_the_binding_site’. Expand
‘relation’ then ‘interaction’, and select ‘interaction_transcription’
to load attributes for this entity. Select all attributes starting with
‘binding’, such as ‘binding_motif’ and ‘binding_seq_cis_elements’.
Altogether, we selected 18 attribute types, applied to them the
common expression ‘not empty/exist’ and common operator ‘OR’.
Click ‘OK’ in the tool. The search gives the following result:
among nine common targets of c-Rel and RelA, two genes,
recombination activating gene 2 (Rag2) and interleukin 12b (IL-
12b) have information on TFBSs that has been integrated in
IntegromeDB. Rag2 and IL-12b are known NFκB targets (Murphy
et al. 1995; Verkoczy et al., 2005).

Fourth, identify microarray experiments in which Rag2 and IL-
12b are co-expressed. Type in the search window for microarray
experiments [Fig. 4(2)] ‘rag2, il-12b’, select ‘Mus Musculus’ in the
look-up window on the left of the search window, select an option to

search for co-regulated genes only on the right of the search window.
At the time of writing, the search gave 16 GEO profiles to browse
through.

To the best of the authors’ knowledge, there is no system in
the public domain that allows a similar type of search to be
executed; that is, to find TF targets, regulators or interacting
partners associated with specific attributes gathered from more than
a hundred databases. To improve searching and navigation through
all integrated data, a new, scenario-oriented navigation interface in
BiologicalNetworks is currently under development.

5 DISCUSSION
As far as we are aware, no current integration solution addresses
the overlapping nature of integrated data. The majority of existing
solutions achieve horizontal integration; data sources are treated
as complementary to one another, and issues associated with
data aggregation are ignored. The approach proposed here and
implemented in the IntegromeDB system allows an integrated
warehouse of data to be created from various databases and files
in different formats, including web pages.

Unlike traditional warehouses such as Atlas (Shah et al., 2005),
BNDB (Kuntzer et al., 2007) and GUS (Davidson et al., 2001)
that employ star and snowflake models over relational data,
IntegromeDB employs a graph-based model (Baitaluk et al., 2006a)
that has been developed for integrating interaction networks. The
graph-based model allows natural integration of genomic sequences,
which are represented as RI-trees, with graph-structured data such
as gene interaction graphs, ontologies, taxonomies and protein
classifications. The data model means that IntegromeDB is scalable
in respect to the number of integrated data, allowing more resources
to be integrated than other systems such as cPath (Cerami et al.,
2006), ONDEX (Kohler et al., 2006), BIOZON (Birkland and Yona,
2006) and BNDB (Kuntzer et al., 2007) (Table 1).

One of the advantages of the IntegromeDB architecture is that its
generic internal data model allows annotation and the querying of
genomic sequences as well as other meta-data (this feature is not yet
available at the level of the user interface). Four integrations systems,
cPath, ONDEX, BIOZON and BNDB, which are conceptually
similar to IntegromeDB, do not present sequence annotation and
queries by sequence (Table 1). The problem of integrating sequences
with meta-graph data was addressed by implementing sequence
navigation and annotation using RI-tree structures, and sequence
searching using suffix tree structures (Gusfield 1997; Farach-Colton
et al. 2000; Giegerich et al., 2003).

Ontology-driven data integration and mapping strengthen the
proposed approach. Out of the four integration systems that
were compared with IntegromeDB, integration with OBO is only
provided in ONDEX (Table 1). The ontology-driven approach
adopted in the proposed system provides advantages over
traditional databases as it allows data integration processes to
be automated. However, several limitations exist including the
need for human intervention. These limitations predominantly arise
from inconsistencies in ontologies and their periodic changes and
revisions, reflecting the current state of scientific knowledge. This
means that human intervention is unlikely to be eliminated in the
near future.

IntegromeDB can be considered as a mixture of two
approaches, Data Integration in its classical sense and the
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Table 1. Comparison of IntegromeDB with integration systems: cPath (Cerami et al., 2006), ONDEX (Kohler et al., 2006), BIOZON (Birkland and Yona,
2006) and BNDB (Kuntzer et al., 2007)

cPath ONDEX BIOZON BNDB IntegromeDB

Scalability to the number of data types no yes ∗a no yes
Number of integrated databases 8 25 20 10 >100
Ad hoc queries ∗c no no no yes
Integration engine no yes no no yes
Sequence annotation no no no no yes
Sequence search no no no no yes
OBO integration no yes no no yes
Multidimensional datae ∗b ∗b no no yes
Web search yes no yes ∗d yes
Research environment Cytoscape Ondex no no BiologicalNetworks
Open/easy access yes ∗d yes ∗d yes

aOnly 10 object types are presented.
bGene expression data only.
cWeb interface for predefined queries exists, but no interface for ad hoc queries.
dAvailable only after registration and sign up.
eMultidimensional data is represented by Time/Value, Value/Space, Time/Value/Space, etc. dependencies, for example microarray gene expression matrixes, protein abundance data,
chemical concentration in the cell, etc.

Semantic Web. The Semantic Web technologies, such as the
RDF (http://www.w3.org/RDF/) and the OWL (http://www.w3
.org/TR/owl-ref/), have the potential to add a new dimension
to data integration in systems biology, which is expected to
adopt these technologies (Ruttenberg et al., 2007). However, one
major problem with the Semantic Web is the lack of semantic
content; the majority of biological information is either not
semantically codified or is codified with poor axiomatization
(Egaña, 2008). This means that using the ‘pure’ Semantic Web
approach is still problematic (Good and Wilkinson, 2006). Several
mechanisms to address the problems of semantic codification,
such as resolving biological identifiers, have been proposed
and include OKKAM IDs (http://www.okkam.org/), MIRIAM
URIs (Laibe and Le Novere, 2007), LSIDs (http://lsrn.org),
URIs (http://bio2rdf.wiki.sourceforge.net/Banff+Manifesto) and
shared names (http://neurocommons.org/page/Shared_names). In
the IntegromeDB system, biological identifiers are resolved
by mapping external identifiers to internal identifiers using
IntegromeDB ontology and filtering duplicates; this procedure is
maximally automated, obviating the need for significant human
intervention.

IntegromeDB is integrated into a research environment and has an
open-access web-search interface. Data integrated in IntegromeDB
are accessible through the integrated research environment
BiologicalNetworks at www.BiologicalNetworks.org and the web-
search interface at http://integromedb.org. IntegromeDB will evolve
by expanding the scope of data and improving the user interface.
The IntegromeDB has a general purpose graph architecture and
is data-type neutral, and there is the prospect of further data
integration of orthogonal sources of information such as chemical
and pharmacological data from PharmGKB, microarray data from
ArrayExpress, disease data from OMIM, and others. Further
development of the user interface will be focused on implementing
sequence searches, navigation and annotation, slick representation of
integrated data and more intuitive and scenario-focused navigation.
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