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ABSTRACT

Motivation: Lysine acetylation is a post-translational protein
modification and a primary regulatory mechanism that controls many
cell signaling processes. Lysine acetylation sites are recognized
by acetyltransferases and deacetylases through sequence patterns
(motifs). Recently, we used high-resolution mass spectrometry to
identify 3600 lysine acetylation sites on 1750 human proteins
covering most of the previously annotated sites and providing the
most comprehensive acetylome so far. This dataset should provide
an excellent source to train support vector machines (SVMs) allowing
the high accuracy in silico prediction of acetylated lysine residues.
Results: We developed a SVM to predict acetylated residues. The
precision of our acetylation site predictor is 78% at 78% recall on
input data containing equal numbers of modified and non-modified
residues.

Availability:  The online
http://www.phosida.com
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predictor is available at
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1 INTRODUCTION

Post-translational protein modification (PTM) is a fundamental
regulatory mechanism that controls many cell signaling processes
(Cohen, 2001; Hunter, 2000). Lysine acetylation is a reversible PTM
with a well known role in regulating gene expression through the
modification of core histone tails. Individual reports have shown
that lysine acetylation is also involved in other diverse biological
processes suggesting a broader regulatory function. However,
technological limitations have prevented a global analysis of lysine
acetylation until recently.

Our study on the human in vivo acetylome provided a global
picture of lysine acetylation (Choudhary ez al., 2009). We used high-
resolution mass spectrometry to identify 3600 lysine acetylation
sites on 1750 proteins and found that lysine acetylation targets
large macromolecular complexes that are involved in diverse cellular
processes predominantly in the nucleus but also in the cytoplasm.
Consensus sequence analysis revealed stringent constraints on the
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local sequence context around the acetylation sites. For example,
amino acids with a bulky side chain were enriched in the —2 and
+1 positions, which is in agreement with the frequent occurrence
of acetylated lysines in ordered regions of proteins. In contrast,
positively charged amino acids were almost completely excluded
from the —1 position. These observations suggest that such patterns
in the primary sequence may allow the differentiation between
acetylated and non-acetylated lysines as a basis for in silico
prediction.

Various algorithms have already been applied to the prediction
of other post-translational modifications. For example, for the
prediction of phosphorylation events Netphos uses neural networks
(Blom et al., 1999), whereas Scansite employs a profile method
(Obenauer et al., 2003). In previous studies, we constructed species-
specific phosphorylation site predictors on the basis of support
vector machines (SVM) (Gnad et al., 2007; Zielinska et al., 2009).
These SVM-based predictors are part of the analysis toolkit of the
PHOSIDA database (Gnad et al., 2007).

The basic idea of SVMs is to transform observed features of
a given instance into a vector-based feature space (Noble, 2006).
Each dimension of this feature space reflects a certain attribute.
After the transformation of positive (e.g. acetylated lysines) and
negative instances (e.g. non-acetylated lysines) into the vector space,
a ‘maximum margin hyperplane’ that separates the two datasets
is created. Here, the feature space is the sequence context of the
acetylation site. For the classification of a new instance—in this
case the sequence to be analyzed for possible acetylation—it has to
be transformed into the feature space and categorized depending on
the vector localization relating to the separating hyperplane.

We took advantage of the large number of in vivo acetylation
sites from our human dataset (Choudhary et al., 2009) to create the
first high-accuracy acetylation site predictor and make it publicly
available via PHOSIDA.

2 METHODS

To train and test the acetylation site predictor, we used 3417 in vivo
acetylation sites with their surrounding sequences as the positive set. To
create a negative set of the same size, we randomly selected 3417 lysines
from identified human peptides that have not been found to be acetylated
according to the MAPU database (Gnad et al., 2009).

Initially, we randomly split the dataset into a training set (70%) and
a test set (30%). Consequently our training set contained 4784 samples
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(2392 positive and 2392 negative instances), while the test set contained
2030 samples (1015 positive and 1015 negative instances). To select the
model, we investigated several common kernel functions [Gaussian radial
basis function (RBF), linear, polynomial and sigmoid] and trained the SVM
on the basis of two to eight amino acids surrounding the site to the N- and
C-terminus as described (Gnad et al., 2007). Each dimension is defined by
the position within the surrounding region and the amino acid type. The
possible values in each dimension are 0 and 1. Initially, for a given sequence
all dimensions have value 0. Each amino acid type is encoded by an integer
N ranging from 1 to 20 and the corresponding dimension (i*20 + N) has the
value 1 if the amino acid is in position i relative to the site.

A few sites out of the negative set may turn out to be acetylation
sites in future experiments. This problem was addressed by optimizing the
‘C parameter’ of the SVM, which controls the softness of the margin. For
each kernel and for each surrounding sequence length, we optimized the
parameters C and y by varying them from 270 to 20 in multiplicative steps
of two and chose the best combination of both parameters out of the 21 x 21
possibilities. For the polynomial function, we optimized d by varying from
1 to 10. The optimization was based on a 10-fold cross-validation on the
training set. The kernel functions are as follows (u and v present feature
vectors):

linear: k(u,v)=u'-v

polynomial : k(u,v)=(1+y-u'-v)¢
RBF: k(u, v) =e 7 1=

sigmoid: k(u,v)=tanh(y-u-v)

Having selected the best performing kernel function and surrounding
sequence size, the accuracy of the optimal model was finally determined
by using the test set.

The SVMs were implemented using the C# programming language.
The acetylation predictor is available online via the PHOSIDA database
(http://www.phosida.com). It enables web users to predict acetylation sites
within any input protein sequence using a specified precision—recall cutoff.
PHOSIDA lists predicted acetylated sites along with the true-positive rate
that corresponds to the resulting score.

3 RESULTS AND DISCUSSION

The 10-fold cross-validation-based training showed that the RBF
function (with C =1, y=0.25) along with input sets that comprise
the site with four amino acids to both termini was the most powerful
model. Notably, the precision—recall curves did not yield appreciably
higher accuracies for larger window sizes. The corresponding
precision—recall curve is shown in Figure 1. On the test set,
at the score cutoff yielding 77% precision and 77% recall in
the training set, the predictor generated 78% true positives and
78% true negatives, verifying the expected performance.

We also applied our test set to the SVM-based acetylation
predictor LysAcet (Li et al., 2009) and the clustering-based
prediction method PredMod (Basu et al., 2009). These predictors
achieved true-positive rates of 53 and 25%, and true-negative rates
of 52 and 75%, respectively. The lower accuracies in comparison to
our predictor are likely caused by the smaller input datasets used
in developing them. PredMod, for example, was based on only
56 lysines of the major human core histones.

A comparison with the motif-based prediction of acetylation sites
(Schwartz et al., 2009) also showed that our predictor yields higher
specificities at any given sensitivity value, which might also result
from the quality of our data. Schwartz et al. (2009) used acetylation
sites whose accuracy is not easy to determine because they have not
yet been published.

The good performance of our predictor indicates stringent
sequence constraints on acetylation modification recognition
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Fig. 1. Precision-recall curve for acetylation site prediction. The line
presents the trade-off between false positives and false negatives.

patterns that are readily distinguished from the sequences
surrounding unmodified lysines. In contrast, other PTMs including
phosphorylation have less readily detectable primary sequence
preferences.

Interestingly, our previous large-scale acetylation study showed
relatively high overlap of the measured human acetylome in the
three cell lines studied and the fact that it covered most of the
in vivo sites described in the literature (Choudhary et al., 2009).
This suggests that a substantial proportion of all acetylation sites
was sampled. As mentioned above, our observation that acetylation
sites can be predicted quite accurately implies relatively clear
sequence constraints. It also suggests a limited number of possible
acetylation sites, which apparently are already well sampled in vivo
identification by high accuracy mass spectrometry.

However, there are sites that have not or cannot easily be detected
via mass spectrometry and for these our predictor provides valuable
information. It can also be applied to predict acetylated sites in
proteins of species that are closely related to human and whose
acetylome has not been measured so far.

In the case of phosphorylation, we have previously found that
species-specific predictors improve accuracy for more distantly
related organisms (Hilger et al., 2009). As more lysine acetylomes
of other organisms are determined by high-resolution mass
spectrometry, it will be interesting to see if our predictor is also
capable to predict acetylation sites of other species or whether
species-specific lysine acetylation predictors will be required.
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