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Glutamine, arginine and the amino acid transporter Pt-CAT11 play important
roles during senescence in poplar
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BP 70239, F-54506 Vandoeuvre-les-Nancy Cedex, France and 2UMR INRA 1088/CNRS 5184/Université Bourgogne,
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† Background and Aims Nitrogen (N) availability in the forest soil is extremely low and N economy has a special
importance in woody plants that are able to cope with seasonal periods of growth and development over many
years. Here we report on the analysis of amino acid pools and expression of key genes in the perennial species
Populus trichocarpa during autumn senescence.
† Methods Amino acid pools were measured throughout senescence. Expression analysis of arginine synthesis
genes and cationic amino acid transporter (CAT) genes during senescence was performed. Heterologous
expression in yeast mutants was performed to study Pt-CAT11 function in detail.
† Key Results Analysis of amino acid pools showed an increase of glutamine in leaves and an accumulation of
arginine in stems during senescence. Expression of arginine biosynthesis genes suggests that arginine was pre-
ferentially synthesized from glutamine in perennial tissues. Pt-CAT11 expression increased in senescing leaves
and functional characterization demonstrated that Pt-CAT11 transports glutamine.
† Conclusions The present study established a relationship between glutamine synthesized in leaves and arginine
synthesized in stems during senescence, arginine being accumulated as an N storage compound in perennial
tissues such as stems. In this context, Pt-CAT11 may have a key role in N remobilization during senescence
in poplar, by facilitating glutamine loading into phloem vessels.

Key words: Nitrogen metabolism, senescence, glutamine, arginine, cationic amino acid transporters, storage
protein, Populus trichocarpa.

INTRODUCTION

Seasonal nitrogen (N) cycling is an adaptation of plants to
winter cold seasonal climates in which nutrients (mostly N)
are often considered to be the major growth-limiting factor
(Cooke and Weih, 2005). Nitrogen translocation from senes-
cing leaves to over-winter storage sites is a common feature
of temperate deciduous trees (Ryan and Bormann, 1982).
Poplar is extremely efficient at N conservation since .80 %
of the whole-tree nitrogen content is conserved during dor-
mancy (Pregitzer et al., 1990). During autumnal leaf senes-
cence, there is a functional shift in leaf metabolism from
resource assimilation to resource remobilization and export.
N-rich amino acids and other mobile nutrients are transported
via the phloem from senescing leaves to perennial tissues
where they are used to synthesize proteins (Sauter et al.,
1989; Hörtensteiner and Feller, 2002). Proteins represent the
major fraction of the stored N, and vegetative storage proteins
(VSPs) represent the major form of reduced N storage in vege-
tative tissues of both annual and perennial plants (Staswick,
1994; Stepien et al., 1994). The bark storage protein (BSP)
family comprises the major VSPs in Populus. During
autumn, BSPs accumulate in the bark parenchyma and
xylem cells of the main stem, branches and roots of the tree
(Sauter et al., 1989).

Amino acids are the currency of N exchange between source
and sink tissues in plants (Bush, 1999). Glutamine is the pre-
dominant translocated form for organic N in poplar (Dickson,
1979; Sauter and van Cleve, 1992) and is preferentially trans-
ported through the stem to developing leaves via a xylem to
phloem transfer facilitated by ray cells (Dickson et al.,
1985). Nevertheless, the amino acid composition of xylem
sap exhibits seasonal variations. During the wintering phase,
arginine is the major amino acid in bark and xylem of
poplar, whereas at the time of budding and growing, glutamine
and glutamate become dominant (Sagisaka, 1974). These vari-
ations in amino acid pools could be associated with variations
in expression of amino acid transporter genes not only in
storage tissues but also in sieve elements which allow amino
acid distribution in the whole plant.

In plants, the majority of genes encoding putative amino
acid transporters can be classified into two major groups: the
amino acid transporter family (ATF) and the amino acid poly-
amine choline (APC) superfamily (Wipf et al., 2002). Most of
the amino acid transporters from plants that have been charac-
terized functionally belong to the ATF superfamily, with the
amino acid permease (AAP) family being the best studied sub-
family (Boorer et al., 1995; Fischer et al., 1995, 2002; Boorer
and Fischer, 1997; Okumoto et al., 2002, 2004). In plants,
APC amino acid transporters are poorly understood and have
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been described only in Arabidopsis thaliana. APC transporters
of the L-type amino acid transporter (LAT) sub-family (five
members) have not been characterized and only a few
members of the cationic amino acid transporters (CAT)
family have been studied (Frommer et al., 1995; Su et al.,
2004; Hammes et al., 2006). They contain between 11 and
14 putative transmembrane (TM) domains and they are high-
affinity basic amino acid transporters. They are located in
the plasma membrane or in the vacuolar membrane
(Frommer et al., 1995; Su et al., 2004; Hammes et al.,
2006). It has been demonstrated that At-CAT1 is expressed in
leaves, flowers and developing siliques, and transcripts were
specifically localized in major veins of leaves and roots
(Frommer et al., 1995). It has been suggested that At-CAT1
might play multiple roles in phloem physiology, from
phloem loading to providing amino acids for developing
embryos. Moreover, At-CAT1 is likely to be a proton-driven
high-affinity transporter that transports mainly cationic
amino acids (Frommer et al., 1995). At-CAT2 is probably
localized to the tonoplast and may be the long-sought vacuolar
amino acid transporter (Su et al., 2004). At-CAT5 functions as
a high-affinity, basic amino acid transporter at the plasma
membrane. Expression profiles suggest that At-CAT5 may
function in the re-uptake of leaked amino acids at the leaf
margin (Su et al., 2004). At-CAT8 is expressed in young and
rapidly dividing tissues such as young leaves and root apical
meristem. At-CAT8 is also localized to the plasma membrane
(Su et al., 2004). At-CAT6 has a high affinity for cationic
amino acids and is also likely to be energized by protons
(Hammes et al., 2006). At-CAT6 transports large, neutral
and cationic amino acids in preference to other amino acids
and plays a role in supplying amino acids to sink tissues of
plants and nematode-induced feeding structures.

As exemplified above, N storage and cycling have tra-
ditionally been investigated at the molecular physiology and
ecophysiology scales. Taking advantage of the annotated
Populus trichocarpa (Nisqually 1) genome (Tuskan et al.,
2006), we present here the analysis of amino acid pools in
different organs of poplar during autumn and winter, com-
bined with the expression analysis of genes encoding
enzymes of arginine biosynthesis and genes encoding CAT
members. Finally, we also characterize Pt-CAT11 by heter-
ologous expression in yeast and show that it preferentially
transports glutamine.

MATERIALS AND METHODS

Plant material

Leaves from 1- and 2-year-old stems were sampled from free-
growing Populus trichocarpa trees at the University of Nancy
campus. About 20 leaves and four stems were sampled at 14 h
for every time point, frozen in liquid nitrogen and stored
at 280 8C. Leaves were sampled on 27 October, 23
November, 5 December and 12 December. This latter point
corresponds to a period just before leaf fall. Stems were also
sampled on 8 January and 2 February. These two dates
correspond to the wintering phase.

Semi-quantitative RT–PCR

Total RNA extraction was performed with the RNeasy
Plant Mini kit (Qiagen, Darmstadt, Germany) from approx.
100 mg of frozen tissues of poplar. To remove contaminating
genomic DNA, the samples were treated with DNase I
(Qiagen), as recommended by the manufacturer. To obtain
cDNA, 500 ng of total RNA were annealed to oligo(dT)
primers (Promega, Madison, WI, USA) and reverse tran-
scribed using reverse transcriptase (Eppendorf, Hamburg,
Germany) at 42 8C for 90 min. Each reaction was set up in
three biological replicates. For each Pt-CAT, the PCR
program was as follows: 94 8C for 3 min and 35 cycles of
94 8C for 30 s, 58 8C for 45 s and 72 8C for 1 min. The
whole set of Pt-CAT genes (12 genes) was tested by reverse
transcription–PCR (RT–PCR) in every experiment per-
formed, but only Pt-CAT genes detected and well expressed
are retained in figures for greater clarity. To study the
expression of genes involved in the pathway of arginine bio-
synthesis, cDNA corresponding to argininosuccinate lyase
(AL), argininosuccinate synthase (AS), ornithine transcarba-
moylase (OTC) and carbamoyl-phosphate synthase (CPS)
were also amplified using the same PCR program as
described above. The numbers of genes coding for AL, AS,
OTC and CPS were one, two, one and two, respectively.
When two genes were coding for an enzyme, primers were
designed for the gene with the highest expressed sequence
tag (EST) numbers in poplar databases. Control PCRs were
sequenced to ensure that only one gene was amplified.

A cDNA fragment corresponding to the constitutively
expressed ubiquitin gene was amplified simultaneously (28
cycles) and used as a control. Cysteine protease (CP) was
amplified (28 cycles) and used as control of the senescence
state of leaves. The sequences of the gene-specific oligonu-
cleotides, designed in the non-conserved regions of the
genes and used for RT–PCR, are listed in Table 1. The ethi-
dium bromide-stained agarose gels were imaged on a
Bio-Rad GelDoc 2000 transilluminator, and quantitative data
were determined using Quantity One software (Bio-Rad,
Hercules, CA, USA). Signal intensities were normalized to
the constitutively expressed poplar ubiquitin gene.

Amino acid extraction and analysis

Amino acids were extracted twice from 10–20 mg of freeze-
dried plant tissues with 300 mL of 70 % (v/v) cold ethanol.
The samples were dried under N2 using a Reacti-Therm
Heating Module (Pierce, Rockford, IL, USA) and resuspended
in 400 mL of 0.1 N HCl. Extracts and standards were loaded
onto a Dowex 50WX-8 cation ion exchange column
(Sigma-Aldrich, St Louis, MO, USA). After two successive
washing steps with sterile water, amino acids were eluted
with 4.5 N ammonia. Aliquots of purified samples were then
transferred to microvials, dried in a Reacti-Therm Heating
Module (Pierce) and derivatized according to Javelle et al.
(2003). Gas chromatography and mass spectrometry
(GC-MS) analysis was performed as described previously
(Javelle et al., 2003).

Couturier et al. — Amino acid transporter and poplar senescence1160



Statistical analysis

The effects of the senescence state on tissue amino acid con-
centrations, soluble protein concentrations and gene expression
were tested with a one-way analysis of variance (ANOVA)
using the SYSTAT statistical package (SYSTAT Inc.,
Evanston, IL, USA). The Tukey test was used for all pairwise
comparisons of the mean responses to the different treatment
groups.

Protein extraction and analysis

Small pieces (about 50–100 mg) of stems were ground with
a mortar and pestle cooled in liquid nitrogen in 2 mL of 50 mM

Tris–HCl pH 8.0, 1 mM PMSF (phenylmethylsulfonyl fluor-
ide) and 50 mM mercaptoethanol. Samples were then mixed
by vortexing, and held at 4 8C for 30 min. Samples were cen-
trifuged at 13 000 rpm for 15 min and the supernatants col-
lected. Proteins were precipitated with acetone at 220 8C for
2 h. Aliquots of 100 mL were centrifuged at 13 000 rpm for
15 min and proteins were resuspended with 50 mL of 0.2 %
SDS. Protein concentration was determined by the bicinchoni-
nic acid (BCA) colorimetric assay kit (Interchim, Montluçon,
France; Brown et al., 1989). The BCA procedure followed the
manufacturer’s recommendations, with bovine serum albumin

as a standard and absorbance measured at 562 nm. Protein
concentrations were determined for duplicate sub-samples
for each replicate.

DNA constructs

The predicted coding sequence corresponding to Pt-CAT11
(1767 bp) was amplified by PCR using cDNA generated for
RT–PCR studies (see above) and the following primers:
Pt-CAT11fow (5′-CCCGAATTCATGAGGAGGAGGAGGG
GATGT-3′) and Pt-CAT11rev (5′-CCCCTCGAGTCATGAA
CCATTCCGGGAAGG-3). The amplification product was
cloned into the EcoRI/XhoI sites of the yeast expression
vector pYES2 and sequenced to confirm that no modifications
occurred.

Yeast transformation

The yeast strains 22D8AA (MATa, ura3-1, gap1-1, put4-1,
uga4-1, can1::HisG, lyp1/alp1::HisG, hip1::HisG, dip5::HisG,
ura3-1) (Fischer et al., 2002) and JA248 (MATa ura3D gap1D
gnp1D agp1D) (Velasco et al., 2004) were transformed with
pYES2 harbouring the cDNA sequence of Pt-CAT11. Yeast trans-
formants were selected on synthetic dextrose minimal medium.
Yeast strain 22D8AA complementation tests were performed on
N-free medium supplemented with 20 g L21 Gal and either 1, 3
or 6 mM L-proline, L-citrulline, L-aspartate or L-glutamate as
sole N source, whereas yeast strain JA248 complementation
tests were performed on N-free medium supplemented
with 20 g L21 Gal and either 0.5, 1, 2 or 5 mM L-glutamine as
sole N source.

Transport measurements

For Saccharomyces cerevisiae uptake studies, yeast cells
were grown to logarithmic phase. Cells were harvested at an
OD600 of 0.5, washed twice in water, and resuspended in
buffer A (0.6 M sorbitol, 50 mM potassium phosphate, at the
desired pH) to a final OD600 of 5. Prior to the uptake measure-
ments, the cells (100 mL) were supplemented with 5 mL of 1 M

galactose and incubated for 5 min at 30 8C. To start the reac-
tion, 100 mL of this cell suspension was added to 100 mL of
the same buffer containing at least 18.5 kBq of
[3H]glutamine, and unlabelled glutamine to the concentrations
used in the experiments. Sample aliquots of 50 mL were
removed after 30, 60 and 120 s, transferred to 4 mL of
ice-cold buffer A, filtered on glass fibre filters and washed
twice with 4 mL of buffer A. The uptake of tritium was deter-
mined by liquid scintillation spectrometry.

Phylogenetic analyses

CAT sequences were retrieved by text and Blast searches
from the P. trichocarpa whole genome database (version
1.1) at the US Department of Energy Joint Genome Institute
(JGI) (http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.home.
html). The curated poplar amino acid sequences were used
to search against five other genomes from photosynthetic
organisms using BLASTP or TBLASTN. The genomes
are available at the following websites, for A. thaliana

TABLE 1. Primers used for RT–PCR analysis

Name Sequence

CAT1 f ACCATTTATGCCATATGATGTCCG
CAT1 r GGTTCAACTTGTGATGACACAAC
CAT2 f TTCCTCTGCATTCGCTGCATAT
CAT2 r TAGTGACATCTGGGCTACCTGTA
CAT3 f GTCCTCTTCGTTTTACAACG
CAT3 r TTTCTCCAGAGCTCCGATAA
CAT4 f TTTGCATAGGAGAAGGTGCAGCAT
CAT4 r GACAAAGCAACGCCTATACCT
CAT5 f ACAGCACTGAATACTGCTGTA
CAT5 r GCTAGCTTCAAGAGGTTTGTT
CAT6 f TACATGTGTGTTATCGGACGGTC
CAT6 r TTACACTTTGAAAGAATTAATATGGTCCTCGC
CAT7 f CTGTCTTTGCCATAGCACAAAG
CAT7 r CTGGCCTTTAGTGTGGTCATG
CAT8 f GCCTCTATTGCTACTGCTTTTATC
CAT8 r TCCAAGTGATCCAACCATTAAGCT
CAT9 f CAGCTTTCAATGAGCTTACTGCTT
CAT9 r ACAAGACTTCCAATGATGCCT
CAT10 f ACAGCTTCAATTGCACTCTTTACC
CAT10 r TCATAGCAGCTGAATATCTAGC
CAT11 f TCATCAAGAAGGTGGAGACCAAGA
CAT11 r GGCAGCACAAACAAAAACAGAT
CAT12 f TGATCATCAAGAAGAAGGGCTG
CAT12 r CACAACACCAACAAGAACAGCA
Ubq f GCACCTCTGGCAGACTACAA
Ubq r TAACAGCCGCTCCAAACAGT
CP f AGTCACTGAGAAAGGCTGTGG
CP r CCAAATGGATTGTTCTTGCTC
AS f AGCGGAAATACTTATTGGGGACGT
AS r ACAAGTTCCTGTCCCTGCTATA
AL f GTTCCTGGTTACACACATTTGCAA
AL r ACAGGTTCCTTGTCTTCCTGCAAA
OTC f ATGGCCTGAACTATAACCATCC
OTC r CTCGATCTTGCTGATTCCAGC
CPS f CGGTGTCCTAACCACAGAAGAATT
CPS r CCTCAGGATGGTATTGTAGAGA
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(http://www.arabidopsis.org/), Oryza sativa (http://rice.
plantbiology.msu.edu/), Vitis vinifera (http://www.genoscope.
cns.fr/spip/Vitis-vinifera-whole-genome.html) and Sorghum
bicolor (http://genome.jgi-psf.org/Sorbi1/Sorbi1.home.html).
Amino acid sequences were aligned by CLUSTALW and
imported into the Molecular Evolutionary Genetics Analysis
(MEGA) package version 4.1 (Tamura et al., 2007).
Phylogenetic analyses were conducted using the neighbor–
joining (NJ) method implemented in MEGA, with the pairwise
deletion option for handling alignment gaps, and with the
Poisson correction model for distance computation.
Bootstrap tests were conducted using 1000 replicates. Branch
lengths are proportional to phylogenetic distances. All
protein sequences and corresponding accession numbers can
be found in the databases mentioned above and as
Supplementary Data (available online).

RESULTS

Glutamine–arginine relationships during senescence

Amino acid concentrations were investigated in the lamina
(Fig. 1A), central vein (Fig. 1B) and petiole (Fig. 1C) of
poplar leaves. In the lamina, the total amino acid concentration
did not change much during senescence, varying between 5
and 8 nmol mg21 d. wt. Amino acid profiling indicated that
the glutamate (and aspartate; not shown) concentration
decreased whereas that of glutamine (and asparagine; not
shown) increased during leaf senescence (Fig. 1A). In the
central vein and petiole, the total amino acid concentration
increased by approx. 6-fold from 27 October to 5 December,
thereafter decreasing at the latest sampling date (Fig. 1B, C).
Glutamine was the predominant amino acid before leaf fall,
representing 23 and 34 % of the total amino acid pool in the
central vein and petiole, respectively, followed by leucine, iso-
leucine and valine.

Amino acid pools were investigated in 1-year-old (Fig. 2A)
and 2-year-old (Fig. 2B) stems. In October, total amino acid
concentrations were ,15 nmol mg21 d. wt and arginine was
almost undetectable in 2-year-old stems. During autumnal
senescence, total amino acid pools increased by 20- and
37-fold in 1- and 2-year-old stems, respectively, when
measured at their maximal level. Noticeably, arginine rapidly
became the predominant amino acid accumulated in stems,
accounting for 91 and 92 % in 1- and 2-year-old stems,
respectively, on 8 January. Arginine accumulation was slightly
delayed in 2-year-old stems, peaking on 5 December in
1-year-old stems and on 12 December in 2-year-old stems
(Fig. 2).

The amount of total soluble protein was investigated in 1-
and 2-year-old stems (Fig. 3). During autumnal senescence,
soluble protein content of 2-year-old stems increased by
.3-fold between 27 October and 8 January. In contrast,
there were no statistically significant changes in soluble
protein content of 1-year-old stems during senescence
(Fig. 3A). Soluble proteins from 2-year-old stems were ana-
lysed by SDS–PAGE (Fig. 3B). Analysis revealed the pres-
ence of two major proteins with relative molecular masses of
between 30 and 37 kDa. Interestingly, the content of these
two proteins increased during autumn and winter. These

accumulating proteins correspond to the well-characterized
BSPs of poplar.

The metabolic route to arginine synthesis in plants involves
two distinct processes: synthesis of ornithine from glutamate
and synthesis of arginine from the ornithine intermediate
(Slocum, 2005). Considering the striking accumulation of argi-
nine during senescence, some of the genes involved in its bio-
synthesis were investigated: CPS, OTC, AS and AL genes. In
order to investigate their expression during senescence in
poplar, total RNAs were extracted from laminae, petioles
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FI G. 1. Quantification of amino acids by gas chromatography–mass spec-
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senescence. Values are expressed as the mean+ s.e. of three replicate exper-
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letter are not significantly different, according to ANOVA at P , 0.05.
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and 2-year-old stems sampled at different times during autumn
and winter. AL transcripts were undetectable under conditions
used in these experiments (not shown). In laminae, AS, CPS
and OTC transcripts decreased at the end of the senescence
period (Fig. 4A). The senescence state of leaves was confirmed
by the parallel amplification of a CP transcript (Bhalerao et al.,
2003; Andersson et al., 2004), which was highly expressed on
5 December. In petioles, CPS and OTC transcripts were less
abundant than AS transcripts during autumnal senescence
(Fig. 4B). Moreover, AS and OTC were maximal on 23
November. In 2-year-old stems, as observed in laminae and
petioles, OTC was weakly expressed and, as observed for
AS, its expression decreased after 23 November (Fig. 4C). In
contrast, CPS expression increased by 11-fold during leaf
senescence and was maximal on 5 December (Fig. 4C).

Pt-CAT11 is a glutamine transporter upregulated during
senescence

The JGI P. trichocarpa gene search mode revealed the exist-
ence of 12 CAT gene models. As described for the Arabidopsis
CAT family, plant CAT members can be phylogenetically
grouped into four small sub-groups (Fig. 5). Sub-group 1 con-
tains the members CAT1, CAT5, CAT8, CAT11 and CAT12,
whereas sub-group 2 includes the members CAT6, CAT7
and CAT10. Interestingly sub-group 3 only includes CAT9
whereas sub-group 4 contains CAT2, CAT3 and CAT4.
Analysis of the assembled genome revealed relatively recent

whole-genome duplication shared among all modern taxa in
Salicaceae. A second, older duplication appears to be shared
with the Arabidopsis lineage (Tuskan et al., 2006). These
duplicated genes originated through very recent small-scale
gene duplications and one relatively recent large-scale gene
duplication event (Sterck et al., 2005). A detailed analysis of
duplication events for the Pt-CAT members revealed that
poplar CAT6, CAT7 and CAT9 derived from a common
ancestor through an ancient and a recent duplication
event, and that poplar CAT2 and CAT3 derived from a
common ancestor through a recent duplication event. The
same analysis also revealed that poplar CAT11 and CAT12
derived from a common ancestor through a recent duplication
event.

In Arabidopsis, members of the CAT family have been
characterized as high affinity basic amino acid transporters.
For instance, At-CAT1 and At-CAT5 mediate high-affinity
transport of arginine, lysine and histidine (Frommer et al.,
1995; Su et al., 2004). To complement previous expression
studies, we extracted GENEVESTIGATOR (Zimmermann
et al., 2004; www.genevestigator.ethz.ch) data for the
Arabidopsis CAT gene family, which indicated that At-CAT2
and At-CAT5 were mostly upregulated during leaf senescence.

To investigate the potential role of Pt-CAT members during
senescence, transcript levels were estimated in laminae,
petioles and 2-year-old stems sampled at different times
during autumn and winter. Pt-CAT3 and Pt-CAT4 transcripts
remained high throughout the season and were not affected
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by leaf senescence (Fig. 6A). Similarly, Pt-CAT8 was weakly
expressed and poorly affected by senescence in these exper-
iments (Fig. 6A). Pt-CAT1, Pt-CAT2 and Pt-CAT12 were
expressed in leaves in October and November but not
expressed at the end of the senescing period (Fig. 6A).
Conversely, Pt-CAT10 and Pt-CAT11 showed increased
expression levels in senescing leaves in December compared
with leaves collected in October (Fig. 6A). These expression
patterns could be related to amino acid concentration and
more particularly to glutamine. Indeed, the amino acid concen-
tration of laminae displayed the same variations during autumn
(Fig. 2A), and regression analysis between glutamine concen-
tration and Pt-CAT11 expresssion in laminae revealed a good
correlation (R2 ¼ 0.994). All other poplar CAT members
were also analysed but were not detected in these samples.

As observed in laminae, Pt-CAT3 and Pt-CAT4 were
strongly expressed in petioles but transcript levels of these
genes were poorly affected by leaf senescence (Fig. 6B).
Pt-CAT1, Pt-CAT9 and Pt-CAT12 showed a similar expression
pattern with more transcripts detected on 23 November
(Fig. 6B). Pt-CAT2 showed increased expression levels in
petioles in December compared with petioles collected in
October (Fig. 6B).

Interestingly, although not expressed in laminae and only
poorly expressed in petioles, Pt-CAT9 was highly expressed
in 2-year-old stems, just before leaf fall. In contrast,
Pt-CAT2 was very weakly expressed in 2-year-old stems in
autumn and in winter (Fig. 6C). Pt-CAT12 presented the
same expression pattern in 2-year-old stems, in laminae and
in petioles (Fig. 6C). As observed in laminae and petioles,
Pt-CAT3 transcript levels were high and barely affected by
senescence in 2-year-old stems (Fig. 6C). Interestingly,
Pt-CAT4 and Pt-CAT9 transcript levels were high during
autumn senescence and decreased in 2-year-old stems after
leaf fall (Fig. 6C). More surprising, Pt-CAT11 expression
was subjected to quite high variations (Fig. 6C) which could
be related to amino acid concentration. Indeed, the amino
acid concentration of 2-year-old stems displayed the same
variations as Pt-CAT11 expression during autumn and winter
(Fig. 2B). Regression analysis between total amino acid
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concentration and Pt-CAT11 expresssion did not reveal a cor-
relation between these two parameters (R2 ¼ 0.295).
Regression analysis between glutamine concentration and
Pt-CAT11 expression, however, reveals a better correlation
(R2 ¼ 0.730). As observed in laminae, Pt-CAT11 expression
in stems seems to be related to glutamine concentration. All
other poplar CAT genes were also analysed but were not
detected in these experiments.

In order to determine the function of Pt-CAT11, yeast com-
plementation experiments were performed with the yeast
mutants 22D8AA and JA248. The 22D8AA strain is unable
to use arginine, aspartate, citrulline, g-aminobutyric acid
(GABA), glutamate and proline efficiently as sole N sources
(Fischer et al., 2002) and the JA248 strain is unable to use glu-
tamine efficiently as sole N source (Velasco et al., 2004). As
controls, strains 22D8AA and JA248 were transformed with
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the expression vector pYES2. Transformation with the yeast
expression vector pYES2 bearing the Pt-CAT11 coding
sequence under the control of the GAL1 promoter conferred
the ability of JA248 to grow in the presence of 0.5 mM gluta-
mine (Fig. 7A). The transport of glutamine by Pt-CAT11 was
further confirmed by uptake experiments, which demonstrated
that Pt-CAT11-mediated [3H]glutamine uptake was concen-
tration dependent and showed saturable kinetics with an
apparent Km value of 690 mM (Fig. 7B, C). Transformation
with the yeast expression vector pYES2 bearing the
Pt-CAT11 coding sequence under the control of the GAL1 pro-
moter conferred the ability of 22D8AA to grow when supplied
3 and 6 mM proline, GABA or citrulline as the sole N source
but not when supplied aspartate or glutamate (not shown).
Yeast transformed with Pt-CAT11 showed no growth on
medium containing 1 mM arginine as sole N source (data not
shown).

DISCUSSION

Glutamine is the key metabolite to transfer N from senescing
leaf to perennial tissues

Nitrogen economy has a special importance in woody plants
that are able to cope with seasonal periods of growth and
development over many years. As N availability in the forest
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soil is extremely low, efficient mechanisms are required for the
assimilation, storage, mobilization and recycling of inorganic
and organic forms of N. Seasonal N cycling is an adaptation
of plants to winter cold seasonal climates in which nutrients
(mostly N) are often considered to be the major growth-
limiting factor (Cooke and Weih, 2005). In the N metabolism
of conifers, the cyclic interconversion of arginine and the
amides glutamine and asparagine plays a central role, and its
regulation is critical to maintain the N economy of these long-
living plants (Canovas et al., 2007).

At the beginning of autumn, the major amino acids found in
laminae were glutamate and glutamine. During senescence the
glutamate concentration decreased whereas that of glutamine
increased. The same variations were observed for aspartate
and asparagine but to a smaller extent (Fig. 1A). It has been
demonstrated that N content decreased in autumn leaves of
aspen and about 80 % of total leaf N was withdrawn during
autumn senescence (Keskitalo et al., 2005). Amino-N pools
may contribute only slightly to this decrease, while other
N-containing compounds (chlorophyll for instance) may be
of more importance in this process.

On the other hand, qualitative changes in amino acid con-
centration also revealed this N remobilization process. In
senescing leaves, a large amount of ammonium is produced
as a result of protein hydrolysis (Hörteinsteiner and Feller,
2002). Ammonium is assimilated into the glutamine amide
group, and the specific expression of the glutamine synthetase
gene NtGLN1;3 was observed in senescing leaves of Nicotiana
tabacum (Brugiere et al., 2000). Moreover, it has been demon-
strated recently that expression of several ammonium transpor-
ter genes in poplar (PtAMT1;5, PtAMT1;6 and PtAMT3;1)
increased with leaf maturation, suggesting that they are
specifically recruited to ensure ammonium assimilation
during the process of leaf senescence (Couturier et al.,
2007). Whereas glutamate decreased with ageing, the gluta-
mine pool increased, suggesting that glutamine biosynthesis
had exhausted the glutamate pool.

In the central vein and petiole, amino acid concentrations
increased during senescence until 5 December, before leaf
fall (Fig. 1B, C). Glutamine was the major amino acid
found in the central vein and petiole, whereas glutamate rep-
resented ,3 % and 6 %, respectively in these tissues. The
increase in glutamine concentration in the central vein and
petiole suggests an export from leaves to perennial organs
during autumn (Fig. 1). It can be also noted that leucine, iso-
leucine and valine concentrations increased strongly in the
central vein and petiole during senescence, which was not
observed in the lamina. Interestingly, pools of leucine and
isoleucine also increased with ageing in Arabidopsis leaves
(Diaz et al., 2005). It has been suggested that isoleucine
and leucine biosynthesis exhausted the aspartate pool. The
same processes could occur in poplar leaves during
senescence.

During autumn leaf senescence, there is a functional shift in
leaf metabolism from resource allocation to resource remobili-
zation and export. Rubisco breakdown during autumn leaf
senescence in poplar (Brendley and Pell, 1998) accounts for
a notable proportion of the N exported from leaves (Titus
and Kang, 1982; Millard and Thompson, 1989). N-rich
amino acids are transported via the phloem from senescing

leaves to perennial tissues, where they are used to synthesize
proteins (Sauter et al., 1989). During autumn, BSPs accumu-
late in perennating tissues such as bark, wood and roots
(Sauter and van Cleve, 1990; Langheinrich and Tischner,
1991). Interestingly, arginine and soluble protein contents
increased during autumn and were higher after leaf fall
(Figs 2 and 3). This was mostly evidenced for arginine,
which increased from undetectable levels in October to
.200 nmol mg21 d. wt on 12 December in 2-year-old stems
(Fig. 2). Arginine concentration decreased after leaf fall.
Furthermore, as observed in several Populus species
(Langheinrich and Tischner, 1991), two major polypeptides
accumulated in 1- and 2-year-old stems during autumn and
winter (Fig. 3B). Previous studies have demonstrated that
during the wintering phase, arginine was the major amino
acid in both bark and xylem (Sagisaka, 1974). It can be
noted that storage proteins are particularly rich in arginine
and in amide-containing amino acids (Müntz, 1998).
Arginine accumulation in poplar stems during autumn and
winter could therefore be considered as a temporary N
storage form that could be used thereafter for storage protein
synthesis.

Arginine is preferentially synthesized in perennial tissues

The fact that arginine was not detected in laminae, central
veins and petioles during senescence suggests that arginine
synthesis may occur in perennial tissues such as stems. The
metabolic route to arginine synthesis in plants involves two
distinct processes: synthesis of ornithine from glutamate and
synthesis of arginine from the ornithine intermediates
(Slocum, 2005). The second process requires the carbamoyl-
phosphate intermediate, which is generated from glutamine
via CPS which also contributes to nucleotide metabolism.
The CPS protein is made up of a small and a large subunit
(Slocum, 2005). Three others enzymes are involved in arginine
synthesis: OTC, AS and AL. A detailed expression analysis of
AS and OTC revealed that these genes were expressed in leaves
and petioles during autumn (Fig. 4A, B). However none of
these gene expression patterns followed the CP marker gene.
AS transcript levels were preferentially higher in autumn
than in winter (Fig. 4). OTC transcripts did not show variations
during senescence in leaves, petioles and stems (Fig. 4). In
contrast, the CPS gene expression level strongly increased in
stems during senescence (Fig. 4C), whereas it was weakly
detected in leaves and petioles (Fig. 4A, B). It also clearly
matched the expression of CP in leaves. Interestingly, stem
glutamine concentration increased from November to
January (data not shown) and carbamoyl-phosphate is gener-
ated from glutamine via CPS. In stems, glutamine could be
used for carbamoyl-phosphate synthesis and consequently for
arginine synthesis. In leaves, glutamine could be preferentially
used as a transport component from senescing leaves to
perennial poplar tissues. Nevertheless, it cannot be ruled out
that arginine could also be synthesized in leaf but to a
smaller extent. Indeed, in Arabidopsis senescing leaves, it
has been demonstrated that arginine content increased and
represented around 1 % of total amino acid content
(Diaz et al., 2005).
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Pt-CAT11 is a candidate for glutamine transfer
during the senescing process

In senescing leaves, production of glutamine increases and
glutamine is further loaded into central veins and petioles to
reach perennial tissues where it may be used for arginine syn-
thesis. We therefore looked at the genetic potential for loading
glutamine into the phloem, and more specifically we looked at
the expression levels of AAP and CAT amino acid transporters.
The AAP members were either not expressed in senescing
tissues or even not expressed in leaves at all. We therefore
did not focus much attention on this family.

Expression data for the Arabidopsis CAT gene family indi-
cated that At-CAT2 and At-CAT5 were upregulated during leaf
senescence. At-CAT2 is probably located in the tonoplast and
may be the long-sought vacuolar amino acid transporter (Su
et al., 2004). At-CAT5 functions as a high-affinity, basic
amino acid transporter in the plasma membrane and
At-CAT5 may function in reuptake of leaking amino acids at
the leaf margin (Su et al., 2004). In contrast to their
Arabidopsis orthologues (Fig. 5), Pt-CAT5 transcripts were
not detected and Pt-CAT2 was only expressed at the beginning
of senescence (Fig. 6A). However, Pt-CAT2 was strongly upre-
gulated in the petiole during senescence and very weakly
expressed in stems (Fig. 6B, C). Nevertheless, expression of
the orthologous genes of amino acid transporters may not be
similar because the pool of amino acids available for phloem
transport is differentially regulated in different species
(Delrot et al., 2001). A detailed analysis of each amino acid
transporter gene must be made before conclusions can be
drawn about the role of the different orthologues. Pt-CAT3
was highly expressed in laminae, petioles and stems and was
only slightly affected by senescence in leaves (Fig. 6).
Pt-CAT4 was also highly expressed in laminae, petioles and
stems but, in contrast to Pt-CAT3, it was downregulated in
stems during winter (Fig. 6). Pt-CAT9 transcripts were
weakly detected in petioles and strongly in stems (Fig. 6B,
C). Pt-CAT9 seems to be preferentially expressed in organs
containing sieve elements. In poplar senescing leaves,
Pt-CAT10 and Pt-CAT11 were upregulated during senescence
(Fig. 6A). Pt-CAT11 was not expressed in petioles but was
expressed in laminae and stems (Fig. 6). Pt-CAT11 expression
was upregulated in senescing leaves (Fig. 6A) and subject to
quite high variations in stems (Fig. 6C). Interestingly,
regression analyses have shown that in the lamina and stem,
Pt-CAT11 expression and glutamine concentration are related
and displayed variations of the same order (Figs 1A and 2B).

Functional analysis demonstrated that Pt-CAT11 restored
growth of the yeast mutant JA248 on low glutamine medium
(Fig. 7A). Additionally, Pt-CAT11 allowed growth of the
yeast mutant 22D8AA on medium containing neutral amino
acids (proline, citrulline and GABA) but not medium contain-
ing acid (aspartate and glutamate) amino acids or arginine.
Determination of kinetic parameters for [3H]glutamine
uptake by Pt-CAT11 in yeast revealed that it can transport glu-
tamine efficiently, with an apparent Km value of 690 mM

(Fig. 7B, C).
Most importantly, recent analysis of expression data showed

that Pt-CAT11 was highly and preferentially expressed in
phloem tissues (Courtois-Moreau et al., 2009). Taken together,

these data suggest that the major function of Pt-CAT11 is
related to the transport of amino acids, and notably glutamine,
from senescing leaves to sink tissues such as stems, thus facil-
itating N remobilization during senescence in poplar.

Conclusions

The analysis of amino acid pools in different organs showed
that N remobilization from leaves to perennial organs occurs in
poplar during autumn senescence. N-rich amino acids, such as
glutamine, are transported via the phloem from senescing
leaves to perennial organs, such as stems, where they are
used to synthesize storage proteins. The glutamine pools in
late autumn correlate with increased Pt-CAT11 expression,
which may function as a glutamine transporter for amino
acid transfer between source and sink tissues during senes-
cence processes in poplar. Arginine was being accumulated,
probably as an N storage compound, and would be preferen-
tially synthesized in stems, as indicated by the strong arginine
accumulation in stems during autumn and at the beginning of
winter and the large increases in CPS transcript levels during
autumn. Whether arginine would be further metabolized to
provide N for protein biosynthesis remains to be demonstrated.

The elucidation of amino acid concentrations and profiles
together with the characterization of a new amino acid trans-
porter (Pt-CAT11) may present a comprehensive foundation
for future studies on amino acid transport and metabolism
during autumn N remobilization in perennial plants.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and provide all protein sequences and correspond-
ing accession numbers that were used for the phylogenetic
analyses.
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