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Abstract
The epidermal growth factor receptor (EGFR) is a validated target in squamous cell carcinoma of
the head and neck (HNSCC). However, despite high expression of EGFR in these cancers, EGFR
inhibitor monotherapy has only had modest activity. Potential mechanisms of resistance to EGFR-
targeted therapies involve EGFR and Ras mutations, epithelial-mesenchymal transition, and
activation of alternative and downstream pathways. Strategies to optimize EGFR-targeted therapy
in head and neck cancer involve not only the selection for patients most likely to benefit but also
employing combination therapies to target the network of pathways involved in tumor growth,
invasion, angiogenesis, and metastasis.

1. Background
Epidermal Growth Factor Receptors in Squamous Cell Carcinomas of the Head and Neck

Epidermal growth factor receptor (EGFR) is a ubiquitously expressed transmembrane
glycoprotein in the ErbB/HER family of receptor tyrosine kinase. These receptors are
composed of an extracellular ligand-binding domain, a hydrophobic transmembrane segment,
and an intracellular tyrosine kinase domain. Binding of natural ligands (amphiregulin and
transforming growth factor alpha (TGF-α) in head and neck cancer) to EGFR results in a
conformational change in EGFR. This promotes homo- or heterodimerization with other ErbB/
HER family of receptors with subsequent autophosphorylation and activation of the tyrosine
kinase (1). This activation of EGFR leads to the initiation of intracellular signaling pathways
which regulate the activation of cell proliferation, invasion, angiogenesis, and metastasis (1).

High expression of EGFR occurs in most epithelial malignancies including head and neck
squamous cell carcinoma (HNSCC) (1). Elevated expression of EGFR in HNSCC correlates
with poor prognosis (1). Two therapeutic strategies have been implemented in the inhibition
of EGFR. The first utilizes monoclonal antibodies (mAb) to target the extracellular domain of
EGFR and the second targets the intracellular EGFR domain with small molecule tyrosine
kinase inhibitors (TKIs) (including gefitinib, erlotinib, and lapatinib). Despite near universal
expression of EGFR in HNSCC, treatment with these anti-EGFR agents has only been modestly
active in patients. Two FDA-approved monoclonal antibodies for targeting EGFR are
cetuximab (a chimeric IgG1 mAb) and panitumumab (a fully human IgG2 mAb). Preclinical
data from Bonner et al in 2000 showed that cetuximab and concurrent radiation resulted in a
greater decrease in cell proliferation in a number of HNSCC cell lines (2). A multicenter phase
III trial demonstrated an improvement in median overall survival in locoregionally advanced
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HNSCC patients treated with curative intent with definitive radiotherapy combined with
weekly cetuximab versus the same radiotherapy regimen alone (3). There was an improvement
in 3-year survival by 10% in patients receiving concurrent cetuximab and radiotherapy (3).
However, the efficacy of cetuximab with radiotherapy compared with standard concomitant
chemoradiotherapy remains under investigation. Preclinical data show that there is at least an
additive effect of both classes of EGFR inhibitors when combined with cisplatin in the
treatment of HNSCC (4).

Furthermore, cetuximab combined with platinum-fluorouracil chemotherapy improves
survival compared with platinum-fluorouracil alone in patients with recurrent or metastatic
HNSCC (5,6). Adding cetuximab increased median overall survival from 7.4 months in the
platinum chemotherapy-alone group to 10.1 months in the group receiving chemotherapy plus
cetuximab (7). In a phase II trial of gefitinib in patients with recurrent or metastatic HNSCC,
the overall response rate with gefitinib was 11% (8). In a similar population of recurrent and/
or metastatic HNSCC patients, erlotinib was shown by Soulieres et al to have a response rate
of 4% (9). A phase I study of chemoradiotherapy combined with lapatinib, a dual inhibitor of
EGFR and HER2, for locally advanced HNSCC reported an overall response of 81% (10).
BIBW2992, an irreversible dual inhibitor of EGFR and HER2 tyrosine kinase, which binds to
Cys773 of EGFR and Cys805 of HER2, is currently being evaluated in clinical trials for
HNSCC (11). A feature of BIBW2992 is its broad activity against multiple receptors in the
ErbB family making it theoretically more effectively against tumor cells containing several
ErbB family members and heterodimerizations. In preclinical studies it has been shown to
inhibit cellular proliferation of lung cancer cell lines resistant to erlotinib, and cause tumor
regression in xenografts and transgenic lung cancer models (11).

Mechanisms of Resistance to EGFR-Targeted Therapies
Even with high levels of EGFR expression within the tumor, clinical data demonstrate that
many patients are refractory to EGFR inhibitor treatment underscoring that simple EGFR
expression is not a reliable predictor of response to therapy. Primary resistance occurs in
patients who either do not achieve stable disease or who progress within months after an initial
clinical response while secondary or acquired resistance typically occurs after prolonged
treatment. The majority of patients with HNSCC will be resistant to EGFR inhibitors and the
mechanisms underlying this observation [Table 1] are beginning to be understood.

Among the first genetic alterations of the EGFR that have been identified, the type-III mutated
variant (EGFRvIII) is characterized by an in-frame deletion from exons 2 through 7 in the
extracellular domain which inhibits EGF and other EGFR ligands from binding and leads to
constitutive activation of its tyrosine kinase domain (1). Structural changes in extracellular
EGFR are hypothesized to affect the intracellular domain conformation and the ATP pocket
leading to the constitutive activation by EGFRvIII and its resistance to EGFR-targeted therapy
by monoclonal antibodies against the extracellular domain of EGFR (1). Irreversible EGFR
inhibitors such as BIBW2992 have the added advantage in preclinical studies of being effective
against EGFRvIII (12).

K-ras (v-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog) mutations also predict
resistance to EGFR inhibitors (Figure 1) (13). Retrospective analyses of clinical trials using
TKIs have demonstrated a significant decrease in time to progression and survival in the
presence of K-ras mutations in colorectal cancer (13). Data also suggest K-ras mutation status
to be predictive of lack of response to mAbs cetuximab and panitumumab in metastatic
colorectal cancer patients and is also associated with a worse prognosis (14,15). However, K-
ras mutations infrequently occur in HNSCC. Of the Ras proteins, however, H-ras mutations
in HNSCC are likely more common than K-ras mutations and may play an important role in
resistance to EGFR-targeted therapies (16,17).
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In NSCLC, both high EGFR gene copy number as determined by fluorescent in situ
hybridization (FISH) and EGFR tyrosine kinase mutations that lead to increased protein
activity after ligand binding appear to be correlated with improved response to TKI (18). Even
so, the same correlation rarely exists in HNSCC. In fact, EGFR TK mutations appear to be rare
events in HNSCC underscoring essential differences between the two diseases. Moreover,
recent findings by Lictra, et al demonstrated no association between overall survival in HNSCC
and EGFR gene copy number as determined by FISH (19). The same negative findings were
observed in a randomized study of gefitinib vs. methotrexate in recurrent/metastatic HNSCC
where EGFR gene copy number was not predictive of a survival benefit in subjects treated
with the EGFR TKI. Interestingly, response to TKIs in a subset of HNSCC may in fact be due
to mutations in ErbB2 rather than EGFR but this preliminary finding has yet to be validated.
(20).

Secondary or acquired resistance typically occurs in the setting of prolonged treatment. Several
mechanisms contribute to the development of resistance including epithelial-mesenchymal
transition, the development of secondary mutations in EGFR, activation of alternative
pathways, and constitutive activation of downstream pathways. Epithelial to mesenchymal
transition (EMT) is characterized by a change in the morphology with loss of polarity and cell-
cell contacts by the epithelial cells with increased vimentin expression, and decreased E-
cadherin, claudins 4 and 7 expression (21). Preclinical models of NSCLC cell lines and
xenografts demonstrated a correlation between a mesenchymal phenotype and erlotinib
resistance (21). In addition, clinical data in NSCLC patients receiving erlotinib and
chemotherapy showed time to progression was better in patients with E-cadherin positive
staining (22). Recently, cortactin, a cytoskeletal protein that regulates actin assembly, receptor-
mediated endocytosis, and epithelial to mesenchymal phenotypic conversion of cells, has been
associated with gefitinib resistance and invasive phenotype in HNSCC (23,24). In addition,
the E-cadherin repressor delta-crystallin enhancer binding factor 1 (deltaEF1) was recently
identified as a regulator of mesenchymal phenotype and correlated with erlotinib resistance in
HNSCC in vitro (24).

Inherent cell signaling is a significant factor in response to therapy. Upregulation of cyclin D1
in HNSCC cell lines is specifically associated with resistance to gefitinib by
hyperphosphorylation of retinoblastoma protein (pRb) by cyclin D1-cyclin dependent kinase
4 (CDK4) (25). Furthermore, mutations or decreased expression of PTEN, a phosphatase
regulator of PI3K/AKT signaling, is also associated with EGFR inhibitor resistance [Figure 1]
(26). In cells dependent on EGFR, loss of PTEN was shown to uncouple the EGFR from its
downstream signaling pathway and the presence of constitutive activation of AKT leads to cell
survival independently of EGFR (26).

Cumulative evidence suggests that activation of signaling pathways downstream of EGFR may
contribute to resistance to upstream inhibition of EGFR. Cancer cells have been shown to
selectively activate alternative signaling pathways in the setting of single pathway inhibition.
Stommel et al reported that in glioblastoma cell lines, xenografts and primary tumors, various
receptor tyrosine kinases are simultaneously activated resulting in the sustained activation of
signaling pathways in the face of receptor TKI monotherapy (27). In fact, blockade of specific
pathways have been shown to initiate feedback mechanisms that trigger pro-survival signaling
cascades in cancer. For example, inhibition of the PI3K/Akt pathway stimulates the MAPK/
ERK signaling cascade in different cancer models (28).

Activation of cytoplasmic signaling pathways in the setting of EGFR blockade can occur
through several mechanisms including: 1) concomitant activation of other receptor and non-
receptor kinases including c-Met, IGF-1R, and Src family kinases, among others; 2) G-protein-
coupled receptor (GPCR)-mediated activation of EGFR-independent pathways; and/or 3)
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induction of alternative oncogenic pathways by EGFR blockade. Signal transducer and
activator of transcription-3 (STAT3) mediates proliferative, survival and invasion pathways
in HNSCC induced by upstream activation of EGFR, Src and/or IL-6/gp130 (29,30). We
previously reported that increased activation of signal transducer and STAT3 was associated
with increased resistance to EGFR tyrosine kinase inhibition in HNSCC (31). Further
investigation demonstrated that siRNA-mediated knockdown of EGFR or treatment with
cetuximab induced oncogenic signaling through activation of p70S6 kinase in HNSCC, in the
setting of GPCR stimulation (unpublished observations).

Single nucleotide polymorphisms (SNPs) play a role in drug pharmacokinetics and
pharmacodynamic processes. They are not only a factor in drug efficacy but also contribute to
drug toxicity. The first intron of the EGFR gene has an important regulatory function and
contains a heritable polymorphic microsatellite sequence of 9–23 CA repeats (32). The number
of CA repeats is inversely proportional to EGFR expression on both mRNA and protein level
in vitro (32). Two SNPs associated with increased expression of EGFR are in the promoter
(−216G>T and −191C>A) (33). Preclinical data show a nonsynonymous SNP (1808G>A) in
the extracellular domain of EGFR is associated with a lower affinity for ligand (EGF and
TGFα) binding and an abated growth response (34). Amador et al. reported higher sensitivity
to erlotinib in cell lines with less than or equal to 35 CA repeats compared with cell lines with
greater than 35 repeats. There was also increased incidence of skin toxicity in gefitinib treated
colorectal patients with less than or equal to 35 CA repeats (32). However, in a single arm
study in patients with HNSCC, NSCLC, and ovarian cancer treated with erlotinib, even though
there was a correlation between diarrhea and two EGFR promoter SNPs, the same correlation
was not seen with skin toxicity (35).

EGFR-targeted monoclonal antibodies (mAbs), but not tyrosine kinase inhibitors, are FDA-
approved for use in HNSCC. This apparent increased activity of antibody-mediated therapeutic
strategies suggests that the immune system may contribute to clinical responses to EGFR
targeting. Currently, the two FDA-approved mAbs targeting EGFR are cetuximab and
panitumumab. Monoclonal antibodies recognize determinants expressed on the extracellular
domain of EGFR and antagonize normal ligand-receptor interactions thereby disrupting
downstream signaling. The mechanism(s) underlying the clinical response to EGFR-specific
mAb-based immunotherapy are poorly understood. Evidence to date suggests that mAbs may
induce activation of cellular immunity, including natural killer and T cells, thereby contributing
to clinical response. Monoclonal antibodies have been shown to mediate antibody-dependent
cellular cytotoxicity, complement-dependent lysis, and activation of tumor antigen-specific T
cells. Cell-mediated cytotoxicity of target cells triggered by EGFR-specific mAbs appears to
play a role in the clinical outcome of colorectal carcinoma patients (36). The variables
influencing the extent of lysis of HNSCC cells by NK cells and EGFR-specific mAbs have
been characterized, and have shown to include the level of EGFR expression, the amount of
mAb, and the genotype of the Fcγ receptor (FcγR) which mediates the interactions of NK cells
with the mAbs bound to target cells, i.e. FcγR IIIa (37). In addition, mAbs may mediate NK
cell-dependent lysis of HNSCC cells. The lysis of HNSCC cells by NK cells and the EGFR-
specific mAb cetuximab may trigger a series of events, which lead to the generation of cytotoxic
T lymphocytes (CTL) recognizing tumor antigens expressed on the HNSCC cells. A variety
of factors such as polymorphisms in Fcγ receptors expressed by immune cells, activity of T-
regulatory cells, and tumor escape through downregulation of antigen-processing machinery
in tumor cells, may modulate the immune activation mediated by therapeutic mAbs.
Understanding the interplay of these factors is likely to improve the selection of the most
appropriate candidates for mAb-based immunotherapy, prediction of clinical response, and our
understanding of mechanisms of tumor escape from therapeutic mAbs.

Chen et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. On the Horizon
Predictive Markers for Response to EGFR-Targeted Therapies

In the current era of targeted therapies, the identification of predictive markers remains a
challenge. Predicting outcome in EGFR-targeted therapies is complex, involves genetic and
clinical characteristics, and the interplay of a network of pathways. The human papilloma virus
(HVP), i.e. HPV type 16, has recently been identified to be associated with a subset of HNSCC,
especially those arising from the lingual or palatine tonsils (38). Studies in oropharyngeal
cancers have shown an association between lower HPV titers and high EGFR expression with
worse overall survival (39). Several studies report a positive association between EGFR gene
amplification and response to EGFR-directed antibody treatment in NSCLC and metastatic
colorectal cancers (40,41). Although recent reports suggest that EGFR gene copy number by
FISH is not correlated with response in HNSCC, different methodologies and scoring methods
are used which is compounded by the intra-tumor heterogeneity observed in EGFR gene copy
in HNSCC. These factors account for the variation in EGFR gene amplification and copy
number rates reported thus far in HNSCC and further investigation to characterize the role of
EGFR gene amplification remains to be performed. The presence of EGFR gene amplification
in a significant portion of HNSCC suggests that this still may be a potential predictive marker
for response to EGFR-targeted therapies.

Other candidate predictive markers for EGFR-targeted therapies include K-ras/H-ras
mutations, PI3k/Akt pathway mutations, and polymorphisms in EGFR, FcγRIIa and FcγRIIIa.
K-ras mutations in NSCLC vary from 8–20% and approximately 30% in colon cancers (42).
K-ras mutations are relatively rare (3–7%) in HNSCC; however, H-ras mutations occur at a
higher rate (22% per one published study available) and may be a potential marker for decreased
response to EGFR-targeted treatment (16,17). Interestingly, H-ras mutations frequently occur
in HNSCC patients from India and Southeast Asia and the oral carcinogenesis is likely related
to betel quid use (43,44). In metastatic colorectal cancer, mutations in the PI3K catalytic subunit
(PIK3CA) have been reported to correlate with EGFR mAb resistance (45). Although PIK3CA
mutations only occur in up to 8% of HNSCC, loss of the expression of the phosphatidylinositol
phosphatase, PTEN, results in the loss of negative regulation on the Akt signaling pathway
which leads to resultant activation of downstream survival mechanisms (26). Therefore, even
though few data in HNSCC are available, the data from metastatic colorectal cancer suggest
PTEN expression, PIK3CA mutation status, and Akt amplification may be potential predictive
markers in HNSCC and warrant further investigation.

Finally, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been
shown to predict survival after treatment of lung cancer patients with EGFR-targeted therapy
and recent data suggest MALDI-MS also has predictive value in HNSCC (46). A MALDI-MS
profile was previously determined from over four hundred NSCLC patient serum or plasma
samples to predict overall survival after EGFR TKI treatment (47). More than 300 samples
from 5 HNSCC treatment groups (gefitinib, erlotinib and bevacizumab, cetuximab, surgery,
and palliative chemotherapy) were then stratified into good or poor prognostic groups using
the same MALDI-MS algorithm generated from NSCLC patients. Results demonstrated 98%
success in classifying the HNSCC samples and predicting survival benefit in the EGFR-
inhibitor treated groups (46).

The observation that cetuximab, but not EGFR TKI, prolong HNSCC survival when combined
with standard therapeutic approaches suggests that the mechanism of EGFR targeting may be
important (48). Based on improved anti-tumor effects in HNSCC preclinical models when
EGFR expression was downregulated, a phase I antisense gene therapy trial was carried out
(49). In this study, EGFR antisense therapy decreased EGFR protein expression in nearly all
17 patients treated where higher baseline levels of EGFR in the tumor were associated with an
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enhanced clinical response (49). Studies are underway to develop an antisense strategy to target
EGFR that can be safely and effectively delivered systemically to HNSCC patients. In addition
to antisense, RNA interference (RNAi) approaches are being developed to suppress EGFR
expression as a potential clinical strategy (50).

Combination Therapy to Overcome Resistance to EGFR-Targeted Therapy
One way to overcome resistance to EGFR-targeted therapy is to use a combination of
monotherapeutic agents with different mechanisms of action to target the network of pathways
involved in HNSCC pathogenesis. Approaches to combination therapy can involve adding
STAT or SRC inhibitors, c-MET or IGFR inhibitors, mammalian target of rapamycin (mTOR)
inhibitors, and other receptor TKIs, to anti-EGFR agents. Preclinical studies of HNSCC
involving both EGFR and STAT3 inhibition have been effective in increasing apoptosis (51).
EGFR and IGF-IR provide compensatory activation of similar downstream pathways when
either is inhibited. AKT is controlled by both EGFR and IGF-IR. Buck et al demonstrated that
inhibition of EGFR or IGFR activated the reciprocal receptor with a shift of EGFR inhibition
of AKT from EGFR to IGF-IR (52). Guix et al reported the association between loss of IGF-
binding protein as a mechanism of acquired EGFR TKI resistance and suggests the combination
of EGFR and IGFIR inhibitors may be effective in abrogating this resistance(53). Similarly,
gastric cancer and breast cancer cells treated with the combination of anti-EGFR and a c-MET
inhibitor resulted in decreased cell proliferation warranting preclinical evaluation of this
combination in HNSCC (54,55).

mTOR inhibitors block activation of PI3K and AKT pathway signals involved in cellular
proliferation and angiogenesis (56). Studies involving mTOR inhibitors and TKIs (erlotinib
and gefitinib) have demonstrated an additive antitumor effect in HNSCC, colon and pancreatic
cancer cell lines forming the basis for ongoing phase I trials of the mTOR inhibitor RAD001
in combination with cetuximab (56,57). The vast majority of HNSCC express VEGF or
VEGFR and therapy combining bevacizumab (a monoclonal antibody against VEGF-A) and
erlotinib are promising with a response rate of 15% (58). Preclinical studies of human A431
squamous cell cancer xenografts show acquired resistance to mAb can develop via increased
expression of VEGF further underscoring the multiple growth controlling pathways involved
in tumorigenesis (59). Targeting other ErbB family receptors may also have synergistic effect
in the treatment of HNSCC. Overexpression of ErbB2 is associated with gefitinib resistance
and combination of pertuzumab (a monoclonal antibody against ErbB2) with gefitinib in
HNSCC cell lines resistant to gefinitib monotherapy resulted in increased inhibition of cell
growth (60). The role of ErbB3 and ErbB4 in HNSCC remains under investigation.

3. Summary
HNSCC is a heterogeneous disease and despite high expression of EGFR, resistance to EGFR-
targeted therapies, especially as monotherapy, is common. Because EGFR signaling involves
an interplay of other oncogenic pathways, improving response to EGFR-targeted therapies will
not only involve using different genomic and proteomic biomarkers to select for improved
patient response but also utilizing combination therapies to target the multiple pathways
involved in neoplastic transformation. Currently, no biomarker has proven to predict response
to EGFR-targeted therapy. Future studies will lead to improved optimization of the current
challenges in anti-EGFR therapy.
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Figure 1.
EGFR Signaling Pathway and Several Mechanisms of Resistance to EGFR-Targeted Therapies
Abbreviations:
EGFR: epidermal growth factor receptor
K-Ras: v-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog
H-Ras: v-Ha-ras Harvey rat sarcoma viral oncogene homolog
PTEN: phosphatidylinositol phosphatase
mTOR: mammalian target of rapamycin
mAbs: monoclonal antibodies
TKIs: tyrosine kinase inhibitors
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Table 1

Mechanisms of Resistance to EGFR-Targeted Therapies

EGFR Mutations • Extracellular domain (EGFRvIII)

• Tyrosine kinase domain (T790M)

Ras Mutations • K-ras mutations

• H-ras mutations

Epithelial-Mesenchymal Transition • Increased vimentin expression

• Decreased E-Cadherin expression

• Decreased Claudins 4 & 7 expression

Activation of Alternative/Downstream Pathways • Cyclin D1 upregulation

• PTEN mutations

• PI3KCA mutations

• Akt Amplification
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