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Abstract

Background: Neonatal mortality contributes a large proportion towards early childhood mortality in developing countries,
with considerable geographical variation at small areas within countries.

Methods: A geo-additive logistic regression model is proposed for quantifying small-scale geographical variation in
neonatal mortality, and to estimate risk factors of neonatal mortality. Random effects are introduced to capture spatial
correlation and heterogeneity. The spatial correlation can be modelled using the Markov random fields (MRF) when data is
aggregated, while the two dimensional P-splines apply when exact locations are available, whereas the unstructured spatial
effects are assigned an independent Gaussian prior. Socio-economic and bio-demographic factors which may affect the risk
of neonatal mortality are simultaneously estimated as fixed effects and as nonlinear effects for continuous covariates. The
smooth effects of continuous covariates are modelled by second-order random walk priors. Modelling and inference use the
empirical Bayesian approach via penalized likelihood technique. The methodology is applied to analyse the likelihood of
neonatal deaths, using data from the 2000 Malawi demographic and health survey. The spatial effects are quantified
through MRF and two dimensional P-splines priors.

Results: Findings indicate that both fixed and spatial effects are associated with neonatal mortality.

Conclusions: Our study, therefore, suggests that the challenge to reduce neonatal mortality goes beyond addressing
individual factors, but also require to understanding unmeasured covariates for potential effective interventions.
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Introduction

Despite declining trends in childhood mortality in many

developing countries [1], neonatal mortality still remains a huge

health concern worldwide [2,3,4]. Recent estimates from national-

wide household surveys show that considerable burden of neonatal

mortality still remain in low to middle-income countries, the

majority of which are in the sub-Saharan Africa [2,3]. Experts

now agree that in evaluating Millennium Development Goal

(MDG) number 4, which emphasizes for the need to reduce under-

five childhood and infant mortality [5], neonatal mortality is a key

child survival indicators to monitor. It is argued that achieving a

reduction in neonatal mortality would also lead to a reduction in

infant mortality [4].

The underlying causes of neonatal mortality are multi-sectoral

and inter-woven [6]. These operate at individual, family,

community and regional levels and the effects can be direct or

intermediary. At individual level, the relationship between socio-

economic and bio-demographic factors and neonatal mortality are

well established [1,7,8]. Most of these factors act directly. At family

level the intermediary factors are the shared genetic factors,

sanitation and inadequate health care factors [6,9]. Availability of

antenatal and prenatal care as well as differences in ethnic norms

and practices are some of the factors influencing disparities in child

mortality at community level. Regionally, expenditure on health

services and cultural differences can also affect the survival status

of children in the neonatal period.

Evidently, the combined effect of all these factors are likely to

cause geographical disparities in childhood mortality, even so, in

neonatal mortality. Studying the geographical variation of

neonatal mortality is of particular interest because access to

antenatal or reproductive care vary and there exist regional

differences in availability of services [10], hence newborn health

may vary. Findings from such a study could assist in the design of

effective interventions.

Analysis of spatially indexed data is common in biomedical and

epidemiological research, in recognisance of the effect of

geographical location on health outcomes. There is now an

increasing body of literature on spatial analysis of health system

and outcomes in developing countries [11,12,13,14,15,16]. In

part, this has been motivated by the availability of geo-referenced

survey data, and further, by the recent advances in software that
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can implement such complex models [17]. Such analysis is carried

out under the assumption that not all factors of the underlying

process can be measured, and therefore a source of heterogeneity.

These residual heterogeneity are in part likely to exhibit spatial

dependence. The common approach to analyse such spatially

referenced data is to incorporate, in the model, random effects that

allow latent area influences.

In this paper, our objective is to analyze small-scale geograph-

ical variability in neonatal mortality in Malawi, by applying

existing spatial statistical methodology [18,19]. Since the outcome

consists of a success (1 = if death occurs in the first four months) or

failure (0 = otherwise), a Bernoulli model comes initially to mind;

and in the absence of strong prior information, the first choice is a

fixed-effects binary logistic model. However, the presence of geo-

referenced data allows us to explore, assess and quantify small-

scale geographical effects in neonatal mortality. Figure 1 shows the

residential locations of the cases obtained in 2000 Malawi

demographic and health survey (MDHS). Apparent clustering is

due to the survey design [20]. The same information can be

grouped at district level, and shown as proportion of neonatals

dead in each area (Figure 2). Our aim is to extend the standard

binary logit model to random-effects model to permit spatial

clustering and heterogeneity. Specifically, we apply generalised

linear mixed models (GLMM) with spatially correlated random

effects proposed by [19], and used it to analyse factors associated

with the survival status of infants during the first four weeks of life.

This modelling approach falls within what is termed structured

additive regression (STAR) models, introduced by [21]. STAR

models are a comprehensive class of models that permit

simultaneous estimation of nonlinear effects of continuous

covariates, spatially unstructured and structured components

together with the usual fixed effects in the predictor [19,22,23].

Figure 1. Survey data location. Neonatal mortality data: Locations
where survey data was collected based on 2000 Malawi Demographic
and Health Survey.
doi:10.1371/journal.pone.0011180.g001

Figure 2. Estimated district proportion dead. Estimated district
proportion died under the independent fixed-effects model.
doi:10.1371/journal.pone.0011180.g002
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When the place of residence is known exactly, given by

geographical x2y-coordinates, the spatial analysis can be ap-

proached based on the stationary Gaussian random fields (GRF),

originating from geostatistics [18,24]. These can also be

interpreted as two-dimensional surface smoothers based on radial

basis functions, and have been employed by Kammann and Wand

(2003) to model the spatial component in Gaussian regression

models. Another option is to use two-dimensional P-splines

described in more detail in Lang and Brezger (2004) and Brezger

and Lang (2006). The advantage of these approaches is that they

allows prediction of risk for locations where there are no data, thus

able to quantify small-scale variability. If observations are clustered

in geographical regions, spatial effects can be estimated using the

Markov random field (MRF) approach, widely used in disease

mapping [24]. Modelling and inference can use the empirical

Bayesian (EB) approach via penalised likelihood techniques [25].

However, fully Bayesian (FB) approach is possible [23].

The rest of this paper is structured as follows. Section 2

describes the data, while Section 3 gives details of the methodology

used. In Section 4, we provide simulation studies and apply the

techniques to real data from 2000 Malawi DHS. Section 5 gives

the results and offers a discussion of the analysis. The final section

is the conclusion.

Materials and Methods

2.1 Data
The data were from the 2000 Malawi DHS [20]. The 2000

Malawi DHS interviewed a representative sample of more than

13,000 women aged between 15 and 49 years. A two-stage

stratified sampling design was implemented to collect the data.

The data were realized through a questionnaire that included

questions on marriage and reproductive histories, of which

detailed dates of birth of all women and their children were

collected. Details on how the sample survey was designed,

implemented, response errors and sampling errors are given in

the survey report [20].

Women were asked histories of all births they ever had. Survival

time of each child was then computed in months. All children

whose survival time was less than 1 month were classified as

neonatal deaths. The response, yi, was therefore binary which

takes the value yi~0 if infant i survived the first four week and

yi~1 if the infant died. Covariates considered were bio-

demographic variables including birth multiplicity (i.e. singleton

or multiple birth), the sex of the child, birth interval preceding or

succeeding the child in question, birth size, birth order and

prenatal care indicators. Socio-economic variables included in the

analysis were mother’s education, area of residence (urban/rural)

and care situation and practices of the mother. All the above were

modelled as categorical variables. Further, continuous covariates

considered were mother’s age, and woman status. Women’s status

is defined to be women’s power relative to men. The index about

women’s status is built following suggestions by [26]. For spatial

covariates, we used both the exact geo-coordinates of enumeration

areas and subdistricts as geographical units of analysis.

Descriptive summaries of the variables are reported in Table 1.

Figure 1 shows the distribution of the MDHS study locations.

There were 543 points, with mean number of households selected

for interview per enumeration area equal to 36 (range: 6–68).

Urban areas and other districts were over-sampled for correct

population estimates, hence more data points in some areas than

others. Complete data was available for 11,926 of the 13,220

interviewed. A total of 1559 children died within 5 years preceding

the survey. Of these 543 (34.5%) died in the first 4 weeks of their

life (neonatal period). Figure 2 gives estimates of the proportion of

infants who died in each district, using a fixed-independent district

model.

2.2 Statistical Modelling
2.2.1 The measurement model. We describe the spatial

pattern of neonatal mortality given locations by adapting the

hierarchical Bayesian model formulation of [19]. Let the response,

yi, be the survival status of child i at location si,s~1, . . . ,S. Define

yi~1 if the infant died within the first 4 weeks of life and yi~0
otherwise, then yi is a Bernoulli variable with expected probability

of dying equal to pi. This can be modelled through the logistic

regression model, i.e.,

Table 1. Descriptive summary of factors analysed in neonatal
mortality study in Malawi (2000 DHS).

Variables Proportion died No of births

Socio-economic
factors:

Region Northern 4.0 1936

Central 4.4 4394

Southern 4.8 5596

Residence Urban 2.8 2084

Rural 4.9 9842

Mother’s education None 4.0 3547

Primary 5.0 7513

Secondary or higher 3.1 886

Antenatal Visits None 8.8 297

Once 3.1 3100

Twice 2.9 2876

Three or more 2.6 1668

Place of birth Home 5.4 5047

Hospital 4.0 6879

Woman’s Status Lowest 4.7 2618

Low 4.0 2389

Medium 4.4 2399

High 4.9 2589

Highest 4.8 1932

Bio-demographic
factors

Sex of child Male 5.1 5951

Female 4.0 5975

Multiplicity of birth Singleton 3.9 11432

Multiple 20.2 494

Birth order 1st 6.4 2883

2–3 4.2 4707

4–6 3.5 3263

§7 births 4.5 1573

Mother’s age ,20 yrs 8.4 885

20–24 5.0 3704

25–29 4.1 3302

30–34 2.5 1816

§35 yrs 4.5 2219

doi:10.1371/journal.pone.0011180.t001
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yi Dgi*Ber pið Þ, ð1Þ

pi~P(yi~1Dgi)~
exp(gi)

1zexp(gi)
ð2Þ

where gi is the predictor. The predictor can be expanded as

follows, taking into account all possible explanatory variables,

gi~w’iaz
Xq

k~1

fk xikð ÞzW sið Þ, ð3Þ

such that a is the vector of fixed effects (e.g. sex of child, mother’s

education) corresponding to the categorical fixed variables

w’i~ wi1, � � � ,wip

� �’
, the component f is an appropriate

smoothing function of continuous covariate, xij , such as age of

the mother. The parameter W sið Þ are random effects that captures

the unobserved spatial heterogeneity at location si. Some of these

may be spatially structured and others spatially unstructured,

which may accommodate over-dispersion and heterogeneity. In

other words, W sið Þ~Wunstr sið ÞzWstr sið Þ. Accommodating these

structures, equation 3 can be extended as

gi~w’iaz
Xq

k~1

fk xikð ÞzWunstr sið ÞzWstr sið Þ: ð4Þ

This equation specifies the first stage of the hierarchical model.

Written in matrix notation, equation (4) is given as

g~WazX1b1zX2b2z � � �zX1b1z � � �zXstrbstr ð5Þ

which reduces to g = Ph, where P~ W,X1,X2, . . . ,Xstrð Þ are

appropriate design matrices for each fixed, metrical and spatial

effects respectively, and h~ a,b1,b2, . . . ,bstrð Þ is a high dimensional

parameter vector. The elements X1,X2, � � � ,Xl , � � � ,Xstr and

b1,b2, � � � ,bl , � � � ,bstr are such that fl~Xlbl , and for the spatial

component, we can write as W sð Þ~XstrbstrzXunstrbunstr.

2.2.2 Prior distributions. In order to model the relationship

depicted in equation 5, we specified prior distributions for each

parameter in the model (eq. 5). Essentially this is the second stage of

the hierarchy. For the fixed regression parameters, a, a suitable

choice is the diffuse prior, i.e p(a)/constant. The smooth functions

of continuous covariates are modelled using a second-order ran-

dom walk prior given by bl Dbl{1,bl{2,t2
l *N 2bl{1{bl{2,t2

l

� �
for

l = 3,…,b with noninformative priors for b1,b2. Again t2
l controls

the amount of smoothing, with larger values leading to less

smoothing. In order to capture unstructured spatial random effects

(bunstr), we assumed exchangeable normal priors, bunstr*N 0,t2
unstr

� �
,

where t2
unstr is a variance component that allows for over-dispersion

and heterogeneity. Often determination of potential nonlinearity and

spatial heterogeneity is chosen a priori based on exploratory analysis.

Table 2. Posterior estimates in the geoadditive logistic regression models M0, M3 and M4 fitted to neonatal mortality.

Variable Category 1Model 0 2Model 3 3Model 4

Birth size Smaller 0 0 0

Average and above 20.193 (20.241, 20.149) 20.202 (20.250, 20.151) 20.201 (20.249, 20.154)

Sex of child Girl 0 0 0

Boy 0.065 (0.023, 0.108) 0.069 (0.027, 0.114) 0.068 (0.027, 0.111)

Multiple birth Yes 0 0 0

Singleton 20.460 (20.527, 20.391) 20.465 (20.537, 20.389) 20.468 (20.535, 20.394)

Birth order 1st 0.197 (0.082, 0.318) 0.204 (0.089, 0.318) 0.205 (0.089, 0.325)

2–3 0.024 (20.066, 0.114) 0.025 (20.065, 0.116) 0.026 (20.068, 0.116)

4–6 20.084 (20.178, 0.011) 20.088 (20.184, 0.004) 20.090 (20.180, 0.003)

7th and higher 0 0 0

Antenatal visits None 0 0 0

Once 20.172 (20.256, 20.091) 20.179 (20.267, 20.094) 20.181 (20.268, 20.097)

Twice 20.179 (20.271, 20.083) 20.186 (20.277, 20.096) 20.184 (20.276, 20.095)

3 or more 20.165 (20.282, 20.051) 20.162 (20.289, 20.049) 20.164 (20.278, 20.062)

Birth place Home 0 0 0

Hospital 20.037 (20.082, 0.002) 20.041 (20.086, 0.002) 20.042 (20.087, 0.003)

Residence Urban 0 0 0

Rural 0.091 (0.022, 0.159) 0.098 (0.025, 0.173) 0.095 (0.022, 0.166)

Mother’s education None 0 0 0

Primary 0.115 (0.043, 0.193) 0.117 (0.036, 0.204) 0.123 (0.050, 0.201)

Secondary or above 20.108 (20.245, 0.017) 20.099 (20.246, 0.038) 20.097 (20.238, 0.035)

226log-likelihood: 4335.39 3769.70 3763.54

Degrees of freedom: 18.98 120.99 122.98

AIC: 4373.15 4011.68 4009.58

1Model 0: Fixed effects.
2Model 3: Fixed+Nonlinear effects+Structured random effects.
3Model 4: Fixed+Nonlinear effects+Structured+Unstructured random effects.
doi:10.1371/journal.pone.0011180.t002
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Spatial correlation between areas is achieved by incorporating

suitable spatial correlation into bstr. This is specified using either

the MRF or GRF priors. The MRF is defined as

bstrDt
2
str*N 0,t2

strQ
{1

� �
: ð6Þ

where t2
str is the unknown precision parameter which controls

the degree of similarity, and Q is the spatial precision matrix. The

(i,j)-th element of the spatial precision matrix Q is given by

Q~

ms s~r

{1 s*r

0 elsewhere

8><
>:

where s,r denotes that area s is adjacent to r, ms is the number of

adjacent areas to s. We define areas as neighbours if they share a

common border. Thus area s, given neighbouring areas r, has the

following conditional distribution

bs
strDfb

r
str,s=rg*N m,vð Þ ð7Þ

where m~
1

ms

X
r[ds

br
str, v~

t2
str

ms

and s and r are adjacent areas in the

set of all adjacent areas (ds) of area s, and ms are the number of

adjacent areas. For the variance components t2
str we assume

inverse Gamma priors IG(a,b), with hyperparameters a = 0.01,

b = 0.01.

Another option for spatial analysis, if exact locations si~ xi,yið Þ
are available, is to use two-dimensional P-splines. To fit a spatial

surface structure, the approach one can adopt is based on a two-

dimensional P-spline suggested in [27]. A similar approach on thin

plates has been recently proposed by [28]. We assume that the

unknown surface bstr sið Þ~f xi,yið Þ can be approximated by the

tensor product of the one-dimensional P-splines, i.e.

f xi,yið Þ~
Xm1

p~1

Xm2

v~1

bpvB1,p xið ÞB2,v yið Þ ð8Þ

where B11, . . . ,B1m1
are the basis functions in xi direction and

B21, . . . ,B2m2
in yi direction. The design matrix Xl is now

n6m1
:m2 dimensional and consists of products of basis functions.

Priors for bpv are based on spatial smoothness priors as specified in

[29]. A two-dimensional first order random walk has been shown

to work well [27]. This is based on the four nearest neighbours and

is specified as

bpvD*N
1

4
bp{1,vzbpz1,vzbp,v{1zbp,vz1

� �
,
t2

pv

4

 !
ð9Þ

for p,v = 2,…,m21 and appropriate changes for corners and edges.

This prior is a direct generalization of a first order random walk in

one dimension. Its conditional mean can be interpreted as a least

squares locally linear fit at knot position zp,zv given the

neighbouring parameters. In many applications it is desirable to

additionally incorporate the 1 dimensional main effects. Again,

similar to the one dimensional case additional identifiability

constraints have to be imposed on the functions.

Using the design matrix Xl and a (possibly high-dimensional)

vector of regression parameters bl , as defined above (see following

.
4
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E
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Figure 3. Nonlinear effect of mother’s age. Nonlinear effect of mother’s age on the risk of neonatal mortality (solid centre line), with 80% and
95% confidence lines (dotted lines).
doi:10.1371/journal.pone.0011180.g003

Neonatal Mortality Disparities

PLoS ONE | www.plosone.org 5 June 2010 | Volume 5 | Issue 6 | e11180



eq. 5), the spatial and nonlinear smoothing priors can be expressed

in a general Gaussian form

p bl Dt
2
l

� �
!exp {

1

2t2
l

b’lVlbl

� �
ð10Þ

with an appropriate penalty matrix Vl . Its structure depends on

the covariate and smoothness of the function. In most cases, Vl is

rank deficient and hence the prior for bl is improper.

2.2.3 Empirical Bayesian approach. Inference for the

semiparametric binary model is based on the empirical Bayesian

approach, also called the mixed model methodology [17,19]. The EB

approach is achieved by recasting the predictor model (5) as GLMM

after appropriate reparametrization. This provides the key for simul-

taneous estimation of the functions fl and the variance parameters t2
l

in the empirical Bayes approach. To rewrite model (5) as mixed

model, we assume that bl has dimension dl and the corresponding

penalty matrix has rank hlvdl = dim blð Þ. Each parameter vector bl

is partitioned into a penalized (bpen
l ) and unpenalized (bunp

l ) parts

yielding a variance component model [17,19],

bl~Yunp
l bunp

l zYpen
l bpen

l ð11Þ

for some well defined dl| dl{hlð Þ matrix Y
unp
l and a dl|hl matrix

Y
pen
l . The following priors are assumed. For the penalized part, an

i.i.d Gaussian prior is suitable, while for the unpenalized part we

assume a flat prior, this is

p b
pen
l

� �
*N 0,t2

hl

� �
and p(b

unpen
l )!const ð12Þ

Applying decomposition (11) to all the components of predictor (5)

yields

g~X unpbunpzX penbpen: ð13Þ

We have obtained in (13) a GLMM with fixed effects bunp and

random effects bpen. The posterior, in terms of the GLMM represen-

tation, is given by

p bunp,bpenDdatað Þ!L data,bunp,bpenð Þ P
g

l~1
p b

pen
l Dt2

k

� �� �
ð14Þ

where L(?), again, denotes the likelihood which is the product of

individual likelihood contributions and p b
pen
l Dt2

k

� �
as defined above.

Estimation of regression coefficients and variance parameters is

carried out using iteratively weighted least squares and approximate

restricted maximum likelihood. Details are given in [30]. Fahrmeir et

al. [19] derived numerically efficient formulae that allow for handling

large data sets.

2.3 Analysis
The empirical Bayes model described in Sections above is

illustrated by analysing the small-scale spatial variability in neonatal

mortality in Malawi using data from the 2000 Demographic and

Health Survey. We fit the following five STAR models to assess

factors associated with probability of neonatal mortality,

M0: gi~w’i
M1: gi~w’iazf1 mageð Þzf2 wstatusð Þ
M2: gi~w’iazf1 mageð Þzf2 wstatusð ÞzWunstr sið Þ
M3: gi~w’iazf1 mageð Þzf2 wstatusð ÞzWstr sið Þ
M4: gi~w’iazf1 mageð Þzf2 wstatusð ÞzWunstr sið ÞzWstr sið Þ.

10
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Figure 4. Nonlinear effect of mother’s status. Nonlinear effect of mothers status on the probability of neonatal mortality (solid centre line), with
80% and 95% confidence lines (dotted lines).
doi:10.1371/journal.pone.0011180.g004
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The first model, which we denote as the baseline model (M0)

estimated fixed effects, while second model (M1) adds the

nonlinear terms of mother’s age f1 mageð Þ and women’s status

f2 wstatusð Þ, with no random effects. The third model, M2,

extended model M1, and included the unstructured spatial

random effects Wunstr sið Þ. The fourth model M3 considered

spatially structured random effects Wstr sið Þ, added to the fixed

effects model (M0). Finally, the fifth model M4, included both

structured and unstructured spatial effects, besides the fixed effects

and the nonlinear terms. For the structured spatial effect we

assume a first-order intrinsic Gaussian MRF prior (7) and two-

dimensional P-spline prior (9). The GRF approach will not be

considered since similar results are expected. On the spatial unit of

analysis, using the MRF prior, we fit district and subdistrict in

separate models because of limited structural variability. However,

a multilevel aspect to the data in that subdistricts (TA/Ward) are

nested within 31 districts may be relevant, but has not been fitted

here. Such models are considered elsewhere [14].

The EB implementations of the five STAR models were

implemented in BayesX - version 1.4 [17]. In the EB approach,

estimation follows two stages. At the first iteration the default

(starting) values are assumed for the penalized, unpenalized and

variance parameters. Then updates for b
unp
k and b

pen
k are obtained

in the first step by solving a system of linear equations given

Figure 5. Smoothed geographical effects. (a) Smooth geographical effect (CAR) estimates at district level based on Model 3. (b): Corresponding
posterior probabilities at 80% nominal level, white denotes regions with strictly negative credible intervals, black denotes regions with strictly
positive credible intervals, and gray depicts regions of nonsignificant effects.
doi:10.1371/journal.pone.0011180.g005
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estimates for the variance parameters. In the second step updates

of the variance parameters are obtained by maximizing the

approximate restricted log-likelihood. For each model fitted,

convergence is achieved when the change in regression parameters

is 0.0001 and terminated at 400 iterations if convergence is not

achieved. However at under 35 iterations all models converged.

Model selection, among a set of competing models of various

specifications, was based on Akaike information criterion (AIC),

although generalized cross validation (GCV) or Bayesian infor-

mation criterion (BIC) give similar conclusions. For a model with

df degrees of freedom, AIC is defined as AIC(df) = 226(max log-

likelihood) + 2 df. The log-likelihood comprises the collection of all

fixed effects, a, random effects b, and all random effects variances,

t2. Smaller value of AIC or BIC signified a better model, that is

models with DAIC,2 compared to the best model are to be

considered as equally similar to the best model, whereas models

with DAIC.4 can be weakly differentiated, and DAIC.10 indicate

virtually no support.

Results

Based on the AIC, model M0 has AIC = 4373.15, while model

M1 gave an AIC of 4042.55, suggesting that the combined effect

of individual characteristics and unstructured random effects

Figure 6. Structured spatial effects. (a) Structured spatial effects, at subdistrict level, of neonatal death (Model M3). Shown are the posterior
modes. (b): Corresponding posterior probabilities at 80% nominal level, white denotes regions with strictly negative credible intervals, black denotes
regions with strictly positive credible intervals, and gray depicts regions of nonsignificant effects.
doi:10.1371/journal.pone.0011180.g006
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explained the risk of neonatal mortality better than fixed effects

alone. Now, incorporating the structured effects to the individual

effects improved the model further (AIC = 4011.68 for model M3

versus AIC = 4373.15 in model M0). In the last model, the fit

slightly improved when both structured and unstructured spatial

effects were included in model (AIC for model M4 was 4009.58).

Results for model M0, M3 and M4 are given in Table 2. However

we discuss the best model (M4).

We first discuss the linear effects shown in Table 2. Results

indicate that infants with birth weight above average (.2500

grams), born as singletons, born of mothers who sought antenatal

care and those whose mother’s attained secondary or higher

education were all associated with lower probability of dying in the

neonatal period. The effect of being a boy child, first born, born in

rural area, and born to a mother who attained primary education

was positively associated with neonatal deaths. Many of these

effects are as expected, and are well known and studied

[1,4,9,31,32].

The nonlinear effects are shown in Figure 3 and 4. Figure 3

shows posterior model estimates of mother’s age together with

80% and 95% pointwise confidence intervals. There was a strong

nonlinear effect, depicted as U-shape, of mother’s age on the

probability of neonatal mortality. The risk decreased as mother’s

age increased from 15 years up to 25 years, and then started to

increase again after age 35 years. This behaviour is not

unexpected. Lower maternal age increases the risk of pre-term

birth, hence increased neonatal deaths. At old age deteriorating

maternal health increases the risk of neonatal mortality. Hence

altogether the U-shaped relationship is often displayed [9,11].

The estimated nonlinear effect of woman’s status is shown

in Figure 4. The plot shows slight decreasing effects with

increasing status of the woman. The result was surprising. There

is a sizeable literature that demonstrates that women with a low

status tend to have a weaker control over resources in their

households, more restricted access to information and health

services, and poorer maternal health [26,33]. Therefore low

women status has a significant negative impact on health

outcomes of children. However possible interactions with other

covariates such as area of residence is possible and is worthwhile

investigating.

Figures 5 and 6 shows the estimated smooth geographical effects

at district and sub-district level respectively, after controlling for

other covariates. Figure 7 shows the surface interaction plot of the

same geographical locations. These represent other risk factors not

directly observed, but had an impact on the risk of neonatal

mortality risk. These might probably be ecological factors, such as

varying deprivation inequalities including severity and depth of

poverty, as well as infectious diseases including malaria, HIV/

Aids, pneumonia, diarrhoea that directly contribute to the risk of

child mortality [1]. These factors often display geographical

pattern. As depicted in the map, high risk areas were observed in a

number of districts, particularly in Lilongwe, Kasungu and

Mchinji in the central region, Mwanza and Chikwawa in the

southern region, and Karonga, Rumphi and Chitipa in the

northern region of the country. Social deprivation factors might

contribute to such high residual spatial effects in our analysis

(Figure 6), because they also happened to be the poorest in terms

of severity and depth of poverty [34]. This association between

social deprivation and the risk of neonatal mortality has been

shown in a number of studies. For example in Brazil, similarity

between neonatal profile and socioeconomic index have been

reported [35]. In many developing countries in sub-Saharan

Africa comparable associations have also been observed, see the

reviews in References [1,3,4,31]. In general, social deprivation and

diseases have consequential effects at attaining quality health,

hence reduction in life expectancy [31,35].

Discussion

The structured additive regression model combining both

spatial random effects and nonparametric offer a flexible

approach to quantifying small-scale geographical variability in

public health problems. Our objective was to explore small-scale

spatial patterns of neonatal mortality. The spatial component

was specified through a Markov random fields (MRF) and the

two-dimensional P-splines. However, the stationary Gaussian

random fields, widely used in geostatistics, is an alternative

approach. The models can be represented as mixed models, and

can be estimated using empirical Bayesian inference via the

penalized likelihood technique. The small-scale geographical

disparities in risk of neonatal mortality, thus quantified through

the model, may inform evidence-based intervention and policy or

further research. The approach we considered also offered a flexible

framework which permitted simultaneous modelling of the impact

of linear, nonlinear and geographical effects. These model can be

extended to more complicated data structures, for example models

with space-varying coefficients and of nonlinear interactions. Details

and examples of such extensions can be found in Kneib and

Fahrmeir [25].

For future research, one may carry out a more explicit

comparison between this GLMM approach (where spatial

variation not explained by individual-level factors are modelled

using spatial random effects) and a main alternative, a multilevel

model, whereby the effects of aggregate characteristics of each

individual’s village and/or district, if available, are considered.

Here one may assess if standard multilevel modelling approach

accounts for much or all of the spatially structured residual

variation compared to the GLMM approach applied in this study.

Figure 7. Surface of neonatal disparities. Two dimensional surface
of neonatal disparities in Malawi.
doi:10.1371/journal.pone.0011180.g007
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We must add, though, that there is already on-going research in

that direction [14,36,37].

This study used data from the 2000 DHS. This could be a

major limitation considering the data used is almost 10 years old.

The landscape of neonatal mortality, as opposed to what we have

presented here, may have changed in Malawi, consequently the

results may not be sufficiently informative to policy makers.

However, our effort should be seen from an attempt to use a novel

method in the analysis of health outcomes, and to advance the

argument that appropriate models are required to understand and

inform on the epidemiology of key health outcomes. Examples of

such methods are many in some areas, but lacking in some, for

example in neonatal mortality, and the study by Lawn et al. [3,4]

motivates the need to study geographical variation in neonatal

mortality. In other words, although most of the fixed factors have

been shown in previous studies to influence child mortality in

many developing countries, may of such studies do not account for

geographical effects. Profiling geographical variations in neonatal

mortality is important for scaling-up of targeted interventions.
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