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Abstract

Comparison of elastic network model predictions with experimental data has provided important insights on the dominant
role of the network of inter-residue contacts in defining the global dynamics of proteins. Most of these studies have focused
on interpreting the mean-square fluctuations of residues, or deriving the most collective, or softest, modes of motions that
are known to be insensitive to structural and energetic details. However, with increasing structural data, we are in a position
to perform a more critical assessment of the structure-dynamics relations in proteins, and gain a deeper understanding of
the major determinants of not only the mean-square fluctuations and lowest frequency modes, but the covariance or the
cross-correlations between residue fluctuations and the shapes of higher modes. A systematic study of a large set of NMR-
determined proteins is analyzed using a novel method based on entropy maximization to demonstrate that the next level of
refinement in the elastic network model description of proteins ought to take into consideration properties such as contact
order (or sequential separation between contacting residues) and the secondary structure types of the interacting residues,
whereas the types of amino acids do not play a critical role. Most importantly, an optimal description of observed cross-
correlations requires the inclusion of destabilizing, as opposed to exclusively stabilizing, interactions, stipulating the
functional significance of local frustration in imparting native-like dynamics. This study provides us with a deeper
understanding of the structural basis of experimentally observed behavior, and opens the way to the development of more
accurate models for exploring protein dynamics.
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Introduction

Associated with each protein fold is a set of intrinsically

accessible global motions that arise solely from the 3-dimensional

geometry of the fold and involve the entire architecture. For a

number of systems it has been shown that these intrinsic motions

play an important role in protein function [1], facilitating events

such as recognition and binding [2,3], catalysis [4–6] and allosteric

regulation [1,7,8]. The time scales of these cooperative motions

are usually beyond the reach of conventional MD simulations.

They are modeled instead with coarse-grained techniques that

omit the finer details of atomic interactions.

The elastic network model (ENM) is an example of a coarse-

grained model that has enjoyed considerable success in predicting

global dynamics of proteins and other macromolecules. The

central idea behind the ENM is that, in the vicinity of a minimum,

the potential energy landscape of a biomolecular system can be

approximated by the sum of pairwise harmonic potentials that

stabilize the native contacts. In the simplest ENM, the Gaussian

network model (GNM) [9], each node of the network is identified

by an amino acid, and each edge is a spring that provides a linear

restoring force to deviations from the minimum-energy structure.

The system’s dynamics is therefore expressed in terms of the

normal modes of vibration of the many-bodied system about its

equilibrium state; and dynamical information about the protein,

such as the expectation values of residue fluctuations or cross-

correlations, is uniquely defined by the network topology.

A few prevalent methods are used for constructing ENMs, but

most have at their hearts two underlying assumptions: The springs

are all at their rest lengths in the equilibrium (native) conforma-

tion, and the force constants decrease with the distance between

nodes, among other variables. In the earliest models [9,10] and the

anisotropic network model (ANM) [11–13], force constants were

taken to be uniform for all nodes separated by a distance less than

a specified cutoff distance and zero for greater distances. In

parallel, models were proposed in which the force constants decay

exponentially [14,15] or as an inverse power of distance [16,17],

or where stronger interactions are assigned to sequentially

adjacent residues [8,16,18]. Although such modifications can lead

to modest improvements in the agreement between ENM

predictions and certain experimental data, there is still no clear

‘‘best’’ method for assigning force constants in an ENM.

A common approach for assessing the performance of ENMs or

estimating their force constants has been to compare the ENM-

derived autocorrelations of residue motions to the corresponding

X-ray crystallographic B-factors or the mean-square fluctuations
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(MSFs) in residue coordinates observed between NMR models.

Because the slow modes have the largest amplitudes, often the

focus of study has been a narrow band of the slowest modes. The

ENM slow modes have indeed been shown to agree well with

those predicted by detailed atomic-level force fields and with

experimentally determined dynamics [19,20]. However, the

majority of the dynamical information conveyed by the ENM is

contained in the residue cross-correlations, and this information

has been largely overlooked during comparisons of ENM results to

experimental data. Further, the subtle and complex dynamics of

the structures that lie beneath the gross global motions are ignored

when only the slowest modes are considered. Mid- and high-

frequency modes are predicted with relatively lower confidence by

ENMs, but these modes may be important for coordinating the

finer motions of the molecule while the slower modes orchestrate

its global rearrangements [21]. Finally, while the ENM-based

studies have shown that the network topology is the dominant

factor that defines the collective modes, especially those in the low

frequency regime, there may be other structural properties (e.g.

secondary structure, hydrogen bond pattern, distance along the

sequence/chain between pairs of interacting residues) that are not

accounted for by ENMs but which may provide a more realistic

description of equilibrium dynamics, if accurately modeled.

Here we examine the ensembles of structural models determined

by NMR for 68 proteins and evaluate for each ensemble the

covariance in the deviations of residue-positions from their mean

values. We present a technique for optimizing ENM force constants

within a pre-defined network topology so as to provide the most

accurate representation of the experimentally observed covariance

data. Our method is based on the concept of entropy maximization:

Briefly, when inferring the form of an unknown probability

distribution, the one that is least reliant on the form of missing data

is that which maximizes the system’s entropy subject to constraints

imposed by the available data [22,23]. This method has been applied

to a variety of biological problems, including neural networks [24],

gene interaction networks [25], and protein folding [26].

The resulting auto- and cross-correlations in residue fluctuations

are used to build an ENM-based model with optimal force

constants (OFCs). It can be shown (see [25] and Methods) that

when the constraints of the maximization are pair correlations, the

probability distribution takes a Gaussian form. Further, the only

terms that contribute to the probability distribution are those that

correspond to pairs with correlations that are explicitly considered

as constraints on the entropy maximization. In terms of the ENM,

this means that for a given network topology, there exists a unique

set of force constants that exactly reproduces the experimentally

observed cross- correlations between all pairs of interacting

residues, along with their autocorrelations (or MSFs).

Notably, our technique captures the physical significance of

factors such as sequence separation and spatial distance which

have been empirically found to influence force constant strengths.

Sequence separation is expressed in terms of contact order, i.e., the

number of residues along the sequence between two residues that

are connected by a spring in the ENM. Further, our analysis

benchmarked against a test set of 41 NMR ensembles of proteins

suggests additional factors, including hydrogen bond formation

and secondary structure type, which should also be incorporated

in the ENMs for a more accurate description of experimental data.

It also identifies factors that are of little consequence insofar as the

collective dynamics near equilibrium conditions are concerned.

Amino acid specificity turns out to be one of them; diffuse,

overlapping distributions of OFCs are obtained for different types

of amino acids, precluding the assignment of residue-specific

OFCs. A modified version of the GNM, mGNM, that accounts for

these factors is proposed and is verified to perform better than

existing models especially in reproducing cross-correlations.

Finally, the study highlights the importance of higher modes and

the role of frustration in protein dynamics, the implications of

which are discussed with regard to model development and

protein design.

Results

Overview of experimental dataset and OFCs
The training set of 68 proteins structurally characterized by

NMR and deposited in the Protein Data Bank (PDB) [27] (Table

S1) contains a total of 252,775 possible pairwise interactions (based

on the combination of all pairs of residues), of which 43,118

(17.1%) fall within the 10Å cutoff. Upon optimization, a mean

force constant of 6.23 kcal/mol/Å2 was found, averaged over all

pairs and all proteins. Notably, this value is on the same order as

typical uniform ENM force constants [8,28], and provides an

estimate of the strength of generic inter-residue interactions in

native folds. To eliminate environment-specific effects and allow

for the compilation and comparative analysis of the results for all

proteins, we normalized the force constants such that the average

force constant magnitude in each protein is unity. The resulting

normalized OFCs range from 210.0 to 31.1, in dimensionless

units, with a mean of 0.430 and a standard deviation of 1.831.

Most (71%) of the force constants have absolute magnitude less

than 1.0. Figure 1A displays the distribution of OFCs as a function

of the distance dij between the interacting pairs of residues i and j,

and colored by contact order k. k designates the sequential

separation between residues i and j, k = 1 corresponding to bonded

pairs. The inset in Figure 1A displays the dependence of the

average magnitude ,|cij|. on distance.

Dependence on contact order
A closer examination of the influence of contact order on the

OFCs yields the histograms displayed in Figure 1B. Whereas most

OFCs are generally small and distributed evenly around zero,

those associated with bonded interactions tend to be positive and

large, with a mean value of 2.898 and standard deviation of 3.009

(see Figure 1, black dots). These large positive values reflect the

almost rigid 3.8Å distance restraints on the backbone pseudo-

bonds (virtual Ca-Ca bonds), consistent with the fact that the

peptide bond dihedral angle v is confined to the trans state, and

consequently, in the absence of rotatable bonds the distance

between the consecutive a-carbons is almost fixed.

Author Summary

As more protein structures are solved, we are able to
perform a more critical assessment of the relationship
between protein structure and dynamics, and to gain a
deeper understanding of the major determinants of
structural dynamics. Here we perform a systematic study
on a set of proteins structurally determined by NMR
spectroscopy. The dynamics are analyzed using elastic
network models and a novel method based on entropy
maximization to demonstrate that properties such as
contact order and secondary structure do play a role in
defining the experimentally observed covariance data.
Most importantly, an optimal description of observed
cross-correlations requires the inclusion of destabilizing, as
well as stabilizing, interactions, stipulating the functional
significance of local frustration in imparting native-like
dynamics.

Determinants of Structural Dynamics

PLoS Computational Biology | www.ploscompbiol.org 2 June 2010 | Volume 6 | Issue 6 | e1000816



Second-neighbor (k = 2) interactions tend to be negative, with

mean 20.21161.436 (red dots in Figure 1A and red histogram in

Figure 1B). They obey a unique distance dependence (Figure 1C,

red curve), suggesting that 2nd neighbors closer than a certain

distance are generally too strained. Likewise, those stretched

beyond a certain separation exhibit negative force constants.

These interactions add frustration to the system: They tend to

favor conformational changes away from the equilibrium

structure, but only in a manner that does not violate the more

magnanimous k = 1 restraints. Taken together, the k = 1 and k = 2

interactions suggest a flexibility of virtual bond angles, which

allows adjacent (first neighboring) residues along the sequence to

retain almost rigidly their separation while second neighbors tend

to move with respect to each other.

The k = 3 interactions (blue dots in Figure 1A), on the other

hand, are positive (0.38561.366) indicating a dynamic correlation

between adjacent virtual bond angles. More detailed analysis

shows that in this case there is a weak tendency of 3rd neighbors to

be destabilized when their distance approaches 10Å (Figure 1C,

blue curve). A similar trend is observed in the case of 2nd

neighbors, when they approach their maximal separation (,7.4 Å)

allowed by chain connectivity. These observations point to the

instability of the conformations that strain the backbone.

Force constant strengths depend on secondary structure
The k = 2 interaction type and strength depend on the distance

between residues i and i+2 (Figure 1C). If the residues are

separated by 6Å or less, cij tends to be strong and negative, and the

correlation between k = 1 and k = 2 force constants is 20.386; for

distances of more than 6Å, the correlation with k = 1 drops to

20.100. This suggests the importance of secondary structure in

protein dynamics, which will be our focus next.

In helices, second neighbors tend to be separated by about

5.4760.20Å, compared to 6.6660.41Å in strands. As can be seen

from the red curve in Figure 1C, the former separation coincides

with the minimum (i.e., largest negative value) in the OFC curve,

which is also consistent with the red histogram displayed in

Figure 2B for a-helices. The positioning of a-carbons i and i+2

along an a-helical turn requires the dihedral angles Q and y on

both sides of Ca
i to assume narrowly distributed values in the

Ramachandran space and entails relatively tight packing of side

chains, which may not be sufficiently stable per se, unless stabilized

Figure 1. All interactions, colored by contact order. (A) The abscissa displays the distance dij between residues and the ordinate is the
optimized force constant (OFC) deduced from experimental covariance data for the interaction. The black cluster around 3.8Å indicates bonded
(k = 1) interactions; the red cloud between dij = 5 and 7.5Å corresponds to second neighbor (k = 2) interactions; the blue points indicate k = 3
interactions; and the green points in the background indicate all other interactions. Inset shows the trend of average force constant magnitude with
distance between nodes (heavy black curve), and two functional fits: red line is 2.26 exp(2dij

2/46.31); blue line, 31.93/dij
2. (B) Histograms of the

distributions in (A), by contact order. Mean values and standard deviations, mk6sk, for each curve are m1 = 2.89763.000; m2 = 20.20561.035;
m3 = 0.38561.366; m.3 = 0.06761.124. (C) Trends for the k = 2 and k = 3 distributions, with the same colors and axes as in (A). The k = 2 interactions are
fit to a sinusoidal function with extrema around 5.5Å and 6.5Å. The k = 3 interactions tend to be positive for small distances (,7Å) and negative for
larger distances, decaying exponentially.
doi:10.1371/journal.pcbi.1000816.g001

Determinants of Structural Dynamics
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by hydrogen bonds formed between the adjoining residues on both

sides. No such effect is discerned in 2nd neighboring residues on b-

strands, given that the corresponding dihedral angles are more

broadly distributed, and the backbone conformation allows for

favorable interactions between every other side chain.

Notably, 3rd neighbors on b-strands tend to exhibit negative

OFCs (Figure 2C). The Ca
i-C

a
i+3 distance of 8.79661.408 Å falls in

the regime of negative force constants (see the blue curve in

Figure 1C). In the case of helices, third neighbors are located at a

distance of 5.23060.531 Å, and experience favorable interactions

on a local scale (Figures 1C and 2C). The flexibility of the b-strand

k = 3 contacts and the rigidity of the b-strand k = 1 and k = 2

contacts suggests that strands have a propensity for twisting motions.

OFCs are consistent with hydrogen bond formation
patterns

Hydrogen bond formation is also found to have a strong influence

on the OFCs. Using the DSSP [29] algorithm, we determined

secondary structures for residues in our dataset and found that the

interactions between hydrogen-bonded residues tend to be larger

than those between residues that are not hydrogen-bonded (see

Figure 2D), which strongly supports the physical realism of the

derived OFCs. In a-helices, the average OFC for k = 4 interaction

representative of hydrogen-bonded residues on consecutive turns is

0.96261.341, compared to 0.13761.008 for all other k = 4

interactions. Similarly, interactions between hydrogen-bonded

partners in extended strands or isolated b-bridges have values

around 1.80162.321, compared to 0.41261.817 for other

interactions, thus more than counterbalancing the destabilizing

interactions between 3rd neighbors. In both cases, the distributions

for hydrogen-bonded and non-hydrogen-bonded interactions

overlap significantly but are distinct, with Kolmogorov-Smirnov

[30] probabilities of less than 10244. This sensitivity to atomic-level

details is missing in many coarse-grained ENMs, but it is an essential

component of the potential energy.

Interplay between destabilizing and stabilizing
interactions on a local scale

Clearly, despite the existence of destabilizing interactions on a

local scale, the overall structure is stable, i.e., the native structure is

Figure 2. Force constant distributions vary with secondary structure and contact order. Panels A, B and C, respectively, show the force
constant distributions for k = 1, k = 2 and k = 3, colored by secondary structure. Red curves indicate force constants between residue pairs in which
both amino acids are in a-helices (DSSP code H); blue curves are for force constants between residues in strands (DSSP codes E and B); and green
curves are for all other interactions. In a-helices particularly, the k = 1 interactions are strong and positive, the k = 2 interactions are negative, and the
k = 3 interactions are again strong and positive. (D) Similar histograms for hydrogen bonding partners. The red curve shows k = 4 interactions in a-
helices, the blue curve shows force constants between hydrogen bonding partners in strands, and the green curve shows all other interactions for
k.4.
doi:10.1371/journal.pcbi.1000816.g002

Determinants of Structural Dynamics
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a global energy minimum (as also confirmed mathematically; see

Methods) because these destabilizing pairwise interactions are

more than counterbalanced by other stabilizing interactions. For

example, there is a weak (20.274) anti-correlation between the

k = 1 and k = 2 force constants, and more significant anti-

correlations between k = 2 and k = 3 (20.689) and between k = 4

and k = 5 (20.614) (See Table 1). In particular, when residues i

and i+2 are in helices, the force constants corresponding to the

interactions between first and second neighbors exhibit a

correlation of 20.641 (see also Figure S1). The third and fourth

neighbors on a-helices, on the other hand, are distinguished by

their strong stabilizing interactions (Figure 2C and D). Similar

effects occur between 2nd and 3rd neighbors in b-strands, and in all

cases hydrogen bonds appear to make significant contributions to

the overall stability. The presence of these (anti)correlations

suggests that on a local scale there is a subtle balance between

favorable and unfavorable interactions that is instrumental in

determining the marginal stability of the molecule as well as its

collective motions about the equilibrium structure.

Force constant strengths are not residue-specific
We analyzed the dependence of the OFCs on amino acid type

and coordination number. The distribution of force constant

strengths exhibit some variations by amino acid type as can be

seen from the heights and widths of the distributions in Figure S2,

but there is no specific correlation of force constant values with

amino acid type. Although each amino acid has a unique

distribution of force constant strengths, all of these distributions

overlap to a large extent, so that accurately predicting interaction

strength based on amino acid type is not possible. This observation

agrees with the longstanding argument that the global dynamics of

solvated proteins are structure-based, and not sequence-based. We

note that the insensitivity of force constants to amino acid type

does not imply that all contacts contribute equally to the free

energy, but that the deviations from their equilibrium positions

experience comparable resistance. In terms of energy function, the

depths of the energy minima may dependent on amino acid types,

but the curvatures of the energy profiles near the minima do not

exhibit residue-specific features at this coarse-grained level of

representation.

Dependence on packing density
As was seen through the large values of the bonded interactions,

physical constraints directly impact the interaction values. We

therefore expect the OFCs to be greatest in magnitude for the

spatially constrained residues in the protein interior, and the

mean-square fluctuations to decrease with the coordination

number. Indeed, there is a modest (0.508) correlation between

the magnitudes of the bonded interactions and the coordination

numbers of the nodes they join. There is a stronger (20.582)

(anti)correlation between the coordination number and self-

interaction, and a very strong (20.909) one between a residue’s

self-interaction and the sum of its interactions with its first

neighbors. The weight of the node, defined as the sum of the

magnitudes of its edges, relates inversely to its MSF in much the

same way as the degree of a node in GNM relates to its MSF

(Figure S3).

Dependence on physical distance
Although the force constants vary in value at all distances, we

were curious to examine in more detail whether there exists an

underlying trend that describes the force constant magnitude as a

function of distance between residues. We calculated the average

absolute magnitude of the force constants as a function of residue

separation (see Figure 1A, inset) and examined the functional form

of this distance dependence. Using a function of the form

Dcij D~C exp {d2
ij=r2

0

� �
as proposed by Hinsen [14], we find the

highest correlation of only 0.339 when the distance r0 is 6.805Å,

which is about twice the proposed value of r0 = 3.0Å for non-

bonded force constants. Fitting the average magnitude to a

function of the form Dcij D~C dij

� �{a
, we find the best fit

(cc = 0.356) using an exponent of a= 1.953, which is remarkably

close to the exponent a= 2 suggested by Jernigan and coworkers

[17]. Although the trend is for the average magnitude of force

constants to decay with distance between nodes, the correlations

are not very strong and the abundance of noise in the force

constants prohibits the identification of a definitive function with

which they universally decay. Figure 1C shows that the distance

dependence also varies with contact order.

Comparison to GNM
We compared the collective dynamics calculated with GNM to

those found via OFCs (shortly referred to as OFC-GNM), with

regard to the level of agreement achieved with experimental data.

The computed covariance matrix contains three types of elements:

diagonal, interacting (nodes joined with an edge) and non-

interacting. Diagonal elements are representative of the MSFs of

individual residues, and off-diagonal terms represent the cross-

correlations between the fluctuations of pairs of residues. Table 2

summarizes the level of agreement of the two methods with the

experimentally observed covariances. Notably, the optimized

model provides a more accurate description of not only MSFs

and cross-correlations between connected nodes, but also the

cross-correlations between pairs of residues that are located farther

apart in the structure. As shown in Table 2, experimental

covariances between non-interacting residues have a correlation of

Table 1. Correlations between optimized force constants associated with contact orders of k#5, indicative of compensating
interactions between near neighbors along the sequence.

k = 1 k = 2 k = 3 k = 4 k = 5

k = 1 1.000 20.274 0.206 0.259 20.285

k = 2 20.641 (20.193) 1.000 20.689 20.169 0.256

k = 3 0.610 (20.353) 20.578 (20.562) 1.000 0.251 20.437

k = 4 0.206 (20.100) 0.042 (20.210) 0.307 (20.128) 1.000 20.614

k = 5 20.340 (20.189) 0.082 (0.163) 20.454 (20.201) 20.787 (20.500) 1.000

The upper triangle indicates results for all residues (written in boldface), and the lower triangle indicates results for pairs of residues in helices (strands) only. See
Methods for calculation details.
doi:10.1371/journal.pcbi.1000816.t001

Determinants of Structural Dynamics
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0.759 with the covariances predicted by OFC-GNM, compared to

20.014 for GNM.

One attractive feature of GNM is its ability to provide results

that are robust against minor changes in structure or network

topology. To test the resilience of OFC-GNM dynamics, we set

small force constants identically to zero and re-calculated the

covariance matrix. When the smallest 5% and 10% of the

interactions are discarded, the correlation between OFC-GNM

and experiment drops from 0.96760.020 to 0.40760.443 and

0.23860.347, respectively. Unlike the GNM, the optimized model

is therefore quite sensitive to the existence or loss of weak

interactions. We also examined the robustness of the modes in the

low frequency regime. The values in parentheses in Table 2 shows

that the top ranking five modes computed with the OFC-GNM

yield good agreement with their experimental counterpart,

whether the GNM cross-correlations exhibit a considerable

decrease in their level of agreement with experiments.

GNM predictions can be improved using additional
information

We briefly investigated whether the trends observed in the

optimized force constants can be used to create a more effective

ENM. Using a separate set of 41 proteins (Table S2), we tested the

effects of incorporating bonded interactions, second neighbor

interactions and hydrogen bonding into the ENM. The results,

summarized in Table 3 and Table S3, indicate that including these

properties mildly improves the agreement of the ENM with

observed covariances for the test set. We obtained the best

agreement when bonded interactions and hydrogen bonded

interactions are increased in magnitude and second-neighbor

force constants are negative. One set of parameters for this model,

which we refer to as modified GNM or mGNM, is given in

Table 3.

Discussion

At present, there are copious NMR and X-ray data available

from which we can extract information on protein equilibrium

dynamics, and the current state of molecular dynamics is such that

one can likewise approximate equilibrium ensembles of small

proteins in silico. By developing coarse-grained models that

reproduce these dynamics, we are able to deepen our understand-

ing of the factors that influence protein folding and function.

In the present analysis we selected to use NMR data that

provide conformational ensembles based directly on experiments,

but any covariance data could have been used, in principle. The

REACH algorithm [31] identifies effective ENM force constants

through an inversion of a covariance matrix derived from MD

simulations. Similarly, the heteroENM [32] utilizes an iterative

algorithm to similarly fit the force constants with MD-derived

covariances. The advantages to using MD-derived covariances are

precision and flexibility. Because the locations of all atoms in an

MD run are known to machine precision in each simulation

frame, the covariance between even the most distant atoms, such

as those separated by several nanometers, can be exactly

calculated within the context of the simulation. Further, MD

simulations permit in silico alterations to the system under study,

allowing one to find effective force constants that are specific to

any environment that can be simulated. This is a boon in

particular to those who wish to study the global dynamics and

interactions of multiple large molecules. On the other hand, there

are some shortcomings of MD that make it an unattractive option

for developing an ENM. First, MD is itself a theoretical model,

and the performance of any MD-based ENM is limited by the

accuracy of the force field: Inaccurate MD results beget inaccurate

ENM results. Second, MD is stochastic in nature, insofar as

simulations of identical systems starting from different initial states

may produce different results due to sampling inaccuracies.

Finally, MD is generally applicable only for short (,1ms)

simulations. Covariances calculated over a short time should not

be assumed to remain valid when the timescale is increased by

several orders of magnitude.

Amino acid covariances are calculated here from experiments,

specifically NMR structural data. A few well-studied proteins have

been crystallized in multiple states – such as those bound to

different ligands – allowing residue covariances to be calculated

from X-ray data. Although a growing body of work suggests that

functional states assumed by the proteins under different

conditions are captured in multiple crystal structures [33–36],

Table 2. Correlations between experimentally observed
covariances(*)with those predicted by GNM with uniform
force constants, and the GNM with optimized force constants
(OFC-GNM).

Correlations with experiments\ENMs GNM OFC-GNM

Autocorrelations MSFs 0.74360.145
(0.73460.203)

1.000
(0.99760.007)

Cross-correlations All 0.57860.114
(0.36560.169)

0.96760.020
(0.90460.058)

Interacting 0.52760.195
(0.53460.195)

1.000
(0.99460.008)

Non-interacting 20.01460.187
(0.02860.169)

0.75960.148
(0.74660.153)

(*) Based on 3649 NMR models from 68 proteins (see Table S1).
Values in parenthesis indicate the level of agreement when only the top 5
modes are considered.
doi:10.1371/journal.pcbi.1000816.t002

Table 3. Correlations between various ENM-predicted
covariances and those observed in NMR experiments(a).

Model(b) cc (RMSF)
cc (off-
diagonal)

cc (all
covariance)

1 U (GNM) 0.68960.188 0.40260.163 0.55360.135

2 D 0.72460.177 0.43160.150 0.55560.136

3 U+c(1) 0.72260.184 0.43860.142 0.54460.134

4 D+c(1) 0.70660.191 0.41660.129 0.50260.128

5 U+c(1)+c(2) 0.72060.188 0.44860.150 0.55860.140

6 D+c(1)+c(2) 0.72660.192 0.45260.142 0.54560.138

7 U+c(1)+HB 0.73160.179 0.45360.146 0.56560.136

8 D+c(1)+HB 0.72460.182 0.43060.132 0.52160.129

9 U+c(1)+c(2)+HB 0.72760.184 0.46560.154 0.579±0.142

10 D+c(1)+c(2)+HB
(mGNM)

0.738±0.190 0.472±0.147 0.57060.141

(a)Results obtained for the test set of proteins listed in Table S2.
(b)Symbols used are: U – Uniform (c= 1) force constant; D - distance-dependent

(c= 1/d2) force constant; c(1) – Nearest neighbor interactions are increased by
a factor of 10; c(2) – Second neighbor interactions are changed by a factor of
21 in U models or 25 in D models; HB – Interactions between residues joined
by backbone hydrogen bonds are increased by a factor of 10.

Values by protein can be found in Table S3.
doi:10.1371/journal.pcbi.1000816.t003

Determinants of Structural Dynamics

PLoS Computational Biology | www.ploscompbiol.org 6 June 2010 | Volume 6 | Issue 6 | e1000816



such multiple X-ray crystallographic structures have been

determined for a few well-studied proteins only, and in most cases

proteins crystallized in diverse states may not be representative of

the native ensembles of conformations accessible to the protein. A

more abundant source of protein conformational ensembles is

NMR data. The use of various NMR techniques in determining

solution dynamics of proteins has been reviewed extensively (see,

for example, [37,38]), and a number of techniques have been

proposed for inferring native-state protein ensembles from NMR

data [39–43]. Covariances calculated from NMR ensembles have

been shown to agree well with MD [44], X-ray B-factors [45,46]

and covariances between multiple crystal structures [33–36].

NMR data are not, however, without their shortcomings: NMR

ensembles may be affected by the sparsity of data and

conformational variations found in solution, and as such they

necessarily contain noise and do not purely reflect the native state

ensemble. As the NOE intensities that are used to define structures

decay rapidly with interatomic distance, long-ranged interactions

are a likely source of noise in NMR covariance data. Force

constant optimization methods that rely on full covariance data

[31,32] retain this noise. We were able to identify the major

determinants of the effective force constants that describe the

collective dynamics of proteins by resorting to a rigorous entropy

maximization procedure that addresses such uncertainties.

Strikingly, a subtle interplay between stabilizing and destabiliz-

ing interactions has been disclosed, which depends on contact

order, secondary structure and hydrogen-bond-formation proper-

ties. Although all of the proteins that we have analyzed are

relatively small, the physical basis of the factors impacting force

constant strength leads us to believe that our results hold for larger

proteins as well.

The OFCs are derived from existing structural data, and in this

respect our work is similar in spirit to the extraction of knowledge-

based potentials from known structures [47–53]. The present

study differs, however, in four ways: First, previous studies aimed

at evaluating the effective potentials of mean force that determine

the equilibrium state/energetics of native structures, and they were

used in evaluating folded or docked conformations. Here, the goal

is to assess the effective force constants that determine the

collective fluctuations away from the equilibrium state, which are

used in evaluating the equilibrium dynamics. Second, the training

dataset consists of distinct proteins’ structures in the former

approach, whereas here ensembles of conformations correspond-

ing to a given protein are analyzed. Third, the former group of

studies counts the probabilistic occurrences of inter-residues pairs

(or pair radial distribution functions) to derive potentials of mean

force using inverse Boltzmann law; here, the departures in

coordinates from their mean values are examined, and optimal

spring constants are evaluated from an entropy maximization

scheme, which is appropriate for sparse data. Fourth, the

knowledge-based potentials evaluated in previous studies are

residue-specific, whereas the OFCs show no significant depen-

dence on amino acid type. This final observation is in accord with

the concept that amino acids influence the fold, and the fold

influences the dynamics.

In our calculations we intentionally used a slightly longer cutoff

distance (10Å) than those determined to optimally reproduce B-

factors (7–8Å) [19,54]. Our reasoning was that, if a shorter cutoff

distance is better, then force constants for residues that are far

from each other will tend to be close to zero. Although we find that

the average magnitude of the force constants decays with distance,

we do not find that the force constants all drop sharply to zero

after some distance. GNM consistently predicts global protein

motions that agree with experimental observations, using a

uniform force constant. It would therefore not have been

unexpected to find that the OFCs tend to cluster about a single

non-zero value. Instead, we find that the OFCs adopt a range of

values centered about zero, and that the strongest indicators of

force constant strengths are contact order and backbone hydrogen

bond formation propensities.

The difference between the predictions of the GNM and

observed protein motions is illustrated in the three examples of

Figure 3, selected from the test set (Table S2). The three curves

therein represent the MSFs of residues based on five slowest modes

derived from NMR data (black, solid), predicted by the GNM (red,

dashed), and predicted by the mGNM (blue curve). As the GNM is

based entirely on the protein’s folded topology, it tends to instill

the most motion in the least connected nodes, e.g., chain termini

or the most exposed loop regions. However, the size of the motion

may depart from those indicated by NMR models, and mGNM

tends to yield a better agreement with NMR data. Application to

the complete test set of NMR ensembles confirmed that the

correlation with experiments is improved even when contact

order, distance dependence and hydrogen bonding are incorpo-

rated into the GNM without laboriously optimizing the force

constants (Table 3). The fact that these physically meaningful

effects emerged independently from our entropy maximization

calculations validates our approach to some extent. Less expected

was the prominence of negative force constants.

Overwhelmingly, the methods of ENM construction rely on two

assumptions that guarantee physically plausible behavior, but

which may be unwarranted. The first is that all springs are at their

rest lengths in the equilibrium conformation, and the second is

that all spring constants are positive. Taken together, these

assumptions are sufficient, but not necessary, to guarantee that any

deformations will increase the system’s energy. Our optimization

procedure naturally produces interactions that are physically

equivalent to springs of negative force constant, but so long as the

interaction matrix remains nonnegative definite, the system is in a

stable equilibrium and negative force constants are acceptable.

The existence of negative force constants reflects the implicit

frustration of folded proteins; the backbone restrains the protein to

certain compact folds, and not all native state contacts are

guaranteed, nor should be expected, to be favorable. Negative

force constants make the structure prone to certain deformations

that may not be preferred when all force constants are positive.

Frustration in proteins results in a rough free-energy landscape

that gives rise to folding intermediates and alternative conforma-

tions [55–58], and calculations involving Go-like potentials, or

knowledge-based potentials [49] reveal the requirement to include

both stabilizing and destabilizing interactions for an accurate

assessment of the folding behavior or stability of proteins. The

balance between attraction and repulsion endows proteins with

both the sensitivity and the stability that are prerequisite for proper

function [59]. We find that the (i, i+2) interactions are the most

likely to be at a local maximum, promoting a change in the angle

between (i, i+1) and (i+1 i+2) pseudobonds.

When we include factors such as hydrogen bonds and negative

k = 2 force constants in the GNM, the improved agreement comes

in the off-diagonal components of the predicted covariance

matrices. Cross-correlations are often overlooked when assessing

ENM predictions, but they are essential because they carry

information on how the molecule moves as a whole. The

autocorrelations that indicate how much individual residues move

are each the sum of positive terms and are necessarily dominated by

the slower modes. The cross-correlations, on the other hand, are

sums of positive and negative terms and are therefore susceptible to

the influence of higher modes. Slight modifications to the GNM,
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such as those that we have introduced in mGNM, do not perturb

the network enough to significantly alter the slow modes (Figure 3),

but their effects are captured in the higher modes.

Although the slowest modes get the most attention because of

their prevailing role in determining the molecule’s global motions,

the high-frequency modes have shown to be important for

identification of conserved residues and folding cores [60–63].

Mid- to high-frequency modes are also crucial to all aspects of

protein behavior. Allosteric transitions have been shown to occur

largely along the slowest modes, but higher modes are essential for

Figure 3. GNM-predicted motions display a range of overlaps with observed mobilities. The panels display the mobility profiles for three
example proteins from our test set to illustrate the various levels of agreement observed between theory and experiments. The curves are calculated
from the first five modes of the covariance matrix deduced from NMR experiments (solid black lines), the five slowest GNM modes (dashed red lines)
and the five slowest mGNM modes (solid blue lines). Insets are cartoons of the NMR ensembles for the three proteins, colored blue to red from the N-
terminus to the C-terminus. An example of good agreement between GNM and observed covariances is the histone deacetylase complex protein
2kdp (top panel), for which the GNM accurately predicts high mobility at the termini. The correlation coefficient (cc) between theory and experiments
is 0.91 in this case for both GNM and mGNM, due in large part to the motion at the protein termini. Average agreement of 0.67 is seen in the scorpion
neurotoxin 1b3c, for which GNM predicts excessive motion near the C-terminus and under-predicts motion of the loop around residue 32, shown in
green in inset cartoon. When mGNM is used, the sharp changes in the mobility profile are smoothed and the correlation increases to 0.79. In the
calcium binding protein1skt (bottom), the GNM predicts motion at the N-terminus, whereas the NMR ensemble shows higher variation around the
two turns around residues 33 and 69 (green arrows). The mGNM improves agreement by increasing mobility around these turns. The correlation
between theory and experiments is increased from 0.31 to 0.57 upon adopting the mGNM instead of the GNM (with uniform force constants).
doi:10.1371/journal.pcbi.1000816.g003
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the complete transition [64]. Similarly, a protein’s response to

external perturbations [28] is dependent on all modes, not only the

slowest few. An ENM that accurately captures all modes has an

enhanced ability to predict large-scale conformational changes,

and our technique opens the door to developing better ENMs

based on experimental data.

Figure 4 shows pairwise comparisons of the eigenspaces

spanned by the slowest modes of various models. Panel A shows

the correlation of mobilities as a function of the fraction of modes

used in the comparison, and panel B shows a similar plot of the

overlap of the eigenspaces (see Methods). The green and black

curves relate the GNM and mGNM, respectively, to the

experimental covariance matrices. The average mobility correla-

tion of GNM with the experimental covariances peaks at 0.76

when 12% of the modes are considered and then falls as more

modes are taken into account, indicating that the predicted modes

in the mid-to-high frequency range introduce errors manifested by

departures from experimental data. The modified GNM does not

exhibit this decline, but remains steady even as higher modes are

considered, indicating that the higher modes of the mGNM do not

adversely affect the predicted mobility of the system. Comparison

of GNM to mGNM (blue curves) shows that the slowest 2% of

modes of these models are highly overlapping, but that the

similarity decreases as more modes are considered. The modifi-

cations of mGNM therefore do not affect the slowest mode, which

is presumably determined by the fold topology, but they change

the shapes of higher modes.

Interestingly, the overlaps of the GNM and the mGNM with

the modes of the covariance matrix are almost identical (compare

green and black curves, panel B), suggesting that, despite the

improved agreement in mobility, the modifications that we have

made to the mGNM still fail to precisely capture the system’s

overall dynamics. Although some additional improvement may be

gained by fine-tuning the parameters of the mGNM (last line,

Table 2), the similarity in slow modes of GNM and mGNM once

again indicates that fold topology has the dominant influence on

the mode shapes.

Methods

Protein sets
For our training set, we start with a set of 68 proteins (Table S1),

each of which has at least 40 NMR structures available. The

proteins in our set have between 43 and 151 residues. For each

protein we calculate the mean structure from the NMR ensemble,

and we select as a representative structure the NMR model that

has lowest root-mean-square deviation (RMSD) from the mean.

The test set consists of 41 proteins (Table S3), each having at least

40 NMR models and no fewer than 50 residues.

Assessment of optimal force constants
We seek to determine the pairwise interactions that optimally

describe observed covariances between residues while minimizing

the assumptions about the form of missing data. For this, we turn

to the principle of maximum entropy, which states that when

inferring the form of an unknown probability distribution from a

limited number of samples drawn from the distribution, the

method that is minimally reliant on the form of missing data is

entropy maximization. Here the central idea is outlined in terms of

the GNM.

Consider a protein of N residues for which m structures are

known (e.g., m models deposited in the PDB for a given protein

resolved by NMR spectroscopy). The position of residue i in

structure k is given by the vector, Rk
i ~ xk

i , yk
i , zk

i

� �T
, the average

position of residue i in all structures that have been optimally

superimposed (to eliminate external degrees of freedom) is defined

Figure 4. The effect of non-uniform force constants is manifested in the mid-range modes. The curves compare mobility (A) and mode
overlap (B) of models as a function of the fraction of modes used. Black, green, and red curves compare the modes of the inverse covariance matrices
from experiments to those obtained using mGNM, GNM, and optimized interactions (OFCs), respectively. The blue curves compare GNM modes to
mGNM modes. For clarity, some error bars have been omitted. See text for details.
doi:10.1371/journal.pcbi.1000816.g004
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as R0
i ~1=m

Pm
k~1 Rk

i , and the vector displacement of residue i in

structure k from the average is DRk
i ~Rk

i {R0
i . In the GNM, we

replace the vector displacement DRi with the scalar displacement

Dri, which is defined such that SDriT~0Vi and SDriDrjT~

SDRi
:DRjT~1=m

Pm
k~1 DRk

i
:DRk

j .

Now define the set p of q pairs of residues such that for all pairs

i, jð Þ [ p we know the covariances SDriDrjT, but for pairs

i, jð Þ 6[ p we do not know SDriDrjT. We seek the probability dis-

tribution that produces the known covariances while remaining

minimally presumptive about the form of missing information.

According to Jaynes [22,23], this is the distribution that maximizes

entropy subject to the constraints that some pair covariances are

known and must be reproduced.

Defining the N-component vector, Dr~ Dr1, . . . ,DrNð ÞT , the

probability distribution that we seek is r(Dr), and it has the

properties

X
Dr

r Drð Þ~1 ð1Þ

SDriDrjT~SDRi
:DRjT~1=m

Xm

k~1
DRk

i
:DRk

j

~1=m
X

Dr
r Drð ÞDriDrj

ð2Þ

We define the entropy S~{
P

Dr r Drð Þ ln r Drð Þ, and impose the

above constraints as Lagrange multipliers:

f~S{l
X

Dr
r Drð Þ{

X
i, jð Þ[p

mij

X
Dr

r Drð ÞDriDrj : ð3Þ

Maximizing f with respect to r(Dr), we find

r Drð Þ~e{ 1zlð Þ exp {
X

i, jð Þ[p
mijDriDrj

n o
, ð4Þ

or, defining Z = e1+l. and the matrix K with elements Kij = mij,

r Drð Þ~1

Z
exp {

1

2
Drð ÞT KDr

� �
: ð5Þ

Direct integration leads to the result

SDriDrjT~
1

Z

ð
dNDr exp {

1

2
Drð ÞT KDr

� �
~K{1

ij , ð6Þ

which is the well-known relationship between covariances and pair

interactions. The probability distribution in Equation 5 is of the

same Gaussian form as the probability distribution from GNM [9],

but with the interaction matrix K replacing the product of the

spring constant c and the Kirchhoff matrix C. Thus, the off-

diagonal elements of K correspond to the negative spring

constants: Kij = 2cij, where cij is the force constant of the

interaction between residues i and j. We are claiming knowledge

for the covariance information of only the q residue pairs in the set

p, so K cannot be found through the simple inversion of the

covariance matrix. The matrix K has a well-defined form: the

elements Kij : i, jð Þ [ p are the Lagrange multipliers that have

imposed the above constraints on the covariance and may

therefore be different from zero; the elements Kij : i, jð Þ 6[ p are

identically zero. Mathematically, this means that there are no

constraints on the covariances of pairs i, jð Þ 6[ p. We then have

partial information for both K and K21: The elements

Kij : i, jð Þ 6[ p and K{1
ij : i, jð Þ [ p are known, and the elements

K{1
ij : i, jð Þ 6[ p and Kij : i, jð Þ [ p are to be determined. The

solution can be found through an N-dimensional minimization as

follows. Consider the function

F K,Cð Þ~Tr KCð Þ{ lnDKD ð7Þ

of two symmetric square matrices K and C. Differentiation with

respect to each element of K reveals that there exists a single

minimum at

LF=LKij~Cij{K{1
ij ~0: ð8Þ

Because Cij is undefined for all i, jð Þ 6[ p, we can allow

Cij~K{1
ij V i, jð Þ 6[ p, automatically satisfying the minimization

condition for elements not in p. The remaining elements of K can

be found by starting with a matrix of the general form of K and

iteratively adjusting the non-zero elements against the gradient

given in Eq. 8 until the minimum is reached. Optimization is

achieved when
K{1

ij
{Cij

� �
ffiffiffiffiffiffiffiffiffiffi
CiiCjj
p v0:01 for all interactions. This

criterion appears to be sufficiently strict: Reducing the optimiza-

tion constant from 0.01 to 0.005 changes the spring constants by

less than 1%, on average. The optimization is somewhat

computationally intensive: Each step requires an O(N3) matrix

inversion, and the minimization completes after about 104 steps,

making this technique best-suited for small proteins.

It is noteworthy that only those interactions corresponding to

known covariances are optimized, and the rest remains zero. This

result stems from the application of entropy maximization. Whereas

many networks are capable of exactly accounting for the covariance

information in the q known interactions, this is the only one that

does so without prior assumptions about other covariances. Each

pair interaction carries information on the covariance of two of the

N nodes, so a network of more than q interactions carries

information on more than q covariances. Nevertheless, all

covariances can be calculated with the resultant network. Those

covariances that are not known a priori and included in the

calculation simply result from the optimized interactions. The

matrix C is nonnegative definite by construction, and its inverse K is

therefore also nonnegative definite. As a result, no deviation from

the native state conformation can lower the system’s energy.

The interaction matrix K has the dimensions of Å22, and

physical values for the force constants can be determined by

multiplying by 3kBT, where kB is the Boltzmann constant and T is

the temperature. Using this conversion, the OFCs vary between

21686 kcal/mol/Å2 and 3868 kcal/mol/Å2, with a mean of

6.23 kcal/mol/Å2. When K is scaled by a scalar constant, c, its

corresponding covariance matrix is scaled by c21. Thus, the mean

element magnitude of the covariance matrix affects the magni-

tudes of the elements of the interaction matrix, such that large

covariances tend to produce weak interactions. The experimental

conditions under which the structures are solved influence the

magnitudes of the covariances, and therefore also influence the

magnitudes of the effective force constants. To reduce the bias on

force constants caused by environmental specificity, the OFCs for

each protein are scaled by the mean magnitude of the non-zero

off-diagonal interactions in that protein.

GNM
In the GNM, each residue is a node of the network and is

represented by its Ca atom. Nodes that are within a cutoff
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distance, Rc, are considered connected via an elastic edge. Typical

values of Rc are between 7Å and 10Å. Using the N-dimensional

column vector, Dr, of displacements of the nodes from their

equilibrium positions, the potential energy is found to be

V Drð Þ~1

2
Drð ÞT cCð ÞDr, where c is a uniform force constant

assigned to all interactions, and C is the Kirchhoff adjacency

matrix, with off-diagonal elements Cij = 21 if nodes i and j are in

contact and Cij = 0 otherwise. The diagonal elements of C are such

that the sum over all elements in any row or column is identically

zero. The elements of the covariance matrix predicted by the

GNM are related to C as Cij~SDriDrjT~ 3kBT=cð Þ C{1
� �

ij
.

Mode overlap
If U and V are two sets of normal modes for an N-dimensional

system under different models, then we define the overlap of

the first m modes of the models as Qm U,Vð Þ~
1

m

Pm
k~1

Pm
p~1 Du(k):v(p)D, where u(k) and v(p) are the kth and pth

slowest modes of U and V, respectively. Qm ranges from 0, if none

of the space spanned by the slowest m modes of U can be projected

onto the first m modes of V, to 1, if the two spaces overlap exactly.

Correlation between force constants
The force constant between residues i and i+k is ci,izk. The

correlation coefficient between force constants corresponding to

different contact orders is calculated as follows. First, for a contact

order n,k, we define cn
i,izk as the average force constant for all

pairs between i and i+k that have a contact order of n:

cn
i,izk~

Pk{n

j~0

cizj, izjzn

k{nz1
: ð9Þ

The correlation between force constants ci,izk and cn
i,izk is then

rkn~

P
i

ci,izk{Sci,izkT
	 


cn
i,izk{Scn

i,izkT
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ci,izk{Sci,izkT
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

cn
i,izk{Scn

i,izkT
� �2

s : ð10Þ

Table S2 lists such correlations for contact orders in the range

1#k#5.

Supporting Information

Figure S1 Distribution of the force constants corresponding to

non-bonded interactions of twenty different types of amino acids.

Axes are identical in all plots. Mean values and standard

deviations are listed in each case.

Found at: doi:10.1371/journal.pcbi.1000816.s001 (1.66 MB TIF)

Figure S2 Scatter plots of k = 2 force constants against k = 1

force constants for helices (red circles) and strands (blue squares).

Found at: doi:10.1371/journal.pcbi.1000816.s002 (1.31 MB TIF)

Figure S3 Relationship between mean square fluctuations and

inverse node weight. In GNM (red circles) the weight of a node is

the number of its edges, ni. In OFC-GNM (blue squares), the edge

weight is the sum of the magnitudes of all its edges. The

correlations with the linear fits shown are 0.416 and 0.670,

respectively.

Found at: doi:10.1371/journal.pcbi.1000816.s003 (1.15 MB TIF)

Table S1 Training set proteins

Found at: doi:10.1371/journal.pcbi.1000816.s004 (0.06 MB

DOC)

Table S2 Test set proteins

Found at: doi:10.1371/journal.pcbi.1000816.s005 (0.05 MB

DOC)

Table S3 Test set mGNM results by protein

Found at: doi:10.1371/journal.pcbi.1000816.s006 (0.08 MB

DOC)
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