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Abstract

Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small
diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a
means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a
quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior,
highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the
molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing
mechanism depends on different model parameters. Specifically, we show that the switching capability of the network
leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than
compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate
mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely
outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments
and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have
a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The
cell-based type of model presented here together with high-resolution experiments will play an integral role in a more
explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution.
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Introduction

Bacteria have evolved signaling networks enabling them to sense

the environment by producing, exporting and importing small

signaling molecules called autoinducers. By using autoinducers

that can rapidly diffuse across cell populations and accumulate

over time, bacterial cells can receive information about the cellular

density in the surrounding environment. The information can then

be used to generate decentralized population-wide responses at

high enough cell densities. This phenomenon, known as quorum

sensing (QS), has been shown to be important for several biological

mechanisms since the initial discovery of it as a regulator of

bioluminescence [1–3]. In particular, it appears to be a key

regulator of several bacterial phenotypes with medical implica-

tions, e.g. virulence factor production, biofilm development, and

synthesis of antibiotics [4–6].

Typically, quorum-sensing Gram-negative bacteria use largely

homologous quorum-sensing networks [3], wherein the autoindu-

cers are acylated homoserine lactones (AHL), detected and

regulated via the genetic circuits similar to the LuxIR circuit in

Vibrio fischeri (Figure 1A). The lux operon in V. fischeri is positively

regulated by AHL, and apart from controlling bioluminescence, it

upregulates the expression of the AHL-synthase LuxI. This creates

a positive feedback loop that increases AHL production in an

AHL-sensitive fashion. LuxR is an AHL-dependent luxI activator,

whose dimerized complex with AHL leads to transcriptional

activation of the operon [7,8]. LuxR has also been implicated in

regulation of its own expression [9–11], providing an additional

positive feedback loop in the system. The lux operon circuit may

be regarded as the central network for controlling QS behavior,

but other regulatory mechanisms have also been identified (see e.g.

[12,13]).

Studying QS in detail at a population level introduces some

interesting complications. The internal concentration of the

autoinducer is dependent not only on its production and

degradation, but also on the permeability of the bacterial cell

wall as well as on the diffusive properties of the surrounding

medium. While the response switch from a low lux gene

expression state (off state) to its high expression state (on state) is

easily predictable in experiments where the exogenous autoindu-

cer concentration is controlled, the cell response in the presence of

autoinducer auto-regulation is more complex to analyze and

understand. For instance, waves of QS signaling might develop or

be arrested, depending on the mutual location of signaling cells, as

the probability for a cell to be induced might depend on the

transport properties of the medium and the signaling levels of the

neighboring induced cells. The intracellular switch of the QS

network is dependent on the autoinducer concentration just

outside the cell, and since this concentration increases with the

number of nearby cells even if they are in the basal ‘‘off’’ state, the

PLoS Computational Biology | www.ploscompbiol.org 1 June 2010 | Volume 6 | Issue 6 | e1000819



QS can be switched at high densities of bacteria. However, the

autoinducer levels are highly dependent not only on the

population size, but also on the degree of local cell clustering

and on the geometry of the environment in which the bacteria are

growing. Since these parameters are not controllable by the

individual bacteria, there is an ongoing discussion as to whether

the main benefit derived by cells in QS is from measuring cell

density (or reaching a ‘‘quorum’’), the diffusion of autoinducer

away from the cell (diffusion sensing, DS) or the potential

efficiency of a process metabolically more expensive than secretion

of AHL (efficiency sensing, ES) [14,15].

QS can be beneficial from a population perspective, but since

there is a cost associated with ensuring a new beneficial trait for

the colony, it is exploitable by the so-called cheater cells, e.g., those

that do not contribute to the production of autoinducer or

expression of the QS-regulated operon, but still take advantage of

whatever benefit the QS response provides to the colony [15–20].

This has recently been highlighted in experiments with mixed

populations [21,22]. These experiments have measured the

relative fitness of cheater cells, depending on the initial ratio of

producer and cheater cells within the colony [21]. In particular, an

example of Simpson’s paradox was seen [22], wherein QS signal

producing cells taken together have a net advantage if cell

populations form groups with different initial ratios of producing

and cheater cells, even though the producing cells are at a

disadvantage in each of the individual groups.

Several mathematical models have been used to describe the

molecular network central for quorum sensing [23–26]. The

models have all used networks with single or double positive

feedback loops, and assumed different regulatory mechanisms of

luxI via the AHL-LuxR complex. Despite the differences, the

models converge in their predictions of a bistable switch-like

behavior dependent on the external concentration of the

autoinducer. Although the models have provided information on

how the intracellular QS-network behaves, the effect at the

population level have thus far been excluded in all computational

investigations.

To be able to investigate the behavior of quorum sensing in a

bacterial colony where the autoinducer is produced within the

colony, we introduce a model that explicitly includes growing

bacteria interacting with each other and the surrounding

environment via both molecular and mechanical interactions.

The model assumes two positive feedback mechanisms where a

dimerized LuxR-AHL complex activates both LuxI and LuxR

production similar to recently published models [25,26]

(Figure 1A). We use a combination of analytical and numerical

investigations of the model to explore how for example colony

size, local clustering, and confinement, affects the behavior

both on the single-cell level as well as on the colony level. In

mixed population simulations we investigate the competition

between autoinducer producing cells and non-producing

cheater cells.

Results

We developed a mixed cell-based/ODE-model for molecular

and mechanical interactions. In the model (see Methods) bacteria

are described by two half-spheres connected by a cylinder. The

bacteria grow in the direction of the cylinder and divide

perpendicular to this direction. Mechanical interactions are

explicitly modeled and will tend to minimize spatial overlap in

the colony [27]. The molecular network of individual bacteria has

two feedback loops. The autoinducer AHL (A) and the receptor

LuxR (R) form a dimerized complex that regulates the production

of both R and A (Figure 1A). The intracellular molecular

regulation model is closely based on the model by Williams

et al. (2008) [26], where additional dynamics for the autoinducer

have been added, as described by the following equations

d½A�
dt

~c0Az
k1A½C�

KDAz½C�{k2A½A�{k5½R�½A�zk6½RA�

{pout½A�zpin½Ae�
ð1Þ

d½R�
dt

~c0Rz
k1R½C�

KDRz½C�{k2R½R�{k5½R�½A�zk6½RA� ð2Þ

d½RA�
dt

~k5½R�½A�{k6½RA�{2k3½RA�2z2k4½C� ð3Þ

d½C�
dt

~k3½RA�2{k4½C� ð4Þ

d½Ae�
dt

~
X
bact

(pout½A�{pin½Ae�)zD+2½Ae�, ð5Þ

where ½X � denotes the concentration of a particular molecular

species X , RA is the AHL-LuxR complex, C is the dimerized

complex, and Ae is the extracellular AHL concentration which is

assumed to diffuse freely (see Table S1 for parameters). In the

cases where growing bacteria were analyzed, the effect of dilution

due to the exponential growth was taken into account, giving the

equivalence of an extra degradation term in the above equations

(see Methods).

Author Summary

Unicellular organisms have the ability to communicate
with each other via signaling molecules, leading to
correlated behaviors resembling that of higher organisms.
This process, called quorum sensing, allows the cells to
monitor the population size or density in a decentralized
fashion and perform a common task when these
parameters exceed predefined threshold values. The
quorum sensing mechanism has been implicated in
diverse functions such as producing bioluminescence,
virulence factors, and initiating biofilm formation. Complex
emergent behaviors, such as quorum sensing, can be hard
to analyze and understand without the assistance of
mathematical and computational models. Here, we
present a cell-based model of proliferating bacterial
microcolonies and investigate how population-level re-
sponses can emerge from the signaling and mechanical
properties of individual cells. We study both signaling
variations within homogeneous (homotypic) bacterial
populations as well as signaling and competition in mixed
heterotypic populations. We investigate in particular how
population size, local cell density, and spatial confinement
affect colony growth and predict strategies for facilitating
quorum sensing. We also show that the interplay between
‘‘honest’’ quorum sensing signal producing bacteria and
non-producing ‘‘cheaters’’ can lead to emergent feedback
regulation via differentiated growth that provides only a
transient benefit for cheating cells.

A Cell-Based Model for Quorum Sensing
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Transport and external autoinducer concentrations can
regulate the intracellular switch

First we analyzed the single-cell system described in Equations

1–4 without transport, i.e. pout and pin are set to zero. At the steady

state, all derivatives are equal to zero, which gives a set of algebraic

equations, which in turn can be simplified into a single equation

(Equation 6 in Methods), which can have one or multiple positive

real roots. Equation 6 was solved numerically to create bifurcation

diagrams in the model parameters (Figure 1B and C). It is clear

that within a certain parameter region the system has multiple

stable solutions, but this region can be complex with several

surrounding monostable regions.

Adding intercellular transport and external diffusion is expected

to affect the parameters in Equation 6, so that the system

trajectory would be able to move into and out of the multistability

region(s) (cf. Figure 1B and C). Several single-cell QS models have

predicted an Ae-dependent switch-like response of the QS network

[23–26]. To address the effect of communicating AHL with the

cell environment, we first assumed a constant Ae and added

transport terms to see how this would affect the equilibrium

behavior. This generated two important differences as compared

to the non-transport analysis above. The transport out of the cells

(pout½A� term in Equation 1) has the same form as the degradation

(k2A½A�), so an increase in outwards transport moves the state of

Figure 1. The quorum sensing network. A) Illustration of the quorum-sensing network used in our simulations. The autoinducer, AHL, can
penetrate the cell wall and bind to and activate LuxR. The activated LuxR forms complexes which in turn affect the synthesis of both the autoinducer
and LuxR. B) Bifurcation diagram of the equilibrium solutions for the single-cell model without AHL transport (Equation 6). The plot shows a plane
where a~c and d~500b, where a~k1A=c0A, b~aKDA=d2 , c~k1R=c0R , b~aKDR=d2 , d~c0Ac0R=(k2Ak2R), and a~k4k2

6=(k3k2
5). C) Bifurcation diagram

of the equilibrium solutions for the single-cell model without AHL transport in the modified version where the original parameters were kept
(Equation 8 in Methods). The values of c0A and k2A were varied and while the other parameters remained constant. D) Colonies display hysteretic
behavior in response to changes in external autoinducer level. Shown is the mean concentration of R as a function of the external autoinducer
concentration Ae . Data are from simulations of a growing colony with bacteria removed once they are outside the simulation boundary, keeping the
number of bacteria approximately constant (Suppl. Video S1). The volume of the extracellular medium is assumed to be much larger than that of the
bacteria, resulting in negligible effect of cell-produced autoinducer. Standard deviations are smaller than the symbols used in graphs.
doi:10.1371/journal.pcbi.1000819.g001

A Cell-Based Model for Quorum Sensing
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the system towards a monostable ‘‘off’’ state in our equilibrium

analysis (upwards in in Figure 1C). The transport into the cells

(pin½Ae�) gives an Ae dependent constant contribution and will

hence effectively increase the c0A constant which will move the

state towards a monostable ‘‘on’’ state (right in Figure 1C). Hence,

the addition of transport terms affects the control parameter values

and results in changes with opposite effects. At low extracellular

AHL concentrations the outflux can dominate the influx and thus

drive the bacteria towards an ‘‘off’’ state, whereas high

extracellular AHL concentrations are expected to drive the

bacteria towards the ‘‘on’’ state.

Note that the analysis above was only for the equilibrium

behavior and to investigate the dependence on the external

autoinducer concentration in a dynamically growing cell-based

model, we next performed simulations wherein Ae first slowly

increased, and then decreased (Video S1). As expected, the colony

displayed QS response hysteresis (Figure 1D). For the parameters

used here the transition between states was fairly smooth, but for

other parameter values the transition can be steeper and can even

be irreversible (Figure S1).

Quorum sensing is a population size effect
The requirement to have the switching capability in the QS

network due to changes in external Ae does not put severe

constraints on the model. As long as an ‘‘off’’ state is available at

low Ae concentrations, a sufficient increase in Ae will always lead

to a switch to an ‘‘on’’ state, due to the Ae dependent increase of

the constant term in Equation 1 (c0A?c0Azpin½Ae�, cf. Figure 1C

and Equation 8 in Methods).

In nature, however, the QS switching is more restricted since it

is the bacteria themselves that produce the autoinducers and there

is an upper limit of how high the concentrations of Ae can reach

within the colony. Furthermore, the Ae switch threshold needs to

be reached while the bacteria are still in the ‘‘off’’ state. The

production of AHL cannot be so high as to allow a single-cell to

switch by itself, but it must be high enough, so that at high enough

densities the colony is able to reach the threshold in Ae.

A simplified equilibrium analysis of Equations 1–5 including a

single external Ae compartment, but multiple cells, leads to a

single change from the non-AHL-transport analysis above. The

½A� dependent term is changed: k2A?k2AzpoutD=(NpinzD),
where N is the number of bacteria and D is the diffusion out from

the extracellular milieu (see Methods). As discussed above, an

increase of the k2A parameter moves the state of the bacteria

towards a stable ‘‘off’’ state, upwards in Figure 1C, and this

simplified model shows that adding diffusive interaction with the

extracellular domain can only drive the bacteria towards that

monostable ‘‘off’’ state.

The change due to the addition of transport is bounded

(0ƒpoutD=(NpinzD)vpout), wherein the lower bound is for

N??. Thus the effect of increasing the population size, N,

corresponds to decreasing k2A or going downwards in Figure 1C.

However, since the contribution is bounded from below, the

system can never move beyond, or below, the initial state. Hence,

this simplified equilibrium analysis predicts that, in order to have a

QS response of the colony, the parameters must be chosen such

that a single bacterium without AHL transport is in an ‘‘on’’ state,

but close enough to the multistable region to allow inclusion of the

transport terms to ‘‘move’’ the single bacterium into its ‘‘off’’ state.

The analysis presented is of course for a very simplified

description of the QS, and to be able to investigate how QS works

in a more realistic non-equilibrium environment, we used a cell-

based model and a spatially meshed extracellular domain with

dynamically diffusing AHL. We simulated the system of growing

communicating bacteria, starting with a single bacterium that

grows, divides and communicates with the environment (see

Methods). The overall simulation domain was assumed to be a

thin rectangular layer, of the same thickness as the bacteria, and

with ½Ae�~0 on the boundary. This assumption, in addition to

simplifying visualization and analysis of the results, corresponds to

the experimental design used to analyze bacterial colony growth in

microfluidic devices, thus providing a potential model validation

platform [27]. The colony displayed a quorum-sensing behavior

with a clear unanimous switch in A and R at a specific population

size (Figure 2A, see also Figure S2 and Video S2). When the

number of cells was small the colony was in an ‘‘off’’ state. At a

threshold population size, cells in the spatial center of the colony

started to switch on, leading to a short time period of an

inhomogeneous colony with cells both in ‘‘on’’ and ‘‘off’’ states,

but the switching propagated quickly and soon virtually all cells of

the colony were switched on. A reason for the homogeneity of

responses of all the cells in the colony is the positive feedbacks

ensuring that the production of AHL is much higher in cells that

are turned on compared to the constitutive basal production. As

soon as a few cells turn the signaling on, the amount of AHL in the

environment can quickly rise, driving the fast propagation of the

switching throughout the colony. However, the low constant

production of AHL is necessary for the initiation of the switching

behavior.

To investigate the system dependence on the model parameters,

we performed a parameter scan and studied how parameter

variation affected the colony behavior (Figures S3, S4, S5). In

Figure 2B we show the effect of varying the three transport

parameters (D, pin, and pout). We observed that the colony

response moves into and out of the bistability region at different

population sizes. Specifically, we found that, at low diffusion rates,

the system was inclined to switch, whereas at higher diffusion

rates the colony was no longer able to accumulate sufficient

amount of AHL to make the switch possible, gray line in Figure

2B. This is in accordance with the simplified equilibrium

analysis above, wherein changing D affected k2A via k2A?k2Az
poutD=(NpinzD). Hence, at low D, the system is essentially in the

situation without AHL transport, whereas at high D, we get

k2A?k2Azpout which might be enough of a change in the

effective AHL removal rate to move the system into the ‘‘off’’ state.

From the same simplified model it is also clear that pin and pout

should effectively change k2A in opposite directions, which is also

exactly what one observes in Figure 2B.

The model predicts local clustering and external
geometry dependent behavior

Thus far we have shown that the switching mechanism of QS in

individual cells is dependent on the extracellular AHL concentra-

tion, and that for a bacterial colony this concentration depends on

the net loss of local Ae. Our simplified analysis showed that this

loss can be approximated by a change in k2A, given by addition of

the term poutD=(NpinzD), which explicitly shows that this

depends on the outflux (or loss) in the exterior (D) and the density

of bacteria (N), with the individual bacteria thus not being able to

distinguish whether D or N is changed in the environment. The

simulations of the colony growth (Figure 2) also showed that being

in the center of a dense population facilitates the QS switch. Taken

together, these results demonstrate that the model confirms that

bacteria cannot measure cell density, exterior loss of autoinducer,

and spatial clustering independently, in agreement with prior

qualitative arguments [15].

It has been shown that bacteria often actively seek out small

cavities and populate them to very high densities [28,29]. To see

A Cell-Based Model for Quorum Sensing
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how local density and confinement might affect colony behavior,

we compared dense cell population simulations with simulations of

a sparsely populated colony. The populations were simulated with

open boundaries as before (Figure 3A). We also considered

colonies confined in a small cavity with a single small outlet

(Figure 3A). In the simulations, we fixed the population size at

different values and examined the resulting QS. The system

switched once the population reached a certain number of cells,

and the system switch occurred at lower cell number in the dense

population than in the sparse population (Figure 3B, see also

Figure S6). This result demonstrated that although QS is generally

a population-size effect, it can be facilitated by local clustering of

bacteria [15]. We also observed that confinement of the sparse

population makes its switching behavior similar to that of the

dense population. Thus, not only the local density and the number

of bacteria matters for the response of the colony but also the

geometry of the surrounding environment.

In light of the results in Figure 3B the strategy of populating

cavities makes sense as a way of facilitating the onset of quorum

sensing. However, the geometry of the cavity may also affect the

ability of the colony to perform the switch in concert, e.g. by

controlling the escape of AHL. To address this possibility more

directly, we performed simulations of colony growth and QS in a

cavity geometry similar to previously used microfluidic chambers

[27], but with variable number of outlets. Simulations were

initiated with a single bacterium and simulations were run until the

expanding colony completely filled up the cavity (Figure 4A and

Videos S3, S4, S5, S6). At sufficiently high values of D the

population only partially switched states (Figure 4A). Typically, it

is only at the regions furthest away from the exits that the colony

was able to accumulate sufficient levels of A to undergo the switch.

Figure 4B shows the fraction of cells in the ‘‘on’’ state as a function

of time, with the clear result of an organized population-dependent

behavior. At first no cells are in the on state, but at a colony size

determined by the number of outlets, parts of the population make

a sudden sharp switch and reaches a new stable configuration

(cf. Videos S3, S4, S5, S6). The bacteria furthest away from the

exits are those that initiate the switching behavior.

In Figure 4C the A and R concentrations of individual bacteria

are plotted as a function of the spatial position along the horizontal

axis for Chamber 2. At positions far away from the exits the

bacteria are homogeneously in the ‘‘on’’ state, while closer to the

exits the population is less homogeneous due to the loss of AHL at

the exits (the upper leg marked with z in Figure 4C). Note also

that the signaling in the chamber legs between two exits is tightly

concentrated around A~0:1 (e.g. 0 in Figure 4C). The system can

show multi-stable responses and the cells in these legs are clearly at

the stable fixed point wherein the A production has switched on

while the R production has not. Taken together our simulations

show a complex behavior with the switching of each bacterium

Figure 2. Characterization of quorum sensing responses in a simulated growing cell colony. A) Simulation of a dynamically growing
colony. The gray colorscale refers to concentration of Ae in the background and the green colorscale refers to the concentration of A in the bacteria.
There is a clear switch in A once a certain population size is reached. B) Parameter scans around the parameter set P1 (Suppl. Table S1). Top panel
shows A and bottom panel shows R as a function of population size in the simulations when the three transport parameters, D (left panel), pin

(middle panel), and pout (right panel) are varied. All plots show mean values of the population with standard deviations. The green lines correspond to
the original parameter set. Parameters are modified by multiplication by 0.1 (red), by 0.3 (blue), by 3 (black lines), and by 10 (gray). For the other
parameters see Suppl. Figures S3, S4, S5.
doi:10.1371/journal.pcbi.1000819.g002

A Cell-Based Model for Quorum Sensing
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being dependent on its location within the chamber, and with local

subpopulations with high signaling homogeneity created.

In mixed populations cheater cells have a local transient
advantage

In natural habitats, bacteria live in environments with a mixture

of different bacterial strains. This property can affect the QS

behavior and lead to a problem of emergence of cheater cells that

can exploit the ‘‘common good’’ produced by the QS population.

The phenomenon was recently studied in controlled environments

for bacteria [21,22]. These cheater cells do not produce the

autoinducer (or other QS resulting common good molecules)

themselves but do take advantage of the metabolically expensive

QS signaling by the rest of the population. By not participating in

the generation of QS response, cheater cells can instead use

metabolic energy to more rapidly grow and divide. We considered

this situation by modeling cheater cells as the other bona fide

signaling cells, but with no production of A (c0A~k1A~0).

Furthermore, we assumed that once the normal cells switch on and

thus increase their QS response, their growth rate slows down (see

Methods).

Data from simulations in a confining chamber starting from

different initial states are presented in Figure 5A where we tracked

the population dynamics in the mixed colonies. Initially the

growth rates of the producer and cheater sub-populations were

equivalent, but once some of the producer cells switched states, the

cheater cell population rapidly started to dominate the chamber

(cf. Video S7). Note that although the fraction of producing cells

that turned on was quite small (about 10%, dashed-dotted line in

Figure 5A), this was sufficient to break the symmetry and give the

cheater cells a clear advantage. The domination of cheater cells

leads to a dilution of producing cells which lowers the AHL

concentration in the chamber. This resulted in a decrease in the

number of producer cells that were switched on and thus

diminished the advantage of the cheater cells. In the end the

relative cell numbers of the two sub-populations can stabilize. The

simulations in the other chambers displayed similar behaviors (see

Figure S7).

The dynamics of the colonies (Figure 5A) clearly showed that

whether or not the cheater cells were at an advantage, depended

on the composition of the mixture of cheater cells and normal cells

[21]. To investigate this further we performed simulations wherein

the initial colony consisted of different ratios of cheater and

producer cells. In these simulation we added the assumption that

the producing cells could provide the population with some

advantage or ‘‘common good’’, a property beneficial for the

survival and growth of the population as a whole. In the model this

was simplified by assuming an autoinducer dependent growth rate

(see Methods). In Figure 5B the resulting relative fitness of the

cheater cells is displayed, indicating decreasing advantage for

increasing initial ratios of cheater cells, as seen in experiments

[21].

Figure 3. Static simulations with different degrees of local clustering and external confinement geometry. A) Examples of simulations
of non-growing colonies of population size 100. In the left image the bacteria are positioned to give a sparse population, in the middle image they
are positioned to form a very dense colony, whereas in the right image the sparse population is geometrically confined with just a small outlet. In the
two latter cases the colony has switched the response on, whereas in the left image the colony remains in the ‘‘off’’ state. B) A (left) and R (right) as a
function of population size for simulations of non-growing colonies. Mean values of the population with standard deviations are plotted. The system
switches once the colony reaches a certain number of cells. For dense and confined populations the switch occurs earlier than in sparse populations.
doi:10.1371/journal.pcbi.1000819.g003

A Cell-Based Model for Quorum Sensing
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The model predicts that the advantage of cheater cells is directly

related to the number of producing cells that are in the ‘‘on’’ state,

which in turn is dependent on the number and location of the

cheater cells. This leads to an effective negative feedback, so that

the producer cells are not completely overtaken by the cheater

cells in any of the cases in Figure 5B. In fact, the addition of the

AHL-dependent growth does not alter the relative fitness behavior

in the individual simulations (data not shown) but actually leads to

a total increase of producer cells if all initial colony configurations

are summed up (Figure 5C). Although cheater cells always have a

local advantage and never grow slower than the producing cells,

the colonies with more producer cells will grow faster and this is

sufficient for generating more producer cells in total. This has

recently been reported for synthetic bacteria strains and is referred

to as the Simpson’s paradox [22]. The simulations with mixed

populations show that cheater cells may have a local advantage,

but a negative feedback via the colony growth and dilution of

producing cells leads to a situation where this advantage is only

transient.

Discussion

Quorum sensing is a key example of the ability of unicellular

bacteria to act not only as individual cells but also as an ensemble,

Figure 4. Simulations of growing cell colonies in spatial confining environments. A) Gray colorscale refers to autoinducer concentration in
the background, and green colorscale refers to the autoinducer concentration within the cells. The figure illustrates the effect the external geometry
has on the QS response of the colony. The chambers are referred to in the text as Chamber 1 (top left), Chamber 2 (top right), Chamber 3 (bottom
left), and Chamber 4 (bottom right). (See also Suppl. Videos S3, S4, S5, S6.) B) The fraction of cells in the on state as function of time for the four
different chambers. The curves are from top to bottom, Chamber 1, 2, 3, and 4. C) A and R as a function of the horizontal position of the bacteria in
Chamber 2. Crosses (z) are from the upper half of the chamber and circles (0) are from the lower half. Data are from the last time point where the
chamber is filled and the system has reached quasi-equilibrium.
doi:10.1371/journal.pcbi.1000819.g004
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resembling in many respects a multicellular organism. This

collective cell behavior phenomenon is important for various

biological behaviors, with considerable implications for the

physiology and pathology of plants and animals [13]. Hence it

merits further understanding both for a better appreciation of the

fundamental properties of cell-cell communication and for its

applications.

With the increasing amount of quantitative data for the

molecular networks at the center of the cellular QS signaling, the

use of mathematical models has emerged as an important tool for

understanding how the molecular network structure with its

multiple feedbacks can explain the complex behavior of the

population. Previous models have mainly discussed the intracellular

network with the underlying QS switch, and have treated the

extracellular environment as a boundary condition [23–26]. An

exception is the static model briefly described in Hense et al. 2007

[15]. Recent development of microscopy techniques together with

the increased use of microfluidic devices have increased the ability

to study cell colony behaviors at a cellular resolution [30]. Here we

have presented a model explicitly taking into account individual

growing bacteria as well as the transport and geometry of the

extracellular milieu. This resulted in a model framework with the

results directly comparable with data from cell-based experiments in

microfluidic devices and other experimental settings, and allowed

for an explicit investigation of how population-level behavior

emerges from single-cell mechanisms. In this report, we presented

simulations investigating cell-to-cell variations in homogeneous

populations as well as the behavior of mixed populations.

An equilibrium analysis of the model was used to find the

parameter values capable of population-size dependent QS

switching and the analysis highlighted the differences between a

situation where autoinducer levels are tuned extracellularly and

when bacteria themselves are the only source of the autoinducer.

In the former case, we showed that QS switching was not very

constrained. However, in the latter case, the effect of adding the

autoinducer transport boiled down to variation of a single

parameter of the model: the effective degradation of the

autoinducer. The variation of the effective degradation was shown

to be dependent on the transport parameters characterizing the

autoinducer and the cell medium, and on the number of bacteria

present, and was shown to be bounded by the rate of autoinducer

transport out of the cells. Hence, the ability of QS switching is only

ensured if this bounded parameter can change so that the systems

can visit both ‘‘on’’ and ‘‘off’’ states. A clear prediction from this

analysis is that if autoinducer membrane transport is blocked, the

cells would have be to be in an ‘‘on’’ state.

Simulations of growing and proliferating bacteria showed a

population-size dependent switching behavior, wherein although it

is the bacteria in the center of the colony that initially switch on,

the whole colony quickly follows creating a very homogeneous

behavior. This is mainly due to the strong positive feedback in the

signaling system, ensuring that the autoinducer production greatly

increases in the cells that are switched on. A scanning of the model

parameters orders of magnitudes around their initial values

showed that the main QS feature, the population switching, is

very robust, while the actual population size where the switch

happens is quite dependent on parameter values. We further

found, as expected, that the switching of the population is driven

by the external autoinducer concentration. This is dependent on

the population size, but also on how much autoinducer is lost from

Figure 5. Analysis of the mixed cheater-producer populations. A) Statistics from 20 simulations started with different initial conditions with
three producing and three cheater cells in Chamber 1 of Figure 4. Line: fraction of cheater cells, dashed: fraction of autoinducer producing cells, dash-
dotted: fraction of the producing cells that is turned on. An example simulation is shown in Suppl. Video S7. Simulations from Chambers 2–4, behave
similarly, see Suppl. Figure S7. B) Relative fitness of the cheater population as a function of the initial proportion of cheater cells. Mean values with
standard deviation from 10 randomly initiated simulations are shown. At small initial proportions the cheater cells display a considerable growth
advantage, whereas for larger initial proportions this advantage vanishes. C) Total population change in the same simulations. Gray boxes show the
initial and white boxes show the final population sizes. Even though the cheater cells have a relative fitness larger than 1 in each simulation, the total
fraction of producer cells increases.
doi:10.1371/journal.pcbi.1000819.g005
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the colony, which depends on the local density (clustering) and the

confinement of the external geometry; parameters that to a large

extent are beyond the control of single cells. We explored these

parameters explicitly in our model simulations showing that

growing dense populations in small confined cavities facilitates

population switching, a potentially common strategy [28,29]. This

relates to the discussion of the evolutionary fitness advantage

provided by a collective cell population behavior, with the quorum

sensing, diffusion sensing and efficiency sensing have been

suggested as different explanations [15]. Our model suggests that

cells can sense different aspects of their environment through

determination of the value of a single, albeit complex parameter

(k2AzpoutD=(NpinzD)), comprising all these different possibili-

ties. Additionally, the model suggests that a possible evolutionarily

selectable strategy of populating small cavities as a means to

control diffusion, local density, and confinement in order to

facilitate the onset of quorum sensing.

Bacteria live in environments where different biological

organisms compete. It has been noted that a QS behavior can

be exploited by strains of cheater cells that do not participate in

some aspects of QS, but still take advantage of the benefits this

provides. The corresponding advantages of this behavior for

cheater cells have recently been investigated in controlled

experiments [21,22]. The cell-based approach allowed us to

investigate competition between autoinducer producing and non-

producing cells by adding a growth reduction for producing cells

that are in their ‘‘on’’ state. We showed that the cheater cells did

have an advantage as soon as producing cells switched on. This

advantage, however, led to a dilution of producing cells, and hence

the amount of autoinducer per cell, within the mixed population as

the cheater cells increased their relative number. The decrease in

autoinducer further led to producing cells switching ‘‘off’’, which

diminished the cheater cell advantage. Hence, the growth

dynamics in these mixed populations creates a feedback that

disallows a cheater strain to fully overtake a population. If we

assumed also that the growth was dependent on the production of

autoinducer or the corresponding beneficial population trait (e.g.,

the ability to cause the host to provide nutrients), we could observe

situations where populations initiated with different ratios of

cheater cells generated an overall advantage for producing cells,

although in each individual local sub-population, cheater cells

were never at an disadvantage. The phenomenon is known in

statistics as the Simpson’s paradox, and was recently demonstrated

for synthetic bacterial strains [22].

The number of molecules, including members of the transcrip-

tion machinery present in bacteria can be very low. Hence it is

expected that effective transcription and reaction rates might be

noisy, and segregation of the transcription factor molecules into

the daughter cells at cell division can be inhomogeneous [31].

Interestingly, a test with complete random placement of all

molecular species at division had very minor effects for the cell

population (data not shown). This shows a model robustness of the

population behavior to molecular fluctuations in individual cells,

but it also points out a limitation of our deterministic approach. In

the deterministic model, a switch from a low stable state to a high

stable state does not spontaneously happen in the bistable region.

Hence, to get a switch in the simulations a change of condition

(e.g. increasing the number of cells) will need to move the system

into the monostable high region of the state space. A fluctuation in

concentrations at division will then quickly move back to the only

stable state. In a stochastic model, on the other hand, it could be

enough to be in the bistable region where switching between high

and low states could be initiated by fluctuations in concentrations.

Given the number of bacteria, external compartments, and

reactions in our simulations, a complete stochastic treatment

may be out of reach, but an interesting future improvement would

be to add stochasticity to the model, for example via adding noise

terms to the ODEs.

Recent experimental developments have changed our ability to

quantify cell states, from the population averages to the dynamics

of single cells. The presented work is important since it represents

the same development for the mathematical models used to

analyze cell-based behavior. The combination of high-resolution

experiments where colonies are grown in regulated environments,

and models where single cells are growing to form colonies will

help understanding of how population dependent behaviors, such

as quorum sensing, can be derived from single cell molecular

networks.

Methods

Model of mechanics and growth
Following earlier efforts [27,32] each cell is modeled as an

individual object, described as two semi-spheres attached at

opposite sides of a cylinder. The dynamics of the bacteria is

governed by a potential V~VcczVcwzVint, where the different

contributions describe cell-cell interactions, cell-wall interactions and the

internal potential respectively. We further assume that the dynamics

of the colonies is dominated by viscous friction so the equations of

motion for a given cell i is described by

dx1,2

dt
~{

1

f
+1,2V (i),

where x1 and x2 are the two coordinates, chosen as the centers of

the two semi-spheres, f is the friction coefficient and +1,2 denotes

the derivative with respect to x1 and x2 respectively. For the friction

coefficient, f we assume a generalization of Stokes’ formula [33]

f~3pg(lz2r{lDn:vD),

where l is the distance between the sphere-centers, r is the radius of

the sphere, n is the unit direction of the main axis of the bacterium

and v is the unit direction of its velocity.

For the cell-cell interaction and the cell-wall interaction we use

an excluded volume like potential where the potential is given by

V (i)
cc x

(i)
1 ,x

(i)
2

� �
~

2

5
kcc

X
j[N(i)

Hij x
(i)
1 ,x

(i)
2 ,x

(j)
1 ,x

(j)
2

� �5=2

where N(i) denotes the set of neighbors to cell i and Hij is the

linear overlap between a cell i and a cell j [34]. The interactions

with the chamber walls are modeled in the same way, but with the

only difference that the walls are assumed to be static.

The internal potential is a spring potential which is introduced

to allow the coordinates to be treated as two separate degrees of

freedom.

V
(i)
int~kint(Lr{Dx(i)

1 {x
(i)
2 D)2,

where kint is a constant and Lr is the rest length.

The cells grow exponentially along the symmetry axis according

to,

dLr

dt
~kgLr:
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As the cells grow the intracellular molecular concentrations will

decrease because of dilution. This dilution corresponds to an extra

degradation term in Equations 1–4 with degradation constant kg.

Once a cell reaches a certain threshold length, it divides into

two cells of almost the same size. At each cell division we introduce

some randomness in order to break the axial symmetry of the

system, giving two daughter cells with slightly different sizes and

imperfect alignment [27].

Model of cell communication
The cell-surrounding medium is modeled explicitly by dividing

the space into small elements. The autoinducer molecule, A, can

penetrate the cell walls of the bacteria, which is modeled as a flux

of A given by

jA~{pinAzpoutAe,

where Ae is the concentration of the element enclosing the center-

of-mass of the bacterium. The contributions to the derivatives are

given by

dA

dt
~

a

vb

jA

dAe

dt
~{

a

ve

jA,

where vb and ve are the volumes of the bacterium and the element

respectively and a is the surface area of the bacterium.

The diffusion in the extracellular medium domain is modeled

via Fick’s law with a finite-difference version of the normal diffusion

equation, the derivative of an element i is given by

dAi
e

dt
~

D

ve

X
j[N(i)

aij

Aj
e{Ai

e

dij

,

where N(i) denotes the neighbors to element i, aij is the area

between elements i and j and dij is the distance between the two

elements.

Autoinducer dependent growth
The quorum-response of the colony typically leads to the

production of some ‘‘common good’’ or trait that is beneficial to

the population as a whole, In the simulations leading up to

Figure 5B–C we simplify this somewhat by having a direct

autoinducer dependence in the growth function,

dLr

dt
~

kgA

KzA
Lr,

where we set K slightly below the peak value of A, in Figure 5B–C we

use K~0:1. We use the same value to define if a cell is ‘‘on’’ or ‘‘off’’,

thus cells with Aw0:1 are considered to be in their ‘‘on’’ state. In

order to model the cost of autoinducer production, we multiply the

growth-rate of all the ‘‘on’’ cells of the system by a factor n, kg?nkg.

In Figure 5A we use n~0:1 and in Figure 5B–C we use n~0:5.

The relative fitness measure of Figure 5B, is defined as

w~
fc,final=fc,initial

fp,final=fp,initial

,

where fc,initial is the initial fraction of cheater cells, fp,initial is the

fraction for producer cells, and fc,final and fp,final are the fractions at

the end of the simulation.

Implementation
Numerical simulations where done using an in-house developed

C++ software package specifically developed to handle proliferat-

ing cells and background compartments. The differential equa-

tions are numerically solved using a fourth-order Runge-Kutta

solver [35]. The software is available upon request.

Finding stationary solutions
In order to obtain the equilibrium behavior we set Equations 1–

4 to zero. This leads to two coupled equations,

{R2A3z(dAzcA)R2A2{bAAzbAdA~0

{R3A2z(dRzcR)R2A2{bRRzbRdR~0,

where dA~c0A=k2A, dR~c0R=k2R, cA~k1A=k2A, cR~k1R=k2R,

bA~aKDA, bR~aKDR and a~k4k2
6=k3k2

5, which can be

combined into

Q~ 1z
aQ2

Q2zb

� �
1z

cQ2

Q2zd

� �
, ð6Þ

where a~k1A=c0A, b~aKDA=d2, c~k1R=c0R, b~aKDR=d2,

d~dAdR. Equation 6 is obtained by setting Q~RA=d, where

d~dAdR, and the equation is solved numerically by finding the

roots to

1z
aQ2

Q2zb

� �
1z

cQ2

Q2zd

� �
{Q:f (Q)~0: ð7Þ

We took advantage of the fact that f (0)~1 and that f (Q)?{?
as Q?? by bracketing the solutions starting by choosing two

small regions, one around Q~0 and one around a sufficiently big

value of Q. We extended these regions until f (Q) had different

signs at each endpoint. This provided us with two regions where it

was known that Equation 7 had solutions which could be found by

a simple bisection search. By comparing the two solutions we knew

whether Equation 7 had one or several solutions, see Figure 1B

Equation 6 had grouped parameters to parameterize the

equilibrium solutions using only four parameters. We also used

the original parameters from the model, and described the

equilibrium solutions to Equations 1–4 with a similar equation

k2Ak2RQ’~ c0Az
k1AQ’2

Q’2zaKDA

� �
c0Rz

k1RQ’2

Q’2zaKDR

� �
, ð8Þ

where Q’~RA and a again is defined as k4k2
6=(k3k2

5). Equation 8

was solved numerically in the same way as discussed for Equation

6 above, to generate the bifurcation diagram in Figure 1C.

Simplified equilibrium analysis
To address the effect of the autoinducer transport into and out

of the extracellular environment and to examine the effect of

multiple bacteria in the system we considered two simplified cases:

(i) assuming a constant external Ae concentration, leading to a

change given by k2A?k2Azpout and c0A?c0Azpin½Ae� in
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Equation 8 and (ii) a simplified description using a single

background compartment and assuming N identical bacteria,

with a constant transport of A out of the compartment leading to

d½Ae�
dt

~N(pout½A�{p½in�½Ae�){D½Ae�:

This leads to the equilibrium condition

½Ae�~
Npout

NpinzD
½A�:

The change compared to the single-cell analysis is thus given by

k2A?k2Azpout{pin

Npout

NpinzD
~k2Az

poutD

NpinzD
,

where 0v

poutD

NpinzD
vpout (The lower bound comes from N??

and the upper from N~0). At low N the transport will lead to a

movement towards the monostable off region, i.e. for a situation

with few cells the transport can lead to that a cell (which without

transport would have been in its on state) is off. The effect of

increasing the population size, N , will have the opposite effect,

moving it back towards the monostable on region. However, since

the contribution tends to zero in the limit of big population sizes,

we can never move beyond the single-cell case with no transport.

This means that we must choose our single cell parameters in the

monostable high region if we want a quorum-sensing response of

the system.

Supporting Information

Figure S1 Colonies display hysteretic behavior in response to

changes in external autoinducer level. Shown are the mean

concentrations of A (left) and R (right) as a function of the external

autoinducer concentration Ae for the tree parameter sets: P1 (upper),

P2 (middle), and P3 (lower) (Suppl. Table S1). Data are from

simulations of a growing colony with bacteria removed once they are

outside the simulation boundary, keeping the number of bacteria

approximately constant (Suppl. Video S1). The volume of the

extracellular medium is assumed to be much larger than that of the

bacteria, resulting in negligible effect of cell-produced autoinducer.

Standard deviations are smaller than the symbols used in graphs.

Found at: doi:10.1371/journal.pcbi.1000819.s001 (0.06 MB EPS)

Figure S2 Simulation of a dynamically growing colony. The

gray colorscale refers to concentration of Ae in the background

and the green colorscale refers to the concentration of R in the

bacteria.

Found at: doi:10.1371/journal.pcbi.1000819.s002 (0.44 MB TIF)

Figure S3 Parameter scans around the parameter set P1 for D,

k1R, k1A,k2R, and k2A. Left panel shows A and right panel shows R

as a function of population size. All plots show mean values of the

population with standard deviations. The green lines correspond

to the default parameter set, P1. Parameters are modified by

multiplication by 0.1 (red lines), by 0.3 (blue lines), by 3 (black

lines), and by 10 (gray lines).

Found at: doi:10.1371/journal.pcbi.1000819.s003 (0.17 MB EPS)

Figure S4 Parameter scans around the parameter set P1 for c0R,

c0A, k3,k4, and k5. Left panel shows A and right panel shows R as a

function of population size. All plots show mean values of the

population with standard deviations. The green lines correspond

to the default parameter set, P1. Parameters are modified by

multiplication by 0.1 (red lines), by 0.3 (blue lines), by 3 (black

lines), and by 10 (gray lines).

Found at: doi:10.1371/journal.pcbi.1000819.s004 (0.17 MB EPS)

Figure S5 Parameter scans around the parameter set P1 for k6,

KDR, KDA,pin, and pout. Left panel shows A and right panel shows

R as a function of population size. All plots show mean values of

the population with standard deviations. The green lines

correspond to the default parameter set, P1. Parameters are

modified by multiplication by 0.1 (red lines), by 0.3 (blue lines), by

3 (black lines), and by 10 (gray lines).

Found at: doi:10.1371/journal.pcbi.1000819.s005 (0.17 MB EPS)

Figure S6 A (left) and R (right) as a function of population size

for simulations of nongrowing colonies. Mean values of the

population with standard deviations are plotted for the three

different parameter sets (P1 - top, P2 - middle, and P3 - bottom)

(Suppl. Table S1). The system switches once it reaches a certain

number of cells. For dense and confined populations the switch

happens earlier than in sparse populations.

Found at: doi:10.1371/journal.pcbi.1000819.s006 (0.07 MB EPS)

Figure S7 Statistics from 20 simulations started with different

initial conditions using equal number of producing and cheater

cells in the four chambers. Line: fraction cheater cells, dashed:

fraction producing cells, dash-dotted: fraction of the producing

cells that is turned on.

Found at: doi:10.1371/journal.pcbi.1000819.s007 (0.13 MB EPS)

Table S1 The three parameter sets P1, P2 and P3 used

throughout the article. Results for P1 are presented in the main

text, while results for the other two are presented in Suppl. Figures

S1 and S6. The parameters below the lines are not part of the

parameter sets but other growth and transport parameters. D*: in

the simulations leading to Figure 4 we used D = 5.0.

Found at: doi:10.1371/journal.pcbi.1000819.s008 (0.04 MB PDF)

Video S1 Simulation of a growing bacterial colony where the

external Ae is slowly increased and the decreased. The bacteria are

removed once they are outside a certain boundary, keeping the

number ofbacteria roughly constant. Volume of the background is

assumed much greater than that of the individual bacteria, thus

making the contribution from the bacteria to the external Ae

negligible.

Found at: doi:10.1371/journal.pcbi.1000819.s009 (6.14 MB

MOV)

Video S2 Movie from a simulation of dynamically growing

colony. Gray colorscale refers to Ae in the background and green

colorscale to A in the bacteria.

Found at: doi:10.1371/journal.pcbi.1000819.s010 (0.44 MB

MOV)

Video S3 Movie from simulation of colony growing in Chamber

1. Gray colorscale refers to Ae in the background and green

colorscale to A in the bacteria.

Found at: doi:10.1371/journal.pcbi.1000819.s011 (1.35 MB

MOV)

Video S4 Movie from simulation of colony growing in Chamber

2. Gray colorscale refers to Ae in the background and green

colorscale to A in the bacteria.

Found at: doi:10.1371/journal.pcbi.1000819.s012 (1.16 MB

MOV)

Video S5 Movie from simulation of colony growing in Chamber

3. Gray colorscale refers to Ae in the background and green

colorscale to A in the bacteria.
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Found at: doi:10.1371/journal.pcbi.1000819.s013 (1.03 MB

MOV)

Video S6 Movie from simulation of colony growing in Chamber

4. Gray colorscale refers to Ae in the background and green

colorscale to A in the bacteria.

Found at: doi:10.1371/journal.pcbi.1000819.s014 (0.91 MB

MOV)

Video S7 Movie from simulation of colony growing in Chamber

1 starting with three producer cells (red) and three cheater cells

(blue).

Found at: doi:10.1371/journal.pcbi.1000819.s015 (1.41 MB

MOV)
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