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Abstract
The phenotype of marrow hematopoietic stem cells is determined by cell cycle state and microvesicle
entry into the stem cells. The stem cell population is continually changing based on cell cycle transit
and thus can only be defined on a population basis. Purification of marrow stem cells only addresses
the heterogeneity of these populations. When whole marrow is studied, the long-term repopulating
stem cells are in active cell cycle. However, with some variability, when highly purified stem cells
are studied, the cells appear to be dormant. Thus, the study of purified stem cells is intrinsically
misleading. Tissue-derived microvesicles enhanced by injury effect the phenotype of different cell
classes. We propose that previously described stem cell plasticity is due to microvesicle modulation.
We further propose a stem cell population model in which the individual cell phenotypes continually
changes, but the population phenotype is relatively stable. This, in turn, is modulated by microvesicle
and microenvironmental influences.

We and others have observed that marrow cell populations are intrinsically heterogeneous and
continually changing. This phenotypic lability extends to the capacity of marrow cells to
assume the phenotype of other hematopoietic cells or non-hematopoietic cells and appears to
be tightly linked to the cell cycle status of the marrow stem cell.

The continuum model and cell cycle: Intrahematopoietic plasticity
All proliferating cell populations are intrinsically heterogeneous and must continually change
phenotype as they progress through cell cycle. Thus, a proliferating population can only be
defined on a population basis; clonal studies will only address the degree of heterogeneity of
a stem cell population. These concepts were elegantly addressed by Till, McCulloch and
Siminovitch in the 1960’s when they compared the nature of colony-forming unit spleen (1),
the first described stem cell, to radioisotopes (2). An isotope has a very predictable half-life.
However, the individual nuclei which compose it have markedly varied half-lives, making
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them totally heterogeneous. This is a reasonable view of the nature of adult marrow stem cells;
they can only be appropriately defined on a population basis.

A number of studies from our laboratory have shown that the phenotype of the lineage negative
rhodamine low Hoechst low (and to a lesser extent the lineage negative Sca-1+) stem cell
continuously changes, in a reversible fashion, with cell cycle passage (3–16). Characteristics
studied have included short and long-term engraftment into lethally irradiated mice, progenitor
numbers, differentiation into granulocytes and megakaryocytes, expression of adhesion protein
and cytokine receptor genes, global gene expression, expression of cell cycle genes, capacity
to convert to pulmonary epithelial cells and, most recently, the capacity to take up
microvesicles. These characteristics vary with cycle phase and are reversible (or at least
continue to modulate). These observations led to a continuum theory of stem cell biology in
which the phenotype of the adult marrow stem cell is continuously changing based, at least in
part, on the cell cycle position of the stem cell (17–28). The applicability of this model to
normal steady-state hematopoiesis depends on the assumption that the adult marrow stem cell
is an actively cycling cell.

Cell cycle status of marrow stem cells
The extant literature on this point is discordant, with the general consensus being that the adult
marrow stem cell is “dormant” or quiescent, but with some reports indicating that it is an
actively cycling cell. The colony-forming unit spleen (CFU-S) the original clonal stem cell
assay (1) was extensively studied and it was generally found to be relatively quiescent with S
phase values of 10% or less (29–33). A number of studies showed higher S-phase values for
CFU-S, ranging from 16 to 48% (34–45). Our own work showed varying results from no killing
with hydroxyurea or tritiated thymidine to killing rates of up to 25% (45). The work by Necas
and Znojil (46) is particularly informative. They determined the number of CFU-S and the
fraction synthesizing DNA in individual normal mice of several inbred strains and the data
obtained over a period of five years was subjected to analysis of variance. Large differences
were shown to exist in the number of CFU-S in the femoral bone marrow of individual mice
measured on the same day. These differences were greater if measurements were performed
on different days. The fraction of DNA synthesizing CFU-S was on average 30% in these
normal mice, but the range of measurements on both the same and different days was 0% to
60%. The authors measured CFU-S from day seven to day 12 and found similar results. This
work led to a proposal that there may be “bursts “of CFU-S proliferation over time, not on a
circadian basis, but rather stochastic in nature.

A major focus of more recent studies of marrow renewal stem cells has been on highly purified
marrow stem cells. In general, marrow is depleted of differentiated cells using differentiated
cell-specific antibodies to surface epitopes and magnetic bead separation. This is followed by
staining of lineage negative cells for stem cell-related surface antigens and separation by
fluorescent activated cell sorting (FACS) (47–67). Studies on purified stem cells have given
different views of the cell cycle status of the primitive marrow stem cells. Work by Bradford
and colleagues (68), confirmed by Cheshire and colleagues (56) and Pang and colleagues
(69), suggested that primitive stem cells were a continuously cycling population. Work on LT-
HSC done by Fleming and colleagues (70) suggested that over 20% of these cells were in cell
cycle at isolation. Cheshire and colleagues (56) proposed that the population is continuously
in cycle and transits cycle fairly rapidly with 50% of LT-HSC showing BrdU incorporation by
six days. They estimated that 8% of stem cells entered cycle each day in in vivo experiments,
while other work proposed a stem cell turnover time of 154 days. This latter study by Wilson
and colleagues (71) actually produced in vivo BrdU data more consistent with a rapid turnover,
but explained this by supposed BrdU toxicity to hematopoietic cells with secondary effects.
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However, carefully conducted experiments in the Cheshire studies (56) did not show any BrdU
toxicity.

Studies on the marrow stem cell “side population” indicated that S/G2/M cells had the same
long-term repopulating capacity as G0 cells (72). Other work using a variety of approaches on
different stem cell populations all indicates that a percentage were in S/G2/M at the time of
interrogation (34–46,56,68–70,73). Our own studies (74), employing Hoechst/Pyronin
separations, have shown that the cell which gives long-term marrow repopulation in whole
unseparated marrow is, in fact, actively cycling. While, with a great deal of variation, the
purified LT-HSC, as described by Weissman and colleagues, had a small percentage (to none)
of stem cells in S/G2/M.

There are several important implications of these results. First, the stem cells purified by
antibody-epitope selection are not representative of the stem cells in whole marrow. The
epitope selected cells represent specific and relatively rare subsets of stem cells which exclude
proliferating and other stem cells from consideration. While the characteristics of a particular
epitope-defined stem cells may exist at one point in time or cycle, these characteristics do not
persist as that particular cell will continue to change its characteristics eventually returning to
its original phenotype. Thus, a G0 Lin-/Sca-1+/c-kit+/slam+ cell may be present at one time
in G0, but later, perhaps a few hours into G1, its phenotype may be that of a megakaryocyte
progenitor or even a monocyte. Fluxes of phenotypes are obligatory if the cell is in active cell
cycle. The overall description of this situation is a stable stem cell population in which the
individual entities (or cells) are continually changing, but the whole maintains its general
aspect. This is very similar to the radioisotope situation described above. The challenge in the
stem cell field is to define the total stem cell population, i.e. those cells which maintain a
potential to assume the characteristics of a long-term multipotent engrafting stem cell. One
might start with all cells that maintain a capacity for proliferation. This would only exclude
anucleated erythrocytes and mature polymorphonuclear granulocytes. The true stem cell
population might only be the lineage negative cells, but this remains speculation. We propose
here that marrow hematopoietic repopulating stem cells are actively cycling and continuously
changing. The classically recognized LT-HSC or LT-HSC-slam phenotypes are simply
subpopulations of the true stem cell population. This population contains multiple stem/
progenitor cells and possibly differentiated cell phenotypes previously placed in a hierarchy.
Thus, there is impressive plasticity within the hematopoietic marrow system. A conceptual
model is resented in Figure 1.

Stem cell plasticity: The marrow to non-hematopoietic variety
The capacity of murine marrow cells to form non-hematopoietic cells and tissues after
transplantation into irradiated mice was termed “stem cell plasticity”. The classic proof of
principle came from the studies on the Fumarylacetoacetate hydroxylase (FAH)-deficient
mouse; a mouse afflicted with a fatal tyrosinemia (75). This can be controlled with
administration of the drug NTBC. Repeated withdrawal of the drug provides both injury and
selection. In FAH negative mice transplanted with B-galactosidase-positive transgenic
marrow, and subjected to repeated withdrawal of NTBC, large areas of diseased hepatic tissue
were replaced with normal β-galactosidase-positive donor-derived hepatocytes. In addition,
some mice were cured of this fatal disease. Furthermore, very convincing studies have shown
that these marrow-to-hepatocyte conversions are due to cell fusion (76). A large number of
subsequent studies have shown that host tissue, usually under injury circumstances, can be
partially replaced by cells derived from transplanted marrow. This led to the “stem cell
plasticity” controversy, a rather meaningless exercise, which we have previously addressed in
a perspective titled “Ignoratio Elenchi” (irrelevant conclusions or red herrings) (77). Proposals
were made that for results in this area of investigation to be taken seriously, they had to be
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“robust”, they had to be on a clonal basis (which only shows heterogeneity), they had to show
function (which was never adequately defined) and the biggest red herring of all, they couldn’t
involve cell fusion. Why this latter point became an issue is unclear, but it, unfortunately,
became a major negative feature of grant and manuscript reviews. There were a few “negative”
studies which appeared to be designed to obtain negative results and which represented
marginal science.

Nonetheless, there is now little question that after marrow transplantation, cells can be found
in many different tissues, lung and liver being prominent here. These cells have defining
characteristics of the specific tissue under consideration but also carry markers indicating origin
from the transplanted marrow cells. In some instances, cell fusion may have been involved but
in others it was not. A summary of some of this early work showing marrow conversions to
liver, lung and skeletal muscle is presented in Table 1.

In continuing studies, virtually every tissue in the body has been found to be subject to marrow
conversions or “stem cell plasticity”. There have been over 30 articles on marrow-to-lung
conversions and, while the percent conversions varied widely, all studies have demonstrated
this. Many studies have also addressed whether cell fusion was the mechanism underlying the
observed plasticity. A summary of some of these is presented in Tables 2 and 3.

Ogawa and colleagues (96,97) have extended these studies by publishing observations that
hematopoietic marrow cells were the origin of fibroblasts and myofibroblasts, which can be
found in many tissues, including intestine, skin, liver and lung. In addition, a number of the
plasticity studies have shown function.

Marrow to lung studies in plasticity
We have focused on the capacity of transplanted murine marrow cells to convert to pulmonary
epithelial cells. We initially studied the capacity of engrafted marrow cells to convert to
pulmonary epithelial cells in a lethally irradiated mouse model (87). In these studies, we saw
a wide stochastic variation in conversion rates but always saw conversions. Using green
fluorescent protein (GFP) or the Y chromosome (in gender-mismatched transplants) to track
transplanted cells, the percentage of bone marrow-derived CD45 negative and cytokeratin
positive or prosurfactant B positive cells in the lungs transplanted mice varied from 0% in non-
irradiated mice to 1.17–18.9% in irradiated mice. The variations seen in irradiated mice
depended upon the dose of irradiation, with increasing conversions rates with increasing levels
of host irradiation. This latter also correlated directly with bone marrow engraftment levels.
Other variables which influenced plasticity were the marrow subpopulation infused. Our initial
studies showed that the marrow cells which led to conversions were c-kit+, Sca-1+ and lineage
negative. c-kit-, Sca-1- and lineage positive cells did not significantly engraft in the lung.
Treatment of engrafted host mice with G-CSF also increased the conversion rates of marrow
to lung cells, presumably on the basis of stem cell mobilization. Further studies indicated that
treatment of the marrow cells prior to infusion with the cytokines interleukin-3 (IL-3), IL-6,
IL-11 and steel factor markedly influenced marrow-to-lung conversions (98). This correlated
with cell cycle progression of the marrow cells in vitro and peak conversion rates of GFP
positive marrow cells to lung cells were seen at the G1/S interface. Here, we saw a three-fold
increase in cells assuming a non-hematopoietic or pulmonary epithelial cell phenotype. This
increase was no longer seen in late S/G2. These data indicated that engrafted marrow cells
were capable of converting to significant numbers of pulmonary epithelial cells in the irradiated
mouse and suggested that radiation-induced lung injury might be important in this process.
This work is summarized in Figure 2.
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Mechanisms underlying marrow conversions to pulmonary epithelial cells or,
more accurately, the presence of lung cells with marrow markers after
marrow transplantation: the role of microvesicles
Microvesicle information transfer

Our studies (which will be outlined in detail below) have indicated to us that transfer of cell-
derived microvesicles between cells may underlie much of the previously described “stem cell
plasticity”. The exact nature of and nomenclature for microvesicles is still evolving. Particles
derived from cells, especially injured cells, have been described repeatedly. Small membrane-
enclosed vesicles from platelets or red blood cells were first considered to represent cellular
junk and largely dismissed as having little biologic significance. Subsequently, membrane-
bound particles have been described as originating from mast cells (99), dendritic cells (100),
tumor cells (101), reticulocytes (102), epithelial cells (103), B cells (104) and neural cells
(105). In fact, it is now apparent that these vesicles probably can be derived from virtually all
cell types in the body. Membrane-enclosed vesicles derived from a wide variety of cells have
been shown to affect the phenotype of putative target cells under different conditions. Different
terms have been used to describe these cellular-derived membrane-enclosed entities, including
exosomes (106), microvesicles (107), ectosomes (108), membrane particles (109) exosome-
like particles (110) and apoptotic vesicles (111). Vesicles have been characterized by size,
density in a sucrose gradient, electron microscopy, sedimentation by ultracentrifugation, lipid
composition, main protein markers and intracellular origin (112). Exosomes are 50–80 nm in
diameter, endocytic in origin and released into the environment during fusion of multivesiclular
bodies with plasma membranes. Microvesicles have been described as being 100nm-1um in
diameter and released from surface membranes during membrane blebbing in a calcium flux
and calpain-dependent manner. As noted by Théry and colleagues (112), in practice, all vesicle
preparations are heterogeneous with different protocols allowing enrichment of one type over
another. We have studied vesicles sedimented at 100,000g by ultracentrifugation, which would
include both exosomes and microvesicles as classically described, and have found that the
mode of electron microscopic tissue preparation changed the morphology dramatically. Cup-
shaped vesicles can be seen with one approach and irregularly-shaped and electron dense
vesicles with another approach. We will use the generic term “microvesicle” to encompass
these populations of vesicles, realizing the heterogeneity of most reported vesicle populations.
The evolution of microvesicles from different cell populations is influenced by hypoxia, shear
stress, irradiation, chemotherapy, cytokines and different drugs such as Acetaminophen
(hepatocytes). A particular focus recently has been on the capacity of microvesicles to influence
the phenotype of neighboring cells in other tissues. They have been found to transfer CD41,
integrins and CXCR4 (111,113–115) as well as HIV and prions (116,117) between cells.
Embryonic stem cell-derived microvesicles have been reported to reprogram hematopoietic
stem/progenitor cells via the horizontal transfer of mRNA and protein (118). Similarly, tumor-
derived microvesicles, which carry several surface determinants and mRNA, can transfer some
of these determinants to monocytes (113). Apoptotic bodies from irradiated Epstein-Barr Virus
(EBV)-carrying cell lines have been shown to transfer DNA to a variety of co-cultured cells
by integrating copies of EBV, resulting in expression of EBV-encoded genes EBER and
EBNAI in recipient cells at high copy number (119). Extracts from T lymphocytes containing
transcription factor complexes can induce fibroblasts to express lymphoid genes (120). In
addition, endothelial cells exposed to microvesicles derived from endothelial progenitor cells
form capillary-like structures both in vitro and in vivo (121). It is of particular interest that
previously-described endothelial progenitor cells may, in fact, represent mononuclear cells
which have consumed platelet-derived microvesicles (122). All of these studies indicate a
capacity of microvesicles to alter the phenotype of “target” cells toward the phenotype of the
microvesicle producing cell.
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Microvesicles and marrow to lung conversions
Jang and colleagues (123) cultured hematopoietic stem cells across from damaged liver cells
but separated from them by a cell impermeable membrane and demonstrated that the marrow
cells expressed genes specific for hepatocyte, such as albumin. This was interpreted as humoral
induction of differentiation. These findings prompted our own studies which indicated that it
might have represented microvesicle induction of phenotype change (124). Accordingly, we
studied marrow cells cultured across from murine lung cells which had been exposed to 0, 500
or 1200 cGy irradiation from three hours to 14 days previously. We then assessed the marrow
cells for expression of pulmonary epithelial cell-specific mRNA. Our studies indicated that
high levels of expression of clara cell specific protein, surfactant C and surfactant B were seen
when marrow cells were exposed for 48 hours or 7 days opposite murine lungs. The highest
levels were seen when lungs from mice exposed to 500 cGy five days previously were co-
cultured with marrow. The basic culture system is shown in Figure 3.

Further work here showed that cell-free conditioned media (CM) from lung, irradiated or not,
would induce pulmonary epithelial cell-specific mRNA production in marrow cells and that
the inducing principle was present in the pellet of ultracentrifuged (100,000 g) CM. The pellet
contained large numbers of microvesicles, as defined by electron microscopy. There were
numerous 100–250 nm membrane-bound vesicles; although, in different experiments, smaller
vesicles were also seen. These microvesicles could be stained with the supravital membrane
dye PKH26 (red fluorescence) and the supravital cytoplasmic dye CFSE (green fluorescence)
and then separated and purified as red/green events by FACS. These fluorescent-labeled
microvesicles then were incubated with marrow cells and a minority of the marrow cells took
up the microvesicles. Marrow cells loaded with microvesicles are shown in Figure 4 along with
electron microscopic images of these microvesicles.

Further work isolating marrow cells which had taken up fluorescent microvesicles by FACS
and then determining expression of pulmonary epithelial cell-specific mRNAs showed that
only marrow cells which had taken up the microvesicles expressed the pulmonary epithelial
cell-specific mRNA. Co-cultured marrow cells were shown to express prosurfactant B protein
21 days after a seven day exposure to irradiated lung fragments. Functional effects of marrow
cells co-cultured with irradiated lung cells for 7 days were seen. These cells gave higher levels
of prosurfactant C positive donor cells in host lungs after transplantation, as compared to
marrow cells which had not been co-cultured. Other investigators have also shown functional
effects of microvesicle modulation on target cells. Derugibus and colleagues (121) showed
modulation of vascular phenotypes by exposure to endothelial progenitor-derived
microvesicles. They demonstrated promotion of endothelial cell survival, proliferation and
organization into capillary-like structures in vitro. In vivo, in severe immunodeficient mice,
microvesicle-stimulated endothelial cells organized into patent vessels; this did not happen
without microvesicle exposure.

Mechanisms of phenotype change
Initially, we thought that the observed expression of pulmonary epithelial cell-specific mRNA
in marrow cells taking up microvesicles was simply due to the transfer of mRNA in
microvesicles to the target cells. We had demonstrated pulmonary epithelial cell-specific
mRNA inside the microvesicles, showed that microvesicles entered marrow cells and that only
the marrow cells which contained microvesicles expressed pulmonary epithelial cell-specific
mRNA. However, despite some early results suggesting that RNase exposure of microvesicles
inhibited pulmonary epithelial cell-specific mRNA in target marrow cells, more recent work
indicated that in most instances, exposure of microvesicles to RNase actually increased
expression of pulmonary epithelial cell-specific mRNA in target cells. We found 185 species
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of microRNA in these microvesicles with eight having potential lung-specific targets. Thus,
these data could be explained by RNase degradation of inhibitory microRNA.

However, we also observed the persistence of pulmonary epithelial cell-specific mRNA
expression in marrow cells after three weeks in cytokine-supported culture. This was
inconsistent with a simple transfer of mRNA, since we would have expected the RNA to be
degraded by this time. We addressed the issue of whether de novo transcription was involved
in the observed pulmonary epithelial cell-specific mRNA elevations in target marrow cells.
Studies with actinomycin D and alpha-amantin, both transcriptional inhibitors, showed
predominantly increased expression of the pulmonary epithelial cell-specific mRNA in marrow
cells that had been cultured with lung-derived microvesicles, suggesting complex
transcriptional regulation (124). In order to address this further, we employed rat/mouse hybrid
co-cultures. In these experiments, rat lung was cultured opposite mouse marrow and mouse
marrow then evaluated for expression of surfactant C or B mRNA expression. Species-specific
primers allowed us to determine whether the observed mRNA was of rat or mouse origin. In
every case, the mRNA was of both origins indicating that mRNA was transferred along with
transcriptional agents which induced de novo surfactant mRNA production in cultured marrow
cells. Thus, the mechanisms underlying the genetic phenotype change of target cells is complex,
involving transfer of both mRNA and microRNA and of protein-based transcription factors.
These phenomena appear to be universal and tissue-specific as we have shown that murine
lung, brain, heart and liver tissue will all transfer a tissue-specific phenotype, but not the
phenotype of other tissues (124). This concept is shown in Figure 5.

We have presented above a model of stem cell regulation termed “the continuum model” in
which the potential of marrow stem cells continually changes with cell cycle transit. We have
also shown that the marrow stem cell is a cycling cell. Studies with murine lung-derived
microvesicles and murine marrow have now shown that the capacity to take up microvesicles
also varies with cycle phase. Thus, phenotype modulation at the stem cell level involves both
cell cycle and microvesicle phenotype change. This model is presented in Figure 6.

Thus, one can envision both intra-hematopoietic and extra-hematopoietic cell systems as
systems which have a continually changing potential that will only be expressed if there is an
appropriate interrogation. In addition, entry of microvesicles into hematopoietic cells varies
with cell cycle phase and resets the potentials. One can envision this as represented in a
modulogram (Figure 7)

Cancer stem cells and microvesicles
The microvesicle cell modulation also holds for cancer cells. Investigators have shown the
movement of cancer phenotype to monocytes (113) and we recently have developed data
indicating that both human lung cancer and prostate cancer cells isolated at surgery from
patients will move the tissue phenotype to normal human marrow cells (126,127). This opens
new strategies for the treatment of cancer. The similarities between cancer cells and normal
stem cells also suggest that the concept of a definable cancer stem cell is probably not correct.
Rather, there must be numerous cancer cell phenotypes with varying stem cell potential.

Stem Cell Plasticity explained by Microvesicle Cell Phenotype Modulation
We would propose that most of the studies characterizing stem cell or marrow plasticity were
in fact explained by microvesicle cell phenotype modulation. This could occur by tissue
microvesicles altering the phenotype of marrow or blood cells to the phenotype of the
microvesicle originating tissue. Conversely, blood or marrow cells could deliver microvesicles
to damaged tissue, restoring the tissue but also delivering the phenotypic markers of the marrow
cells. In this latter case, marrow cells would not convert to non-hematopoietic tissue cells but
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they would dramatically alter the phenotype of these cells by microvesicle docking, cell entry
and genetic modulation. These concepts are presented in Figure 8

We consider this a more satisfactory explanation for the descriptions of stem cell plasticity,
which might preferably be referred to as cellular phenotype modulation. One does not have to
propose whole cell fusion, dedifferentiation or transdifferentiation to explain the described
events with tissue cells showing markers of transplanted marrow.

Conclusions
1. Purification of stem cells is a failed concept; it only contributes information on

heterogeneity.

2. Purified stem cells are not representative of marrow stem cells in unseparated marrow
populations.

3. The regulation of marrow stem cells is on a cell cycle regulated continuum of
potential, which is probably continually altered by exposure to tissue-derived
microvesicles. These latter are increased in conditions of injury.

4. The continuum model probably holds for cancer cells along with the concept that
there will not be a specific cancer stem cell, but rather a continuously changing
population of cancer cells with different potentials.

5. Stem cell plasticity, both intra-hematopoietic and extra-hematopoietic, is mediated
by tissue-derived microvesicles acting selectively on cells in different phases of cell
cycle. It is a form of mini-multiple cellular fusions through microvesicles.
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Figure 1. Population model of stem cell phenotype
Numbers and circles represent different phenotypic cell classes. The concept here is that the
phenotypes change at different points in cell cycle and eventually return to the original
phenotype. For example, cell #1 is a long-term repopulating cell in G2/M/G0 and becomes a
different cell in G1, a CFU-Meg in S phase, then returns to the original phenotype. In this
model, the individual cell phenotype continuously changes while the population remains stable.
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Figure 2. Marrow conversion to epithelial lung cell
This shows conversion of a marrow stem cell phenotype to a pulmonary epithelial cell which
is affected by host irradiation, treatment of host or exogenous marrow cells with G-CSF and
stem cell phenotype.
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Figure 3. Marrow-lung co-culture
Marrow cells were co-cultured across from lung fragments but separated from them by a cell
impermeable (0.4 micron) membrane for two or seven days and expression of pulmonary
epithelial genes in marrow cells determined by RT-PCR analysis.
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Figure 4. Lung-derived microvesicles
A-D shows a marrow cell with incorporated PKH26 and CFSE-labeled lung-derived
microvesicles. A, merged image; B, DAPI filter; C, Texas Red filter; D, FITC filter. Image E
is an electron micrograph of FACS-sorted lung-derived microvesicles. Red bar = 10 microns,
black bar = 100 nanometers.
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Figure 5. Injury induction of microvesicles
Irradiation injures a non-hematopoietic cell which releases bioactive microvesicles containing
protein, mRNA and microRNA. These microvesicles enter marrow cells and alter their
phenotype to that of the cell of microvesicle origin.
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Figure 6. Effect of microvesicles on the stem cell population model
This indicates that microvesicles impose a different order of phenotypic change on stem cells
progressing through a cell cycle-related stem cell continuum.
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Figure 7. Stem cell modulogram
Stem cells progressing though cycle continuously change individual cell phenotypes while
maintaining the population phenotype. This is further modulated by microvesicle cell entry
and the final cell fate determined by interactions with different microenvironments.
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Figure 8. Concepts of stem cell plasticity
Panel 1 indicates that marrow-derived microvesicles may enter lung cells and induce marrow
characteristics in the lung cells. Panel 2 indicates than lung-derived microvesicles may enter
marrow cells and alter their phenotype towards that of a lung cell.
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Table 1

Marrow to Muscle and Lung Conversions

Tissue Injury Donor Cells Conversion Result
Tissue Cells (%)

Reference

Skeletal
Muscle

Radiation & exercise GFP- marrow 3.5% (peak) 80

TBI/mdx Mouse Spleen & marrow 0.2% (approx) 81

TBI/mdx Mouse Marrow side
population

1–10% 82

TBI/cardiotoxin injury
anterior tibialis

GFP-marrow
Intra-arterial

1–2% 83

(+direct injection of
lineage negative
marrow cells)

12.5% 84

Alpha-Sarcoglycan
null dystrophic mice

mesangioblast
stem cells

50% 85

Lung 700–950 cGy GFP marrow,
mononuclear cells
or side population

1–7% (mixed
population, type I
pneumocytes)

86

Non-irradiated Rosa MAPC 3–5% 87

(+250 cGy) (10%)

1050 cGy Fr25/Lin- 20% type II
pneumocytes

88

900 cGy, cardiotoxin
or bleomycin lung
injury with G-CSF
mobilization (x2)

Cytokine treated
GFP marrow

35% (peak) 89

TBI: total body irradiation; Mdx: dystrophin deficient mouse
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Table 2

Fusion Demonstrated in Converted Cells

Tissue / Cell Model / Detection Reference

Hepatocyte Fah+/+ from Fancc−/− into Fah−/− with NTBC withdrawal.
50% conversion rate. Purified repopulating cells were
heterozygous Fah+/+ and Fanc−/−

77

Hepatocyte Fah+/+ from ROSA26 female marrow into male Fah−/−.
Cytogenetic analysis of LacZ+ marrow derived hepatocytes
– most with Y chromosome. Karyotypes Fah+/+ 80XXXY or
120 XXXXYY.

78

Purkinje Neuron GFP to adult mice and both donor and host nuclei found,
the Purkinje neurons were stable heterokaryons.

90

Purkinje Neuron,
Cardiomyocyte,

Hepatocyte

Used Cre/lox recombinase system to show that in marrow
transplanted mice all detectable contributions of marrow to
nonhematopoietic cell types arose through cell fusion

91

Skeletal Muscle Murine cardiotoxin injury model male to female, female to
male or Rosa B-galactosidase to GFP muscle fibers show
both donor and recipient phenotypes. However,
mononuclear satellite cells with donor markers suggest
conversion to satellite cells occurs without fusion.

83,84
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Table 3

Conversions without Fusion

Tissue / Cell Model / Detection Reference

Pancreas Rosa – stop lox and GFP female hosts transplanted with
insulin-dependent Cre-male marrow. No GFP+ donor cells
in islets.

92

Hepatocyte Human cord blood to irradiated NOD/SCID mouse. Human
hepatocytes with positive protein and chromosome
markers, no mouse chromosomes. Conversion rate 1–2%.

93

Hepatocyte Human cord blood (USSC) into fetal sheep without injury.
20% conversion rate. Microdissected human hepatocytes
had only human protein or PCR product.

94

Endothelial c-kit+, Sca-1+, Lin- into irradiated mouse. Donor endothelia
in portal vein. Normal ploidy. Also cord blood to mouse
with new blood vessel formation in the eye-no fusion.

95

Renal Mesangial
Cells

Male GFP marrow to male mice resulted in numerous
GFP+ mesangial cells. None had more than one Y
chromosome.

96

Epithelial Cells
in Lung, Skin,

and Liver

Cre/lox recombinase system. Transplant Z/EG marrow into
Cre expressing mice. No mice expressed GFP indicated
that fusion had not occurred.

97

Skeletal Muscle Converted mononucleated satellite cells preceed muscle
fiber fusion.

80
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