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Purpose: Respiratory motion adversely affects CBCT image quality and limits its localization
accuracy for image-guided radiation treatment. Motion correction methods in CBCT have focused
on the thorax because of its higher soft tissue contrast, whereas low-contrast tissue in abdomen
remains a challenge. The authors report on a method to correct respiration-induced motion artifacts
in 1 min CBCT scans that is applicable in both thorax and abdomen, using a motion model adapted
to the patient from a respiration-correlated image set.
Methods: Model adaptation consists of nonrigid image registration that maps each image to a
reference image in the respiration-correlated set, followed by a principal component analysis to
reduce errors in the nonrigid registration. The model parametrizes the deformation field in terms of
observed surrogate �diaphragm or implanted marker� position and motion �inhalation or exhalation�
between the images. In the thorax, the model is obtained from the same CBCT images that are to
be motion-corrected, whereas in the abdomen, the model uses respiration-correlated CT �RCCT�
images acquired prior to the treatment session. The CBCT acquisition is a single 360° rotation
lasting 1 min, while simultaneously recording patient breathing. The approximately 600 projection
images are sorted into six �in thorax� or ten �in abdomen� subsets and reconstructed to obtain a set
of low-quality respiration-correlated RC-CBCT images. Application of the motion model deforms
each of the RC-CBCT images to a chosen reference image in the set; combining all images yields
a single high-quality CBCT image with reduced blurring and motion artifacts. Repeated application
of the model with different reference images produces a series of motion-corrected CBCT images
over the respiration cycle, for determining the motion extent of the tumor and nearby organs at risk.
The authors also investigate a simpler correction method, which does not use PCA and correlates
motion state with respiration phase, thus assuming repeatable breathing patterns. Comparison of
contrast-to-noise ratios of pixel intensities within anatomical structures relative to surrounding
background tissue provides a quantitative assessment of relative organ visibility.
Results: Evaluation in lung phantom, two patient cases in thorax and two in upper abdomen, shows
that blurring and streaking artifacts are visibly reduced with motion correction. The boundaries of
tumors in the thorax, liver, and kidneys are sharper and more discernible. Repeat application of the
method in one thorax case, with reference images chosen at end expiration and end inspiration,
indicates its feasibility for observing tumor motion extent. Phase-based motion correction without
PCA reduces blurring less effectively; in addition, implanted markers appear broken up, indicating
inconsistencies in the phase-based correction. In structures showing 1 cm or more motion excur-
sion, PCA-based motion correction shows the highest contrast-to-noise ratios in the cases
examined.
Conclusions: Motion correction of CBCT is feasible and yields observable improvement in the
thorax and abdomen. The PCA-based model is an important component: First, by reducing defor-
mation errors caused by the nonrigid registration and second, by relating deformation to surrogate
position rather than phase, thus accommodating breathing pattern changes between imaging ses-
sions. The accuracy of the method requires confirmation in further patient studies. © 2010 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.3397460�
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I. INTRODUCTION

There is increasingly widespread use of cone-beam CT for
guiding radiation treatment of cancer with C-arm
accelerators.1 In thoracic and abdominal disease sites that are
subject to respiratory motion, however, CBCT image quality
is adversely affected. The resultant poorer image quality re-
duces the ability to discern soft tissue boundaries, compro-
mising target and organ at risk �OAR� localization.

Different methods have been investigated to reduce mo-
tion in CBCT. Respiration-correlated CBCT �RC-CBCT�
produces images at different motion states using retrospec-
tive sorting of projection images into different breathing
phase bins.2–4 The limited number of projections per phase
bin reduces the contrast resolution and introduces streak ar-
tifacts caused by sparse projections; thus, the method is more
suited to detecting high-contrast objects such as tumor in
parenchymal lung. Moseley et al.5 have used a multiple
breath-hold technique to reduce motion artifacts in CBCT
images of liver. A limitation is that not all patients can per-
form repeated and reproducible breath holds. In addition,
breath-hold anatomical positions may not be representative
of free breathing or gated treatment, as the contraction of
respiratory muscles is different. We have investigated gated
CBCT to reduce motion artifacts.6 A limitation is the low
duty cycle for imaging �20%–30%�, resulting in correspond-
ingly longer �4–5 min� acquisition times.

A more desirable approach is to combine high CBCT scan
efficiency �100% duty cycle� with motion correction of the
images. Li et al.7 have investigated CBCT motion compen-
sation with different approaches for deriving the phase-based
motion model. Clinical evaluation was limited to one CBCT
acquisition done with four gantry rotations, thus consider-
ably lengthening the acquisition time. Rit et al.8 compensate
for respiratory motion during reconstruction of the projection
images from a 1 min 200 ° CBCT scan, using a prior motion
model estimated from a respiration-correlated planning CT
�RCCT�. Their method assumes that the phase-based respi-
ratory motion during the CBCT acquisition is identical to
that of the RCCT. The above investigations have focused
mostly on the thorax because of its higher soft tissue con-
trast, whereas low-contrast tissue in abdomen remains a
challenge.

We report here on a method to correct motion artifacts in
1 min RC-CBCT scans using a patient-specific motion
model, and investigate its effectiveness in the thorax and
abdomen. The model provides a means to deform the RC-
CBCT images to a common point in the respiratory cycle.
The deformed images are combined into a single CBCT im-
age set, thus improving the detectability of tumor and OAR,
and hence localization accuracy. Our preliminary results in
the thorax suggest it is feasible to derive the model directly
from the RC-CBCT scan, whereas in the abdomen, the
model is derived from a RCCT scan acquired prior to treat-
ment. An important component of the method is a principal
component analysis �PCA� to reduce artifacts and noise in
the data. Because the motion model is parametrized by the

temporal variation in surrogate position such as the dia-

Medical Physics, Vol. 37, No. 6, June 2010
phragm, it can accommodate changes in breathing pattern
between imaging sessions. In addition, the method can gen-
erate CBCT image sets over the respiratory cycle, thus pro-
viding a means of evaluating target and OAR motion infor-
mation at treatment, which may differ from the respiratory
motion observed at simulation.9,10

II. METHODS

We briefly outline the overall approach, followed by a
more detailed description of each step. The basic concept of
the motion model can be separated into two parts: First, ad-
aptation of the model to a particular patient using a calibra-
tion respiration-correlated image set; and second, application
of the model to correct motion artifacts in CBCT.

II.A. Motion model calibration

Calibration of the motion model requires a respiration-
correlated image set. In the thorax, the calibration uses the
same RC-CBCT images that are to be subsequently motion-
corrected. CBCT projection images and respiration signals
are passively recorded during CBCT-guided hypofraction-
ated treatments. The data were analyzed retrospectively for
this study with IRB approval. A gantry-mounted kilovoltage
imaging system �Varian Medical Systems, Palo Alto, CA�
provides CBCT capabilities. The CBCT scan consists of a 1
min gantry rotation while recording patient respiration with
an external monitor �Varian real-time position management
�RPM� system�. The projection images are sorted into bins of
approximately equal numbers of projections, according to
the RPM-determined phase of the respiratory signal. The
choice of number of bins �six in thorax, ten in abdomen� is
described below. Each bin is reconstructed using software
based on the Feldkamp algorithm11 to produce a series of
RC-CBCT images I�x� , t�, where I�x� , t� denotes the intensity
of voxel at position x� and at phase bin t. We use a research
version of the Varian reconstruction software, with no cor-
rection for cupping or ring artifacts, the latter caused by
noisy detector elements. In the thorax, the choice of six RC-
CBCT subsets �six phase bins� is a compromise between
residual motion within each bin and sufficient image quality
to guide the nonrigid image registration for model calibration
and subsequent motion correction.

In abdomen, the low soft tissue contrast precludes model
calibration from RC-CBCT subsets. Instead, we calibrate the
motion model from an RCCT of the patient at simulation
about 1 week prior and apply the model to correct the RC-
CBCT subsets. An eight-slice scanner �LightSpeed, GE
HealthCare, Waukesha, WI� acquires repeat CT images for a
complete respiratory cycle at each couch position while re-
cording patient respiration �Varian RPM�. The CT images are
retrospectively sorted �GE Advantage 4D� to produce a series
of RCCT images at ten respiratory phase points. The time
resolution of each CT slice �i.e., gantry rotation period� is 0.5
s; CT slice thickness is 2.5 mm. Since the RC-CBCT subsets
are not used for model calibration in abdomen, we sort the
CBCT projections into ten bins to yield comparable residual

motion within each bin to that in the RCCT image set.
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The patient-specific motion model12 uses nonrigid image
registration to calculate a set of deformation fields that de-
forms each image in the respiration-correlated image set to a
reference image at the desired motion state, denoted by
I�x� , tref�. Each nonrigid registration defines a voxel-
dependent displacement field u��x� , t�, such that a point
x� +u��x� , t� in the deformed �study� image corresponds to point
x� in the reference image. Note that in the application of the
model to motion-corrected CBCT in this study, the nonrigid
registration is performed in the opposite direction to that in
Ref. 12. The nonrigid registration uses a fast free-form
algorithm,13 which minimizes a cost function consisting of
two terms: A sum of squared intensity differences between
corresponding voxels in the reference and study images, and
a smoothing term that limits sharp gradients in the vector
displacement field u� .

Each image in the respiration-correlated set is tagged by
two surrogate signals that are visible in the 3D images. In
three of the clinical examples, we determine the displace-
ment of the apex of the diaphragm along the superior-inferior
relative to its position in the reference image �i.e., at the
reference motion state�. The two surrogate signals for an
image thus consist of the diaphragm displacement in the im-
age and its displacement in the image approximately one
third of a respiratory cycle prior, to distinguish between the
inspiration and expiration portions of the respiratory cycle.
In one of the clinical examples in abdomen where the dia-
phragm is not within the field-of-view, we instead use a fi-
ducial marker implanted in the liver as surrogate.

Next, a PCA is performed to reduce errors in the nonrigid
registration and to relate the surrogate signals to the model
parameters given by the time-varying displacement fields.
We first construct a set of vectors with discrete indices, given
by pj = �u1,1,j,u1,2,j ,u1,3,j , . . . ,uM,3,j�T, where um,i,j is the ith
component �i=1–3� of displacement for voxel m
�m=1,M� at phase index j �j=1,J�. We want to connect pj

with sj = �s1j , . . . ,snj�T, where sn,j is the displacement of the
nth surrogate �n=2 in this study� at phase index j. Next we
construct a matrix P= �p̃1,p̃2, . . . , p̃j , . . . , p̃J�, composed of
centered vectors p̃j = pj − p̄, where the mean vector
p=1 /J� j=1

J pj represents the respiration-averaged motion
state. The size of matrix P is �3M �J�. The covariance ma-
trix PPT �size 3M �3M� is positive semidefinite, meaning its
eigenvalues are non-negative. We can calculate its nonzero
eigenvectors ei�i=1, . . . ,J−1� according to the procedure de-
scribed previously.12 The result is that each motion state p̃j is
approximated as a weighted sum of K eigenvectors ek with
the largest eigenvalues

p̃j � �
k=1

K

wkjek �1�

or in matrix notation

P � EW , �2�

where matrix E= �e1, . . . ,eK� consists of the first K eigenvec-
tors to approximate the motion states and W= �wkj� with size

˜
K�J. Note that for known pj and ek, one can calculate the
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weighting factors wkj =ek
Tp̃j /ek

Tek. Our previous study indi-
cated that K=2 is sufficient to describe motion states in the
thorax.12

Instead of expressing the motion states in terms of phase-
index-dependent weighting factors, we wish to express them
in terms of the surrogate signals. We rewrite Eq. �1� as

p̃j � �
k=1

K

wkjek = Ewj = EVsj , �3�

with

wj = �
w1j

·

·

wKj

� = Vsj . �4�

V is a matrix to be determined with size K�n. Equations �3�
and �4� are valid for the above J distinct phases; thus we
rewrite Eq. �4�, in matrix notation as

W = VS , �5�

where the observed S= �s1 , . . . ,sJ�= �snj� and calculated
W= �w1 , . . . ,wJ�= �wkj� are obtained from the model calibra-
tion and calibration image set. One can prove that the best
solution to Eq. �5� is

V = WST�SST�−1, �6�

such that � j=1
J 	wj −Vsj	2 is minimized. Substituting Eq. �6�

into Eq. �3�, we have

p̃ = E�WST�SST�−1�s . �7�

Therefore, given surrogate signals s= �s1 s2�T in the image
set to be corrected, we can calculate the corresponding dis-
placement field p̃. Note that there is no dependence on phase
bin in Eq. �7�: The model-predicted displacement field de-
pends only on the surrogate signals of the image.

II.B. Model application and evaluation

Basic steps in motion correction are, first, to correct each
RC-CBCT image by applying the motion model, so as to
deform the image to the same reference motion state in the
breathing cycle; second, to combine the corrected RC-CBCT
images to obtain a high-quality CBCT at the reference mo-
tion state.

To correct each RC-CBCT image, one image is chosen as
reference, and the position of surrogates observed in the im-
ages are calculated as displacements relative to their position
in the reference image, as described above. The surrogate
signals are substituted into Eq. �7� to obtain the centered
vectors p̃�t�. Adding to this the mean vector p̄ yields the
displacement field p, which is applied to deform each RC-
CBCT image into the reference RC-CBCT motion state.
Since the model is calibrated with the RC-CBCT image set
to be motion-corrected, the displacement fields are already
registered to the images. In abdomen, skeletal registration of
RCCT to CBCT defines the location of the deformation fields

in the CBCT coordinate system.
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A difficulty of using the RC-CBCT data to calibrate the
model is the effect of strong streaking artifacts caused by the
sparse projections in the filtered back-projection reconstruc-
tion of each of the RC-CBCT subsets. The artifacts are ori-
ented differently in each RC-CBCT subset and thus influence
the nonrigid registration, such that the artifacts align with
those in the reference RC-CBCT. To counteract this ten-
dency, we define a volume of interest �VOI�, whose bound-
ary is 
2 mm outside the patient surface and include only
voxels inside the VOI in the nonrigid registration cost func-
tion. In addition, to avoid deformation of the vertebral col-
umn, the VOI excludes the delineated vertebrae. The VOI is
delineated on a CBCT reconstructed from all projections and
transferred to the reference RC-CBCT. The deformation field
is zero outside the VOI except near the VOI boundary, sub-
ject to the smoothing term in the cost function. The choice of
VOI allows for some expansion and contraction at the pa-
tient’s anterior surface in the nonrigid registration. The re-
sultant deformation fields are used to calibrate the model via
PCA as before, followed by model application for motion
correction.

We evaluate the geometric accuracy of the method in a
software phantom that simulates respiration. The 4D
NURBS-based cardiac torso �NCAT� phantom provides a
model of the human torso, in which organ shapes are con-
structed from nonuniform B-splines �NURBS�, based on the
3D visible human CT data set.14 For this study, the phantom
includes a spherical lesion of 2 cm diameter in the right lung,
5 cm superior of the diaphragm at end expiration. The NCAT
phantom models respiratory motion and generates CT image
sets at different motion states; we generate ten motion states
over a breathing cycle, using 2 cm for diaphragmatic con-
traction and 0.5 cm for chest wall expansion with tidal
breathing, which represents the upper range of excursion ob-
served in patients with RCCT at our institution. Next, we
simulate the effect of respiration during a CBCT scan by
generating a complete set of projections, i.e., digitally recon-
structed radiograph, from the NCAT CT image sets at each
motion state, then select a temporal sequence of projections
corresponding to a breathing period of 4 s and a 360 ° CBCT
acquisition over 1 min at ten projections/s. The projections
are generated to simulate half-fan CBCT acquisition with
laterally offset image detector. The projections are
respiration-sorted into six bins, reconstructed and processed
in the same way as described above. Because the lateral ex-
tent of the NCAT phantom outside the rib cage is consider-
ably larger relative to the patients considered in this study,
we define the lateral extent of the VOI to be approximately 3
cm outside the rib cage, consistent with the patient data.

For comparison with the PCA-model-based motion cor-
rection, we also investigate a simpler method, which does
not use PCA and correlates motion state with respiration
phase, referred to here as phase-based correction. For each
RC-CBCT subset at a given phase bin, the phase-based cor-
rection applies the deformation field from the nonrigid reg-
istration of the calibration image �i.e., RC-CBCT in thorax,
RCCT in abdomen� at the same phase, and the deformed

RC-CBCT subsets are added together. In the application to
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abdomen, the phase-based method thereby assumes that the
breathing pattern in the RCCT �e.g., motion amplitude and
correlation of internal anatomy to external RPM signal� is
the same as in the RC-CBCT. In the remainder of the paper,
“phase-based correction” refers to correction by deformation
fields directly from the nonrigid registration and selected ac-
cording to the phase bin of the image �Eq. �1� with
K=J−1�, whereas “PCA-model-based correction” refers to
correction using the two principal components of the defor-
mation fields and selected according to the surrogate signals
�Eq. �7��.

Visual evaluation compares CBCT images before motion
correction, phase-based motion correction to the end expira-
tion state, and PCA-model-based correction to end expira-
tion. In order to quantitatively evaluate CBCT quality and
organ visibility, we define a contrast-to-noise ratio as
CNR= �S1−S2� /�1, where S1 and S2 are the average voxel
intensities in an annular volume inside the organ boundary
and a background region outside the boundary, respectively.
�1 is the rms variation in voxel intensity inside S1. The organ
to be evaluated is delineated on the RCCT image at end
expiration, and the S1 and S2 regions are generated as a 5 mm
thick volume contraction and expansion, respectively, from
the organ boundary. In liver, S2 excludes the ribs, which are
brighter than the liver and the surrounding background tis-
sue. The organ contours are transferred to the CBCT and
manually aligned in 3D on the axial, sagittal, and coronal
view images, using the end expiration RCCT as a visual
guide. The manual alignment is performed three times by the
same observer to assess reproducibility of the CNR calcula-
tion. The following structures evaluated in this way: Tumor
in lung, main-stem bronchus, distal bronchus, and diaphragm
in the thoracic CBCT; liver and kidneys in the abdominal
CBCT.

III. RESULTS

Figure 1 illustrates the influence of the different motion
correction methods on a thoracic CBCT �Patient 1�. Figure
1�a� shows an axial cut through the RC-CBCT subset at end
expiration. Strong streaking artifacts are visible, caused by
the sparse and nonuniformly spaced projections. When one
combines the RC-CBCT images after nonrigid registration
alone �phase-based correction�, strong streaking artifacts are
still present, as in Fig. 1�b�. PCA-model-based motion cor-
rection eliminates much of the noise in the nonrigid registra-
tion associated with the artifacts, clearly reducing the arti-
facts in the motion-corrected image shown in Fig. 1�c�,
although not entirely eliminating them. Confining the non-
rigid registration within the VOI almost completely elimi-
nates the artifacts �Fig. 1�d��. The subsequent examples of
phase-based and PCA-model-based correction in thorax use
nonrigid registration within the VOI.

We examine the behavior of the method with the NCAT
phantom. Figure 2�a� is a simulated CBCT reconstruction of
the static phantom at end expiration; with axial and coronal
sections chosen through the spherical lesion in lung. Figure

2�b� is the reconstruction with simulated respiration during
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the CBCT scan, but with no motion correction. Considerable
blurring of the diaphragm, heart, lung airways, and lesion is
evident �cardiac motion was not simulated�. Figure 2�c�
shows the result after PCA-model-based correction at the end
expiration motion state. The blurring is considerably re-
duced, except for that caused by residual motion within each
phase bin. Figure 2�d� is a red-blue overlay of the static
phantom �Fig. 2�a�� and motion-corrected images �Fig. 2�c��,
showing that the motion-corrected lesion position and shape
are consistent with those of the static lesion �ground truth�.
Difference in the motion-corrected and ground truth lesion
centroid positions �3D vector magnitude� is 2.0 mm, compa-
rable to the voxel size of 1.5 mm.

FIG. 1. Influence of different motion correction methods on a thoracic
CBCT reconstruction: �a� RC-CBCT subset at end expiration with no cor-
rection; �b� phase-based correction without VOI limitation in the nonrigid
registration; �c� PCA-model-based correction without VOI limitation in the
nonrigid registration; and �d� PCA-model-based correction with VOI limi-
tation in the nonrigid registration. Display window settings are the same for
all images.

FIG. 2. �a� Axial and coronal CBCT sections of the static NCAT phantom at
end expiration. Spherical lesion is visible in the right lung. �b� CBCT of
phantom with simulated respiratory motion with no correction. �c� CBCT
with PCA-model-based correction at end expiration. �d� Red-blue overlay of
static and motion-corrected images. Display window settings are the same

for all images.
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Figure 3 illustrates the effect that discarding smaller prin-
cipal components has on reducing errors in the motion-
corrected images caused by the influence of streaking arti-
facts on the deformable registration. Figure 3�a� shows the
phase-based corrected image, in which the effects of streak-
ing are clearly evident and result in distortions throughout
the image. Note that the influence of streaking is consider-
ably more pronounced than in the patient case �Fig. 1�b��;
thus the phantom study is a more challenging test of the
motion correction method. The PCA-model-based correction
�Fig. 3�b�� considerably reduces the streaking artifacts and
distortions, although it does not completely eliminate them in
this case. We explain this in more detail in Sec. IV.

We quantify the accuracy of the method by examining
displacement fields in the phantom study. We use as ground
truth the displacement field resulting from nonrigid registra-
tion between the end expiration and end inspiration �EE-to-
EI� CT images of the phantom. Figure 4�a� shows the mag-
nitude �3D vector� of the resultant displacement field in the
lungs and along a coronal cut through the center of the
spherical lesion �dashed black circle�. Figure 4�b� shows the
corresponding EE-to-EI displacement field from nonrigid
registration of the CBCT images, and Fig. 4�c� shows the
EE-to-EI prediction from the PCA model. We note that dis-
placement within the lesion is 15–16, 13–15, and 12–14 mm
in Figs. 4�a�–4�c�, respectively. Near the diaphragm apex
�arrow�, displacement is 20, 15–23, and 16–21 mm, respec-
tively. The larger fluctuations in Fig. 4�b� relative to ground
truth are caused by noise and streak artifacts in the phase-
binned CBCT images. The PCA model �Fig. 4�c�� reduces
the fluctuations but slightly underestimates �by 2–3 mm� the
lesion displacement. We note that the discrepancy is largest
in the EE-to-EI case, but is correspondingly less between
other motion states. Since the motion-corrected image is an
average of images deformed between different motion states,

FIG. 3. Axial CBCT section of phantom with simulated respiratory motion
�a� with phase-based motion correction and �b� with PCA-model-based cor-
rection. Display window settings are the same for all images.
the resultant error in the image is less, as observed in Fig. 2.
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Figure 5 shows CBCT images of the same patient as in
Fig. 1, with no correction �left panel� and with PCA-model-
based correction �right�. Note that the blurring is visibly re-
duced with motion correction, revealing structure of tumor in
lung �arrows� not visible in the uncorrected image.

Figure 6 illustrates the ability to reconstruct different mo-
tion states from the same CBCT of a second thoracic patient
�Patient 2�. Left images are with no correction, middle im-
ages are PCA-model-based corrected at the end expiration
motion state, and right images are corrected at the end inspi-

FIG. 4. Coronal section of displacement field in NCAT phantom lungs �a�
from deformable registration between end expiration and end inspiration CT
images �ground truth�; �b� from deformable registration between EE and EI
cone-beam CT images; and �c� from PCA model prediction of cone-beam
CT between EE and EI. Color denotes magnitude �3D vector� of displace-
ment in mm. The dashed black circle indicates location of spherical lesion;
the arrow indicates location of diaphragm apex.

FIG. 5. Axial, coronal, and sagittal views of an example thoracic CBCT
�Patient 1� �a� with no correction and �b� with PCA-model-based motion
correction at end expiration. Arrows indicate tumor. Display window set-

tings are the same for all images.
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ration motion state. Reduced blurring with motion correction
and displacement of the diaphragm and tumor �arrow� be-
tween motion states is clearly evident.

Figure 7 shows an abdominal CBCT �Patient 3� with no
correction �left�, phase-based correction �middle�, and PCA-
model-based correction �right�. The liver, kidneys, and
spleen are difficult to discern with no correction, and phase-
based correction yields little apparent improvement. With
PCA-based correction, the organ boundaries are sharper and
more distinct, illustrating the feasibility of the approach even
in the more challenging abdominal sites.

Figure 8 shows a second abdominal case �Patient 4�:
Respiration-correlated CT at end expiration �left�, CBCT
with no correction �second column�, phase-based correction
�third column�, and PCA-model-based correction �right�.
Since the diaphragm is not within the reconstructed field-of-
view in all phase bins, an implanted fiducial marker �arrows�
serves instead as the surrogate signal. In the uncorrected
CBCT �Fig. 8�b��, organs are difficult to discern, and motion-
induced streaking is evident in the axial image. The im-
planted marker in the sagittal view shows motion-induced
blurring and streaking. Phase-based correction reduces blur-
ring only slightly relative to no correction �Fig. 8�c��; in

FIG. 6. Thoracic CBCT of Patient 2 �a� no correction, �b� PCA-model-based
motion correction at end expiration, and �c� PCA-model-based at end inspi-
ration. Arrow indicates tumor. The dotted horizontal line serves as an aid to
visualize motion extent. Display window settings the same for all images.

FIG. 7. Axial, coronal, and sagittal views of an abdominal CBCT example
�Patient 3� �a� no correction, �b� phase-based correction at end expiration,
and �c� PCA-model-based correction at end expiration. L denotes liver,
K=kidney, and Sp=spleen. Display window settings are the same for all
images. No correction is made for cupping artifacts �bright area at edge of
images� or ring artifacts �visible on the axial view images� caused by noisy

detector elements in the Feldkamp reconstruction.
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addition, the implanted marker appears broken up �circle�,
indicating inconsistencies in the nonrigid registration. This is
at least partly a result of a phase lag in the internal motion
observed in the CBCT relative to the prior RCCT �Fig. 9�;
thus, the assumption of same breathing pattern results in er-
rors in the phase-based motion correction. With PCA-model-
based correction �Fig. 8�d��, boundaries of liver, kidneys,
spleen, stomach, and implanted marker are sharper and more
discernible.

Figure 10 compares CNR values in Patients 2–4 �an
RCCT scan for delineating structures of Patient 1 was not
available�. In the thoracic CBCT scan �Fig. 10�a��, there is
little or no improvement in CNR with phase-based or PCA-
based motion correction in the main-stem bronchus, distal
bronchus, or tumor T1 �midway between apex and dia-
phragm of the right lung�. Inspection of the RCCT shows
little respiratory motion for these structures: The motion ex-
cursion �3D vector displacement of centroid� between end
inspiration and end expiration is 4, 1, and 1 mm, respec-

FIG. 8. Axial, coronal, and sagittal views of a second abdominal example
�Patient 4�. �a� Respiration-correlated CT at end expiration. L denotes liver,
K=kidney, St=stomach, and Sp=spleen. The arrow indicates implanted fi-
ducial marker. �b� CBCT with no correction. �c� CBCT after phase-based
motion correction at end expiration. Implanted marker appears broken up
�circle� owing to errors in the phase-based motion correction. �d� CBCT
after PCA-model-based motion correction. Display window settings the
same for all CBCT images. No correction is made for cupping artifacts
�bright area at edge of images� or ring artifacts �visible on the axial view
images�.
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FIG. 9. Comparison of the superior-inferior displacement of a liver-
implanted fiducial marker from its end expiration �superiormost� position vs
RPM phase, as observed in the RCCT and RC-CBCT images from Patient 4.
The example illustrates the interfraction changes in internal respiratory mo-
tion pattern that can affect phase-based motion correction of CBCT based on

a prior RCCT.
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tively. In contrast, tumor T2 �attached to the diaphragm and
shown in Fig. 3� and liver have larger motion excursions of
16 and 11 mm, respectively. Consequently, CNR improves
with motion correction, with PCA-model-based correction
showing more improvement than phase-based correction. In
the two abdominal CBCT scans �Figs. 10�b� and 10�c��,
CNR of the liver and kidneys improves with motion correc-
tion, with PCA-model-based correction showing more im-
provement than phase-based in all cases. Further, the differ-
ence between PCA-model-based CNR and phase-based CNR
is larger than the intraobserver variability in registration
�error bars�.

IV. DISCUSSION AND CONCLUSIONS

Initial results indicate that motion correction of 1 min
CBCT scans is feasible and yields clearly observable im-
provement in image quality in both thorax and abdomen. The
PCA-based model is an important component in the motion
correction method. Our previous study of RCCT in the tho-
rax indicated several characteristics of the model relevant to
motion correction.12 First, two principal components appear
sufficient to accurately model 3D respiration-induced motion
while suppressing errors in the nonrigid registration caused
by image artifacts. Second, the model does not assume re-
peatable breath cycles, but is parametrized by the temporal
variation in surrogate position, thus accommodating inter-
fraction changes in breathing pattern. The model is thus ap-
plicable to modeling interfraction organ variations, which is
relevant for model calibration with a prior image set. The
assumption that two principal components are sufficient is
based on a limited number of patient thoracic studies and
may not be applicable in all cases. Söhn et al.15 have re-
ported using four principal components to model deforma-
tion of male pelvic organs. We note that the model can be
expanded to a larger number of principal components if nec-
essary. This can be determined using a patient’s RCCT image
set, for example, by comparing the actual image and model-
generated image at end inspiration �assuming the reference
image is at end expiration�.12 One can increase the number of
principal components as needed until good agreement is
achieved.

To provide an intuitive sense of PCA, we summarize sev-
eral properties of the covariance matrix PPT.16 The diagonal
terms are the variance of the individual voxel displacements
comprising p̃j, while the off-diagonal elements are the cova-
riances in displacement between different voxel pairs. Large
variances correspond to large motion or “signal” in the data,
while small values represent no motion or noise introduced
by the nonrigid registration. Large covariances correspond to
highly correlated motion between voxel pairs and indicate
redundancy in the data, since the motion of neighboring vox-
els will be highly correlated, while small covariances corre-
spond to low redundancy. PCA seeks to minimize redun-
dancy as measured by covariance and maximize the signal in
the data as measured by variance. It does so by determining
eigenvectors that are linear combinations of the p̃j, such that

the covariance matrix corresponding to the eigenvectors is



2908 Zhang et al.: Motion-corrected cone-beam CT 2908
diagonal; hence, redundancies are minimized. Second, PCA
selects directions in the high-dimensional space along which
the variances in p̃j are largest and presumed most important.
This is done by selecting the eigenvectors with the largest
eigenvalues. Eigenvectors with small or zero eigenvalues
constitute noise in the data and are neglected.

The results in thorax indicates that it is feasible to cali-
brate the model with the same CBCT scan to be motion-
corrected, thus requiring no assumptions of sameness of ana-
tomical deformations between calibration and motion-
corrected imaging sessions. Such changes may be caused by
tumor growth or shrinkage, changes in atelectasis, or fluid in
the lungs. In their previous study, Li et al.7 have found that a
motion model derived from nonrigid registration of RC-
CBCT subsets limited the performance of their motion cor-
rection method. Leng et al.17 have proposed a motion correc-
tion technique in which they estimate and remove sparse
projection streaking artifacts in the RC-CBCT by means of a
CBCT image constructed from all available projections. In
an evaluation of one clinical thoracic CBCT example, they
found that their method reduced streaking artifacts but did
not eliminate them.

Our results indicate that three factors contribute to reduc-
ing errors caused by streaking artifacts: �1� Confining the
nonrigid registration to a VOI defined at the patient surface
limits the magnitude of streaking-induced deformation to be
less than or comparable to respiration-induced deformation;
�2� the dependence of streaking-induced deformations with
time bin is different than that for respiration-induced defor-
mations; and �3� the PCA-based model favors larger defor-
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FIG. 11. Axial and coronal CBCT section of phantom with PCA-model-
based motion correction �a� using first principal component only and �b�
using second principal component only. Display window settings are the

same for all images.
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mation which correlates with surrogate motion. This can be
understood as follows. The first contributing factor prevents
streaking-induced deformation from becoming the dominant
principal component. The second contributing factor means
that the linear combination of the p̃j corresponding to maxi-
mal respiration-induced variance is different from that for
maximal streaking-induced variance; thus respiration-
induced and streaking-induced motions are partially sepa-
rated into different principal components. Figure 11 shows
the phantom CBCT images corrected using each of the first
two principal components separately. We observe that
streaking-induced deformation is more pronounced in the
first principal component, while respiration-induced defor-
mation is more pronounced in the second �i.e., less blurring�.
It is interesting to note that the phantom has a large volume
outside the lungs that is affected by streaking, thus resulting
in a larger variance in the PCA than does respiration. Streak-
ing is evident in different amounts in all the principal com-
ponents, including the smallest three �data not shown�. The
third contributing factor reduces streaking partly by discard-
ing the smallest principal components, and partly by replac-
ing the phase-index-dependent weighting factors �wkj n Eq.
�1�� with ones expressed in terms of the surrogate signals
�Eqs. �5� and �6��. The matrix V in Eq. �6� minimizes
� j=1

J 	wj −Vsj	2, thus the weights wj that correlate with the
surrogate signals sj are favored relative to those which cor-
relate less. This has the effect of enhancing the contribution
of the principal component with more pronounced
respiration-induced deformation.

Application of the method in thorax relies partly on con-
fining the nonrigid registration to a VOI defined at the patient
surface. The VOI allows some chest and abdominal expan-
sion, subject to the smoothing term that limits sharp gradi-
ents in the vector displacement field. Nevertheless, a poten-
tial limitation is the underestimation of respiration-induced
motion in the transaxial direction. The results demonstrate
the feasibility of the approach but indicate the need for fur-
ther studies to investigate more sophisticated constraints in
the nonrigid registration.

Motion correction in abdomen precludes model calibra-
tion with the same CBCT because of the inherently low soft
tissue contrast and strong sparse projection artifacts in the
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prior RCCT, thus assuming that deformation fields do not
change between RCCT and CBCT sessions. In this study, the
RCCT was acquired at simulation 2 weeks prior to treatment.
In order to investigate whether tissue deformation changes
between simulation and treatment, further patient studies will
acquire another RCCT on the same day as treatment. A com-
parison of the two RCCT data sets will test the model repro-
ducibility.

Further studies are planned to investigate the geometric
accuracy of motion-corrected CBCT. Studies with deform-
able analytical14 and physical18 phantom provide a known
ground truth for comparison. The second means of validation
is a patient imaging study, in which patients will receive an
additional CBCT gated at end expiration6 that acts as a
bronze standard for comparison to the motion-corrected
CBCT.

ACKNOWLEDGMENTS

This work was supported in part by Award No.
R01-CA126993 from the National Cancer Institute, and by a
research grant from Varian Medical Systems. The content is
solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Cancer In-
stitute or the National Institutes of Health. The authors thank
Andrew Jeung, Hassan Mostafavi, Peter Munro, and Edward
Seppi for providing assistance in cone-beam CT acquisition
with patient respiration signals and providing reconstruction
software. The authors also thank Sergey Kriminski for assis-
tance in respiration sorting of the cone-beam projection
images.

a�Author to whom correspondence should be addressed. Electronic mail:
magerasg@mskcc.org; Telephone: 646-888-5615.

1D. A. Jaffray, “Emergent technologies for 3-dimensional image-guided
radiation delivery,” Semin. Radiat. Oncol. 15, 208–216 �2005�.

2J. J. Sonke, L. Zijp, P. Remeijer, and M. van Herk, “Respiratory corre-
lated cone beam CT,” Med. Phys. 32, 1176–1186 �2005�.

3T. Li, L. Xing, P. Munro, C. McGuinness, M. Chao, Y. Yang, B. Loo, and
A. Koong, “Four-dimensional cone-beam computed tomography using an
on-board imager,” Med. Phys. 33, 3825–3833 �2006�.

4
J. Lu, T. M. Guerrero, P. Munro, A. Jeung, P. C. Chi, P. Balter, X. R. Zhu,

Medical Physics, Vol. 37, No. 6, June 2010
R. Mohan, and T. Pan, “Four-dimensional cone beam CT with adaptive
gantry rotation and adaptive data sampling,” Med. Phys. 34, 3520–3529
�2007�.

5D. J. Moseley, M. Hawkins, C. Eccles, C. Euler, E. A. White, J. Bisson-
nette, L. A. Dawson, and D. A. Jaffray, “Respiratory gated cone-beam CT
volumetric imaging for external beam radiotherapy,” Int. J. Radiat. On-
col., Biol., Phys. 63, S27–S28 �2005�.

6J. Chang, G. Mageras, E. Yorke, F. De Arruda, J. Sillanpaa, K. E. Rosen-
zweig, A. Hertanto, H. Pham, E. Seppi, A. Pevsner, C. Ling, and H.
Amols, “Observation of interfractional variations in lung tumor position
using respiratory gated and ungated megavoltage cone-beam CT,” Int. J.
Radiat. Oncol., Biol., Phys. 67, 1548–1558 �2007�.

7T. Li, A. Koong, and L. Xing, “Enhanced 4D cone-beam CT with inter-
phase motion model,” Med. Phys. 34, 3688–3695 �2007�.

8S. Rit, J. Wolthaus, M. Van Herk, and J. J. Sonke, “On-the-fly motion-
compensated cone-beam CT using an a priori model of the respiratory
motion,” Med. Phys. 36, 2283–2296 �2009�.

9T. G. Purdie, D. J. Moseley, J. P. Bissonnette, M. B. Sharpe, K. Franks, A.
Bezjak, and D. A. Jaffray, “Respiration correlated cone-beam computed
tomography and 4DCT for evaluation target motion in stereotactic lung
radiation therapy,” Acta Oncol. 45, 915–922 �2006�.

10J.-J. Sonke, J. Lebesque, and M. van Herk, “Variability of four-
dimensional computed tomography patient models,” Int. J. Radiat. On-
col., Biol., Phys. 70, 590–598 �2008�.

11E. J. Seppi, P. Munro, S. W. Johnsen, E. Shapiro, C. Tognina, D. Jones, J.
Pavkovich, C. Webb, I. Mollov, and L. Partain, “Megavoltage cone-beam
computed tomography using a high-efficiency image receptor,” Int. J.
Radiat. Oncol., Biol., Phys. 55, 793–803 �2003�.

12Q. H. Zhang, A. Pevsner, A. Hertanto, Y. Hu, K. E. Rosenzweig, C. Ling,
and G. Mageras, “A patient-specific respiratory model of anatomical mo-
tion for radiation treatment planning,” Med. Phys. 34, 4772–4781 �2007�.

13W. Lu, M. Chen, G. Olivera, K. Ruchala, and T. Mackie, “Fast free-form
deformable registration via calculus of variations,” Phys. Med. Biol. 49,
3067–3087 �2004�.

14J. M. Garrity, W. P. Segars, S. B. Knisley, and B. M. W. Tsui, “Develop-
ment of a dynamic model for the lung lobes and airway tree in the NCAT
phantom,” IEEE Trans. Nucl. Sci. 50, 378–383 �2003�.

15M. Söhn, M. Birkner, D. Yan, and M. Alber, “Modeling individual geo-
metric variation based on dominant eigenmodes of organ deformation:
Implementation and evaluation,” Phys. Med. Biol. 50, 5893–5908 �2005�.

16I. T. Jolliffe, Principal Component Analysis, 2nd ed. �Springer, New York,
2002�.

17S. Leng, J. Zambelli, R. Tolakanahalli, B. Nett, P. Munro, J. Star-Lack, B.
Paliwal, and G. H. Chen, “Streaking artifacts reduction in four-
dimensional cone-beam computed tomography,” Med. Phys. 35, 4649–
4659 �2008�.

18M. Serban, E. Heath, G. Stroian, D. L. Collins, and J. Seuntjens, “A
deformable phantom for 4D radiotherapy verification: Design and image

registration evaluation,” Med. Phys. 35, 1094–1102 �2008�.

http://dx.doi.org/10.1016/j.semradonc.2005.01.003
http://dx.doi.org/10.1118/1.1869074
http://dx.doi.org/10.1118/1.2349692
http://dx.doi.org/10.1118/1.2767145
http://dx.doi.org/10.1016/j.ijrobp.2005.07.054
http://dx.doi.org/10.1016/j.ijrobp.2005.07.054
http://dx.doi.org/10.1016/j.ijrobp.2006.11.055
http://dx.doi.org/10.1016/j.ijrobp.2006.11.055
http://dx.doi.org/10.1118/1.2767144
http://dx.doi.org/10.1118/1.3115691
http://dx.doi.org/10.1080/02841860600907345
http://dx.doi.org/10.1016/j.ijrobp.2007.08.067
http://dx.doi.org/10.1016/j.ijrobp.2007.08.067
http://dx.doi.org/10.1016/S0360-3016(02)04155-X
http://dx.doi.org/10.1016/S0360-3016(02)04155-X
http://dx.doi.org/10.1118/1.2804576
http://dx.doi.org/10.1088/0031-9155/49/14/003
http://dx.doi.org/10.1109/TNS.2003.812445
http://dx.doi.org/10.1088/0031-9155/50/24/009
http://dx.doi.org/10.1118/1.2977736
http://dx.doi.org/10.1118/1.2836417

