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Abstract
We propose a novel Bayesian registration formulation in which image location is represented as a
latent random variable. Location is marginalized to determine the maximum a priori (MAP) transform
between images, which results in registration that is more robust than the alternatives of omitting
locality (i.e. global registration) or jointly maximizing locality and transform (i.e. iconic registration).
A mathematical link is established between the Bayesian registration formulation and the mutual
information (MI) similarity measure. This leads to a novel technique for selecting informative image
regions for registration, based on the MI of image intensity and spatial location. Experimental results
demonstrate the effectiveness of the marginalization formulation and the MI-based region selection
technique for ultrasound (US) to magnetic resonance (MR) registration in an image-guided
neurosurgical application.

1 Introduction
The task of image registration is central to many medical image analysis applications, and
involves determining a geometrical mapping or transform relating different images.
Registration is often formulated as determining a transform in the form of a smooth one-to-
one mapping between images [1]. However, in a number of medical imaging contexts, a smooth
one-to-one mapping may not exist or may be difficult to identify. Consider the context of
image-guided surgery, for instance, in which intra-operative ultrasound (US) imagery is to be
registered to pre-operative magnetic resonance (MR) imagery for the purpose of surgical
guidance. In the case of resection, anatomical tissues present prior to surgery may be severely
deformed or removed over the course of the procedure, and a valid one-to-one mapping
between pre- and intra-operative images will not exist [2]. Furthermore, the intensity
characteristic of US is spatially-varying [3], and certain tissues may be absent or incorrectly
represented in the image due to tissue echogenicity or to artifacts relating to sensor gain,
acoustic shadowing, reverberation, etc., further compounding the difficulty in estimating a
transform.

A body of research focuses on registration based on local image regions [4,2,5,7–9] in order
to address the situation where a smooth one-to-one mapping is difficult to estimate. Working
with local regions improves the ability to identify and cope with missing or altered tissue in
images, and simplifies the modeling of geometrical and intensity relationships between images,
which can be approximated as locally smooth and stationary. This paper makes three
contributions to this line of research. First, a Bayesian registration formulation is proposed, in
which image location is incorporated as a latent random variable. The key insight is that, while
location is important in describing image content and the registration process, it is ultimately
incidental, and should thus be marginalized in order to obtain the maximum a posteriori (MAP)
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transform relating images. Marginalization provides a principled means of leveraging local
regional information for registration, in contrast to omitting location information or
maximizing a joint distribution over locations and the transform. Second, a novel mathematical
link is established between Bayesian registration and the mutual information (MI) similarity
measure, motivating the use of MI in a Bayesian setting. Third, a new strategy is proposed for
selecting informative local image regions for registration, based on the MI of image intensity
and location within image regions. This strategy generalizes previous work advocating the
selection of high-entropy image regions [10], by imposing the additional constraint that the
intensity be informative with respect to image location.

The remainder of this paper is organized as follows. Section 2 outlines related work in the
literature. Section 3 presents our Bayesian framework for location marginalization and
informative region selection. Section 4 presents experiments involving registration of intra-
operative US slices to pre-operative MR imagery in an image-guided neurosurgical (IGNS)
application. In this challenging registration scenario, location marginalization is shown to
outperform standard registration. Furthermore, mutual information-based selection of image
regions is shown to outperform both uniform sampling and entropy-based region selection. A
discussion follows in Section 5.

2 Previous Work
2.1 Incorporating Local Regions

The task of image registration, or determining a spatial mapping T between images I and J, is
a cornerstone of medical image analysis. Cachier et al. propose two classes of techniques by
which local image regions X are incorporated into image registration formulations [4]:
geometrical feature-based and iconic feature-based. Geometrical feature-based techniques
involve the segmentation of localized geometrical structures from image data, e.g. points or
shapes, which are then aligned between different images to estimate T. In contrast, iconic
feature-based techniques generally determine correspondences between images based on local
image patches or blocks, after which these correspondences are used to improve estimation of
T. Our work is most closely related to iconic feature-based techniques, which do not impose
hard geometrical feature segmentations in both images to be registered.

A number of authors propose registration based on local regions which capture locally stable
relationships. Hellier et al. present a technique which combines local constraints in the form
of segmented anatomical structures into a deformable registration framework [11]. Clatz et al.
describe a robust hierarchical block matching technique [2], where a fraction of blocks are
iteratively rejected based on their displacement error with respect to the current transform.
Toews et al. [5] and Loeckx et al. [8] propose computing the MI similarity measure locally to
overcome spatially-varying multi-modal intensity relationships. Zhang et al. refine
cardiological registration by considering locally affine deformations [7]. Wein et al. [9] propose
a similarity measure based on a linear relationship between imaging parameters extracted in
local windows.

Most work to date has advocated optimizing a function E(X, T) over the joint space of the
transform T and local regions X. In contrast, we note that while X may be important in modeling
the image and the registration process, it is ultimately a nuisance parameter that should not be
optimized but rather marginalized in order to obtain the optimal transform T.

2.2 Local Region Selection
Using local image information requires a sampling strategy in order to define the specific local
regions to be used (e.g. their location, size, distribution). A simple and commonly used strategy
is to consider a uniform sampling of regions over the image [4,2,7,9]. In general, however,
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certain regions are more informative than others, in terms of the image patterns they contain,
and registration can be improved by considering a subset of highly informative regions.
Domain-specific regions or structures can be defined by experts, e.g. sulci for registering
cortical imagery [11]. Fully automatic region selection methods can be used when the structures
most useful for registration are not known a priori. In the medical imaging literature, Rohr et
al. investigate automatic selection of landmarks for registration based on derivative operators
[12]. A popular body of computer vision literature has focused on automatically identifying
salient or informative regions in general imagery, typically via a search for image regions which
maximize a particular saliency criterion. Examples of saliency criteria include the magnitude
of image derivatives in scale-spaces [13,14] and image entropy [10].

2.3 Multi-modal US Registration
Although the formulation we propose in this paper is generally applicable in many different
contexts, experiments focus on the registration of intra-operative US imagery to pre-operative
modalities. US is an attractive imaging modality due primarily to the low cost and portability
of US sensors. The major drawback of US is the poor image quality, due to the shift-variant
nature of the sensor [3] and numerous modality related artifacts. The US image formation
process is the result of acoustic backscattering or echoing off of boundaries between tissues of
differing acoustic impedance. Specular echoing occurs in the presence of smooth tissue
boundaries which are significantly larger than the US wavelength, and results in hyperintense
image measurements. Scattered echoing occurs in the presence of poorly reflective or
irregularly-shaped microstructures of size equal to or smaller than the US wavelength, and
results in the formation of US speckle [15]. While speckle can be treated as noise to be removed
[16], speckle brightness patterns do reflect the echogenic properties of the underlying tissues,
and have been shown to be useful for segmentation, classification and registration of anatomical
tissues [15,17,18,9].

Modeling the image intensity relationship is a key focus of inter-modality US registration, and
the wide variety of techniques in the literature speak to the difficulty of modeling. Roche et al.
[19] propose an information-based similarity measure combining MR intensity and gradient
information. Wein et al. [9] simulate US imagery from CT, then compute similarity using a
specialized correlation measure accounting for both specular and scattered US echoing. Arbel
et al. [20] register the US image to a pseudo US image, generated from gradients in segmented
MR imagery. Toews et al. [5] register MR and US imagery using MI coupled with Bayesian
estimation of image intensity distributions. Brooks et al. compute MI based on image gradients
alone [6]. Reinertsen et al. [21] propose MR-US registration of brain images based on
vasculature trees extracted in both modalities, using doppler US imagery to highlight blood
vessels. Zhang et al. register MR-US cardiological imagery using the MI of local phase
information [7]. Penney et al. propose estimating vasculature images independently from both
US and MR modalities, which are then registered [22]. Letteboer et al. report registration
success using standard MI between MR and US images, however suggest that incorporation
of gradient information may be beneficial [23].

3 Registration via Location Marginalization
The Bayesian registration formulation presented in this section is based on the observation that
although local image regions X are helpful in describing image content and the registration
process, identifying meaningful regions or their correspondences between images is incidental
to computing T. In probabilistic terms, local regions can thus be considered as nuisance
variables. While the majority of techniques in the literature advocate maximizing a joint
function of X and T, this approach does not generally result in the most probable T given the
data. Intuitively, the most probable pair X, T may be determined by noisy, spurious
instantiations of X which coincide with potentially incorrect or suboptimal values of T.
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Bayesian theory suggests X should instead be marginalized, in order to determine the most
probable T given the images to be registered [24].

3.1 Bayesian Formulation
Image registration is the task of determining a geometrical mapping T between images I and
J. Bayesian techniques typically pose registration as the posterior probability of T conditional
on the image data to be registered [25]. Registration can then be computed by searching for
the MAP transform TMAP maximizing the posterior:

(1)

While the Bayesian posterior provides a principled probabilistic basis for registration, there
are other variables which, although not specifically required for registration, may offer
important sources of information. Local anatomical structures produce distinct, spatially
localized intensity patterns which drive registration, e.g. sulci in brain imagery [11], and
information regarding image location can be incorporated in order to improve registration.
Here, we propose a random variable of spatial location X, defined over a set of discrete spatial
regions within one of the images to be registered I. The posterior in Equation (1) can then be
expressed as the marginalization of the joint posterior distribution of X and T given images I
and J:

(2)

By marginalizing over X as in Equation (2), TMAP can be obtained while leveraging important
information regarding spatial location. The joint posterior in Equation (2) can be expressed as:

(3)

using Bayes rule, and by the fact that p(I, J) is constant given fixed images I, J. Here, the
likelihood factor p(I, J|X, T) contains all expressions relating to image data. p(X) is a prior
probability over image regions, which can generally be defined according to relative sizes or
overlap of regions X. p(T|X), the conditional probability of T given X, can be defined to reflect
the nature of the relationship between the specific transform and set of regions used.

3.2 Informative Region Selection
Utilizing local image regions requires a sampling scheme to determine X, and an ideal region
sampling would represent a set of informative image patterns which can be localized with
certainty in new images. Here, we develop a criterion to quantify both the informativeness and
the localizability of image regions within a single image prior to registration. A mathematical
link between Bayesian registration and the MI similarity measure motivates our MI-based
selection criterion.

Bayesian Registration and Mutual Information—Although Bayesian techniques and
the MI similarity measure [26,27] are both widely used in medical image registration, their
relationship is not immediately obvious. Maximum likelihood has been linked to joint entropy
minimization [28] and MI maximization [29], here we provide a novel connection between
Bayesian registration and MI maximization. To begin, recall the data likelihood p(I, J|X, T) in
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Equation (3), which can be represented as a discrete distribution over joint pixel intensity
events. Let {mi,j} represent a set of observed counts corresponding to possible joint intensity
outcomes (I, J), obtained from an experiment resulting in M independent joint intensity
samples. Furthermore, let {mi} and {mj} represent counts of marginal pixel intensity events in
histograms I and J, respectively, obtained in the same experiment. The number of unique
experiments which could have generated a histogram {mi} is given by the multinomial

coefficient . The number of experiments which could have resulted in the same set of joint/
marginal histograms can thus be described by the following ratio of counts:

(4)

where 1 ≤ P ≤ ∞. Note here that P−1 is the probability mass function of the hypergeometric
distribution, which quantifies the probability that a particular joint histogram was generated
from independent marginal histograms. Registration can thus be achieved by maximizing P or
a suitable monotonically increasing function thereof. In particular, the Stirling's approximation
log x! ≈ x log x − x of M−1 log P converges to the mutual information of the empirical event
count distributions as M → ∞ [30]:

(5)

Note that Equation (5) implies that maximizing the probability that data (I, J) did not arise from
independent I and J is equivalent to minimizing the conditional conditional mutual information
of I and J given region X and transform T:

(6)

Mutual Information-based Region Selection—The previous section showed how the
data term of a Bayesian registration formulation is tied to the mutual informativeness of regions
to be matched. As the MI of images I and J is upper-bounded by the marginal entropy of
individual images,

(7)

intuition would suggest that selecting regions with high image entropy H(I) would be beneficial
for registration. This technique is proposed by Kadir et al. [10], who use the Shannon entropy
of the intensity distribution within an image region as a measure of informativeness. While H
(I) measures the informativenss of the intensity distribution within an image region, it does not
necessarily reflect the ability to register or localize the region in new images, as illustrated in
Figure 1.

In particular, image intensity must be mutually informative with respect to image location, in
order to correctly localize homologous regions in different images. We propose instead to
quantify region informativeness in terms of the MI between image intensity I and spatial
location S:
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(8)

where H(I|S) represents the conditional entropy of I given spatial location:

(9)

In Equations (8) and (9), S represents a random variable of spatial location at sub-region image
scale, defined over a set of n discrete spatial labels. As conditioning reduces entropy, 0 ≤ H(I|
S) ≤ H(I) and thus 0 ≤ MI(I, S) ≤ H(I). Note that like the H(I) criterion, the MI(I, S) criterion
in Equation (8) favors high entropy intensity distributions, however it imposes the additional
constraint that the entropy of intensity conditioned on spatial location be low. The two criteria
are thus equivalent when H(I|S) = 0, i.e. when the intensity distribution is perfectly predicted
by spatial location.

An important implementation detail is to choose a suitable sub-region sampling scheme S. A
generally useful sampling scheme would favor patterns which can be localized in space in an
unbiased manner. We experiment with a two-class binary sampling scheme, where p(S1) and
p(S2) are defined by Gaussian densities of differing variance G(0, σ1) and G(0, σ2). As Gaussian
densities are rotationally symmetric, they are consistent with an uncommitted visual front-end
feature extractor exhibiting no specific bias as to the orientation of image patterns [31]. Figure
2 illustrates the result of applying both criteria on a US image.

4 Experiments
The context for experiments is an IGNS application, in which pre-operative anatomical MR
imagery has been acquired and used as the basis for surgical planning. The brain may shift and
deform over the course of surgery, invalidating the pre-operative MR imagery as a basis for
guidance. The goal is thus to register intra-operative US imagery to the pre-operative MR, and
thereby update the pre-operative MR imagery to correctly reflect changes due to brain shift.
Brain shift correction and US-MR registration remain significant research challenges, due to
the impoverished nature of the US modality.

The goals of the experiments are two-fold. First, location marginalization of X is compared
with the alternative of registration in the absence of local regions. Second, region selection
based on the MI(I, S) criterion is compared with the alternatives of uniform sampling and
selection based on the H(I) criterion. Experiments involve registration trials aligning B-mode
US slices acquired during surgery with a pre-operative MR image. The 3D position and
orientation of US the probe are tracked externally and calibrated geometrically with respect to
the pre-operative MRI within a neuronavigation system. The approximate geometry of the US
slice relative to the MR volume can thus be established and used to evaluate registration
accuracy with respect to ground truth. Experiments use a sequence of ten (320×240)-pixel US
images acquired after skull removal but prior to opening the dura, in which brain deformation
is relatively minor and ground truth can be considered reliable. Registration remains
challenging, however, due the difficulty in modeling the US/MR intensity relationship, see
Figure 3. As deformation is minimal, registration aims to recover T in the form of a global
translation between the US image and the MR slice corresponding to the tracked position of
the US probe. The data likelihood p(I, J|X, T) is represented by the MI measure as in Equation
(5). Factor p(X) reflects the prior probability of image regions, which can generally be defined
according to the relative sizes or overlap of regions. A set of regions of equal size is used here
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and p(X) is thus taken to be uniform. Finally, as T does not depend X in an obvious manner
and we have no particular prior assumptions regarding T, and so p(T|X) = p(T) is taken to be a
uniform distribution.

To cope with the issue of data sparsity when calculating MI at a local scale, image intensities
are first transformed into a mixture model over a small set of tissue classes as in [32]. Briefly,
let C = {C1,…, CK} represent a discrete random variable over K tissue classes. Mixture
modeling and expectation-maximization [33] can be used to estimate a set of class labels and
associated parameters that maximize the likelihood of the image data I:

(10)

Once the parameters of mixture components in (10) are estimated, a conditional probability
distribution over class labels can be associated with each image intensity I:

(11)

Here, the K-means algorithm [33] is used to estimate Gaussian class-conditional densities p
(I|Ci). K = 3 tissue classes are used in experiments, and thus the size of the joint intensity
histogram is 3 × 3 = 9. Varying K between 2–5 labels does not significantly affect registration
accuracy, larger numbers of labels result in higher computational complexity however.

For each trial, local regions X are first defined in the US image as shown in Figure 4. The
posterior is then calculated at all discrete pixel displacements T between the US image and its
corresponding slice in the 3D MR volume, as determined by the geometry of the tracked US
probe. In the case of the marginalized posterior, Equation (2) is evaluated by integrating over
X for each displacement T. The results of registration based on various registration formulations
and selection strategies are listed in Table 1. Note that MI-based region selection and
localization marginalization results in both the highest number of successes (9 out of 10) and
the lowest mean error. Incorporating no local regions resulted the fewest successes and high
mean error. On this data, entropy-based region selection results in fewer successes and higher
mean error than uniform sampling.

5 Discussion
This paper investigates a framework for the use of local image regions in registration, based
on probability and information theory. Local regions are incorporated into a Bayesian
registration framework in order to improve the ability to cope with missing tissue and non-
stationary image intensity characteristics. Local region information is represented as a nuisance
random variable, which is marginalized in order to obtain the MAP transform relating images.
A novel link between a Bayesian registration formulation and the MI similarity measure is
outlined, showing how MI results from the Bayesian data factor when the distribution of
intensity events is modeled by a maximum entropy prior. This in turn motivates a new criterion
for identifying a set of informative and localizable image regions for registration, the MI of
intensity and location, which generalizes the entropy-based criterion of Kadir et al. [10].

A challenge of marginalizing location is computing the integral over local regions. Experiments
here recover global translation via efficient numerical integration, where computation time is
linear in the image size and in the number of regions used. Efficient marginalization with more
complicated transforms could be addressed via coarse-to-fine methods or Monte Carlo
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integration, depending on the class of transforms used. The MI-based feature selection criterion
is currently evaluated at a fixed image window size, but could be used to automatically
determine more elaborate descriptions of local region geometry, including region size or shape,
in order identify a wider variety of local image structures.

Acknowledgments
This work was funded in part by NIH grants U41 RR019703 and P41 RR13218, and by an NSERC postdoctoral
fellowship. Image data was provided by D. Louis Collins of the Montreal Neurological Institute. Catherine Laporte
was involved in helpful discussions regarding ultrasound.

References
1. Hajnal, et al., editors. Medical Image Registration. CRC Press; 2003.
2. Clatz O, et al. Robust nonrigid registration to capture brain shift from intraoperative mri. IEEE TMI

2005;24(11)
3. Ng J, et al. Modelling ultrasound imaging as a linear, shift-variant system. IEEE Trans. on Ultrasonics,

Ferroelectrics and Frequency Control 2006;53(3):549–563.
4. Cachier P, et al. Iconic feature based nonrigid registration: the PASHA algorithm. CVIU 2003;89(2–

3):272–298.
5. Toews M, et al. Maximum a posteriori local histogram estimation for image registration. MICCAI

2005:163–170. [PubMed: 16685956]
6. Brooks R, et al. Deformable Ultrasound Registration without Reconstruction. MICCAI 2008:1023–

1031. [PubMed: 18982705]
7. Zhang W, et al. Adaptive non-rigid registration of real time 3d ultrasound to cardiovascular mr images.

IPMI 2007:50–61.
8. Loeckx D, et al. Nonrigid image registration using conditional mutual information. IPMI 2007:725–

737.
9. Wein W, et al. Automatic ct-ultrasound registration for diagnostic imaging and image-guided

intervention. Medical Image Analysis 2008;12:577–585. [PubMed: 18650121]
10. Kadir T, et al. Saliency, scale and image description. IJCV 2001;45(2):83–105.
11. Hellier P, et al. Coupling dense and landmark-based approaches for non rigid registration. IEEE TMI

2003;22(2):217–227.
12. Rohr K, et al. Landmark-based elastic registration using approximating thin-plate splines. IEEE TMI

2001;20(6):526–534.
13. Lowe DG. Distinctive image features from scale-invariant keypoints. IJCV 2004;60(2):91–110.
14. Mikolajczyk K, et al. Scale and affine invariant interest point detectors. IJCV 2004;60(1):63–86.
15. Wagner RF, et al. Statistics of speckle in ultrasound B-scans. IEEE Transactions on Sonics and

Ultrasonics 1983;30(3):156–163.
16. Coupe P, et al. Bayesian non local means-based speckle filtering. ISBI 2008:1291–1294.
17. Thijssen JM. Ultrasonic speckle formation, analysis and processing applied to tissue characterization.

Pattern Recognition Letters 2003;24(4–5):659–675.
18. Milko S, et al. Segmentation of the liver in ultrasound: a dynamic texture approach. Int. J. of Computer

Assisted Radiology and Surgery 2008;3(1–2):143–150.
19. Roche A, et al. Rigid registration of 3D ultrasound with MR images: a new approach combining

intensity and gradient information. IEEE TMI 2001;20(10):1038–1049.
20. Arbel T, et al. Automatic non-linear mri-ultrasound registration for the correction of intra-operative

brain deformations. Comput Aided Surg 2004;9(4):123–136. [PubMed: 16192052]
21. Reinertsen I, et al. Validation of vessel-based registration for correction of brain shift. Medical Image

Analysis 2007;11(4):374–388. [PubMed: 17524702]
22. Penney G, et al. Registration of freehand 3d ultrasound and magnetic resonance liver images. Medical

Image Analysis 2004;(8):81–91. [PubMed: 14644148]

Toews and Wells Page 8

Inf Process Med Imaging. Author manuscript; available in PMC 2010 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Letteboer M, et al. Brain shift estimation in image-guided neurosurgery using 3-d ultrasound. IEEE
Transactions on Biomedical Engineering 2005;52(2):268–276. [PubMed: 15709664]

24. Gelman, A., et al. Bayesian Data Analysis. Chapman & Hall/CRC; 2000.
25. Gee J, et al. Probabilistic matching of brain images. IPMI. 1995
26. Wells W, et al. Multi-modal volume registration by maximization of mutual information. MIA

1996;1:35–52.
27. Maes F, et al. Multimodality image registration by maximization of mutual information. IEEE TMI

1997;16(2):187–198.
28. Zollei L, et al. A marginalized map approach and em optimization for pair-wise registration. IPMI

2007:662–674.
29. Roche A, et al. Unifying maximum likelihood approaches in medical image registration. IJIST

2000;11:71–80.
30. Jaynes E. Prior probabilities. IEEE Transactions on systems, science, and cybernetics 1968;SSC-4

(3):227–241.
31. Romeny, B.t.H. Front-End Vision and Multi-Scale Image Analysis. Kluwer Academic Publisher;

2003.
32. D'Agostino E, et al. An information theoretic approach for non-rigid image registration using voxel

class probabilities. MICCAI 2003:812–820.
33. Duda, RO., et al. Pattern classification. 2nd edn.. Wiley; 2001.

Toews and Wells Page 9

Inf Process Med Imaging. Author manuscript; available in PMC 2010 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Images a), b) and c) represent three different binary images for which H(I) is maximal. Image
a) represents a region of homogenous image texture which may be unlocalizable. Image b)
represents a boundary between two tissues, which may only be localizable in the direction
normal to the boundary. Image c) represents a pattern whose localization can be constrained
in all directions.
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Fig. 2.
Image a) represents a transdural B-mode US slice of the brain. b) represents the distributions
associated with the binary spatial variable S defined within a local region, where light regions
indicate high p(S). Images c) and d) represent the entropy H(I) and MI(I, S) criteria calculated
at square regions of size 39 pixels in the US image. Note that most regions within the US fan
in b) are of high H(I), while a smaller number of US regions corresponding to distinctive image
patterns in a) result in high M(I, S).
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Fig. 3.
Images a) and b) illustrate an example of an US-MR image pair used in registration trials. Note
the generally poor image quality of the US imagery.
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Fig. 4.
a) is a US image, images b) and c) are entropy and MI region selection criteria evaluated at all
pixel locations in image a). Images d)–f) illustrate the three region sampling/selection strategies
applied to the US image. For each strategy, 13 diamond-shaped regions of size 39 × 39 are
chosen in the US image. Region size is determined empirically, smaller regions tend to result
in spurious matching and larger regions tend to be poorly localized. 13 regions are used to
uniformly sample the US image in c), and automatic selection identifies the 13 image regions
with the highest value of the particular criterion in d) and e). A minimum distance of 20 pixels
is enforced between automatically selected regions to ensure even distribution throughout the
image.
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Table 1

Results for registration trials. A trial is considered successful if TMAP is a global maximum, i.e. corresponds to
the peak of the posterior closest to the known ground truth displacement. The mean and standard deviation are
calculated for successfully identified TMAP solutions.

Selection Technique Registration Formulation Successes (out of 10) Error Mean (pix) Error Stdev (pix)

MI(I|S)
T

argmax{∫p(T , X ∣ I , J )dX } 9 2.5 1.7

Uniform
T

argmax{∫p(T , X ∣ I , J )dX } 9 3.3 1.9

H(I)
T

argmax{∫p(T , X ∣ I , J )dX } 8 4.1 2.6

-
T

argmax{p(T ∣ I , J )} 6 3.9 2.9
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