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Abstract

We establish a general asymptotic theory for nonparametric maximum likelihood estimation in
semiparametric regression models with right censored data. We identify a set of regularity conditions
under which the nonparametric maximum likelihood estimators are consistent, asymptotically
normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by
the inverse information matrix or the profile likelihood method. The general theory allows one to
obtain the desired asymptotic properties of the nonparametric maximum likelihood estimators for
any specific problem by verifying a set of conditions rather than by proving technical results from
first principles. We demonstrate the usefulness of this powerful theory through a variety of examples.
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1. Introduction

Semiparametric regression models are highly useful in investigating the effects of covariates
on potentially censored responses (e.g. failure times and repeated measures) in longitudinal
studies. It is desirable to analyze such models by the nonparametric maximum likelihood
approach, which generally yields consistent, asymptotically normal, and asymptotically
efficient estimators. It is technically difficult to prove the asymptotic properties of the
nonparametric maximum likelihood estimators (NPMLES). Thus far, rigorous proofs exist only
in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with right censored
data. The theory is very encompassing in that it pertains to a generic form of likelihood rather
than specific models. We prove that, under a set of mild regularity conditions, the NPMLEs
are consistent, asymptotically normal, and asymptotically efficient with a limiting covariance
matrix that can be consistently estimated by the inverse information matrix or the profile
likelihood method.

This paper is the technical companion to Zeng and Lin (2007), in which several classes of
models were proposed to unify and extend existing semiparametric regression models. The
likelihoods for those models can all be written in the general form considered in this paper.
For each class of models in Zeng and Lin (2007), we identify a set of conditions under which
the regularity conditions for the general theory hold so that desired asymptotic properties are
ensured.
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2. Some Semiparametric Models

We describe briefly the three kinds of models considered in Zeng and Lin (2007). We assume
that the censoring mechanism satisfies coarsening at random (Heitjan and Rubin (1991)).

2.1. Transformation Models for Counting Processes

Let N*(t) record the number of events that the subject has experienced by time t, and let Z(+)
denote the corresponding covariate processes. Zeng and Lin (2007) proposed the following
class of transformation models for the cumulative intensity function of N*(t)

]()YTZ

AUZ)=G | {1+ [(R () ZDan(s)) |- G,

where G is a continuously differentiable and strictly increasing function with G'(1) >0 and G
(e0) = o0, R*(*) is an indicator process, Z is a subset of Z, 5 and y are regression parameters, and
A(") is an unspecified increasing function. The data consist of {N;(t), Ri(t), Zj(t); t € [0, 7]} (i
=1, ..., n), where R(t)=I(C; > DR} (1), Ni(t)=N; (t A C;), C; is the censoring time, and z is a
finite constant. The likelihood is

ﬁﬂ (RiDAAEZ)Y N Vexp |~ [R(DAAGZ))

i=1 <t

where dN;(t) = N;(t) — Nj(t-).

2.2. Transformation Models With Random Effects for Dependent Failure Times

Fori=1,...,n k=1, .., KandI=1, ..., nj, let N;,(-) denote the number of the kth type of
event experienced by the Ith individual in the ith cluster, and Zjy () the corresponding covariate
processes. Zeng and Lin (2007) assumed that the cumulative intensity for NV;,,(7) takes the form

* T7..(s T\»,
Ax(t1Ziga:bi)=Gy { [Ruls)ef 2ty Z"’“)dAk(s)} ;

where Gy, Ay, and R;, are analogous to G, A, and R* of Section 2.1, iik| is a subset of Zj plus
the unit component, and bj is a vector of random effects with density f (b; y). Let Cik, Njk, and
Riki be defined analogously to Cj, N;j, and R; of Section 2.1. The likelihood is

Nk

n K " ~ dNix(1)
l_[fbl_[1_[l_[[Rikl(l)eBTZW(tHbTZW(r)dAk(I)Gl: {f:)Rfk](S)eBTZW(X)+})TZW(‘Y)dAk(S)}J
i=1

k=1 I=1 17

x exp| ~Ge{ [Rue 0 20an, )| fibiyyab.
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2.3. Joint Models for Repeated Measures and Failure Times

Fori=1,...,nandj=1, ..., nj, letYjj be the response variable at time t;; for the ith subject,
and Xjj the corresponding covariates. We assume that (Yjy, ..., Yin;) follows a generalized linear
mixed model with density f,(y[Xj; bj), where bj is a set of random effects with density f (b; ).

We define N; and Z; as in Section 2.1, and assume that
NZibi)=G { [oR; ()8 A0 2O s,

where ii is a subset of Z; plus the unit component, y is a vector of unknown constants, and
V1 ° Vs is the component-wise product of two vectors vq and vo. The likelihood is

n;

[ 1/,] [trRanwzpp™Oexp {- [{Rinan@zip)} [ | 41Xij500 1 bsy)db.
i=1

I<T Jj=1

For continuous measures, Zeng and Lin (2007) proposed the semiparametric linear mixed
model

H (ij):(YTX,‘j‘l'biTXij‘f‘S,‘j,

where H is an unknown increasing function with |—f(—oo) = —oo, H(m) = o0, and H~(O) =0,aisa
set of regression parameters, Xj; is typically a subset of Xjj, and &jj (i=1, ..., n; j = 1, ..., njj)
are independent with density f,. Write A(y) = eH0). The likelihood is

n nj
o

[1/,] [Rdn@zspp™Oexp {- [{R0dA@Zisb)] x | ] felog(A (¥ip) - o” Xij = b] Xijidiog A (Yij)/dy}f(biy)db.
j=1

=1 1<t

3. Nonparametric Maximum Likelihood Estimation

All the likelihood functions given in Section 2 can be expressed as

n K nj

1_“_[1_[ﬂ@(z)’?f“‘”"N?u"’\P(Of;e, A),

i=1 k=1 I=1 1=t

where /lk(t):AZ(z), 6 is a d-vector of regression parameters and variance components, A =
(Aq, ..., Ak), ©: pertains to the observation on the ith cluster, and ¥ is a functional of ©:, 6,
and A. For nonparametric maximum likelihood estimation, we allow A to be discontinuous
with jumps at the observed failure times and maximize the modified likelihood function
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K
[T 1] et soiOwose, #),

where A {t} denotes the jump size of the monotone function Ay att. Equivalently, we maximize
the logarithm of the above function

n K nj

L0, A=) | > > [Rua(logA {1} Ny (1)+10g ¥(0is6, A) .

i=1 L k=11=1 (1)

We wish to establish an asymptotic theory for the resulting NPMLEs § and 4.

4. Regularity Conditions

We impose the following conditions on the model and data structures.

(C1) The true value 6 lies in the interior of a compact set ®, and the true functions Agy are

continuously differentiable in [0, 7] with A(/)k(t)>0, k=1,.., K
(C2) With probability one, P(infsepo g Rik.(S) = 1|Zik, 1 = 1, ..., nix) > 69 > 0 for all t € [0, 7],
where Rik-(’)ZZngkl(l),

(C3) There exist a constant ¢, > 0 and a random variable r1(©:) > 0 such that E[log r1(¢:)] <
oo and, for any 6 € ® and any finite Ay, ..., Ak,

}*dN,Z_(I){

K
¥(0is6, A) < n O] [[ [{1+ R 0dAw0) 1+ [ Ri(DdAL(0)])

k=1 t<t

* Nk * .
almost surely, where Nik~(t)=Z,:1Nikl(t). In addition, for any constant c,,

inf(P(0:60, A)||A1|| <o ||Al]l < 2.0 € OF>12(01)>0,

V[0.7] V[0,7]

where [|hllvjo, is the total variation of h(:) in [0, <], and rp(©:), which may depend on ¢y, is a
finite random variable with E[|log ro(¢/)[] < .

We require certain smoothness of . Let ¥y denote the derivative of ¥(©:; 6, 4) with respect
to 6, and let ¥, [H,] denote the derivative of W(9:; 6, A) along the path (Ax + eHy), where Hy
belongs to the set of functions in which Ay + ¢Hy is increasing with bounded total variation.

1 2 1 2 .
(C4) For any (60, 6@) € ©, and (A", AP, ..., (AL, AP, =, H?),...,(HD, H?) with

uniformly bounded total variations, there exist a random variable &#(9:) € L4(P) and K
stochastic processes uik(t; @) € Lg(P), k=1, ..., K, such that
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X s 1 1 (1) . 2 2 (2) LS
+ 3 [#0s00, AN HP - #0562, AN HP|+ 3
k=1 k=1

K 2 T
< F(O0) Iw‘“ A {[HIAL ) = AP O lduic(s:00+ [[1H,(5) - H;?’(s)|du,-k<s;o,->}] :

In addition, uik(s; ©:) is non-decreasing, and E[&#(9:)uik(s; ©:)] is left-continuous with
uniformly bounded left- and right-derivatives for any s € [0, z]. Here, the right-derivative for
a function f(x) is defined as limp_,g+(f (X + h) — f (x+))/h.

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If

K nij

1—[ 1_[ l_l/lz(l)Rikl(f)dek](f)

k=1 I=1 1=t

K nj

wOs6", A= [ [ [[ JAoe@ ™| (01360, Ao)

k=11=1 t<t

almost surely, then 8* = 6y and A (=Ap() fort € [0, 7], k=1, ..., K.

YO0V ADHL] w00
Y(0i;6D,AD) Y(0;:0

The next assumption is more technical and will be used in proving the weak convergence of

the NPM-LEs. For any fixed (6, A) in a small neighborhood of (6, ) in RY x {BV[0, 7]},

where BV[0, 7] denotes the space of functions with bounded total variations in [0, 7], (C4)

implies that the linear functional

fﬁ;kﬁ EI

P (056, A)| Hy ]
Y(0;;0, A)

is continuous from BV[O, 7] to R. Thus, there exists a bounded function #ok(s; 8, 4) such that

W (0336, A)[ Hy]
Y(O0;:0, A)

} :f;UOk(S;H, A)dH(s).

(C6) There exist functions {pk(s; 6o, ) € BV[O, 7], k=1, ..., K, and a matrix {pg(6p, ) such

that

| 000,70 O, Ao)
Y0160, A)  ¥(Ois60, Ao)

In addition, fork =1, ..., K,

K
= S00(6o, A)E — o) — Zf(r)§0k(5;90, Ap)d(Ax — Aor)

k=1 k=1
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{10k (536, A) = 10k(5360, Ao)} = Moka (5360, Ao)(6 — 6o) — fOZUOAm(S 1:60, Ao)d(Am — Nom)(1)

m=1

K
Z sup

s€[0 7|

K
zo(,e_eo.@um—Amn‘,m_,] :
k=1

where 5okm is @ bounded bivariate function and #qg is a d-dimensional bounded function.
Furthermore, there exists a constant ¢z such that |[7okm(s, t1; 6o, ) — 7okm(S, t2; G, )| < C3|
t; —to| forany s € [0, 7] and any ty, ty € [0, 7].

The final assumption ensures that the Fisher information matrix along any finite-dimensional
sub-model is non-singular.

(C7) (Second Identifiability Condition) If with probability one,

K nj

P9(0;:00,A0) v+ 3K 90100, A0 | hd Ao ]
Zthk(’)R'U(’)dNu(’) — 0, A00 7(0(; I =0
-1 =1

for some constant vector v € RY and h, € BV[0, 7], k=1, ..., K, thenv=0and h, = 0 for k =
1 ..., K

Remark 1

(C1)—(C2) are standard assumptions in any analysis of censored data. (C3) pertains to the model
structure, and (C4) and (C6) essentially impose the smoothness of this structure. Although they
appear technical, these conditions are easy to verify in practice. (C5) and (C7) usually require
some work to verify, but can be translated to simple conditions in specific cases.

5. Some Useful Lemmas

Lemma 1

For any constant c, the following classes of functions are P-Donsker:
7i={1029(0:0. A:A|,, < k=1, Ko € O},
_ | 007 -
Fr= { SO ||| oy SCA=1 K O € @},
_ | 900 A H]. — _
Tau= { B A, < com=1. Koo O], k=1 K.
Proof

We only prove that 73 is P-Donsker; the proofs for the other two classes are similar. For k =
1, ..., K, we define a measure yy in [0, 7] such that, for any Borel set A C [0, 1],

Hi(A)=[ (1t € AELF O (uie(T:0:) = i 0:00)) dpie (5:0,).

Stat Sin. Author manuscript; available in PMC 2010 July 1.
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Condition (C4) implies that ([0, 1) < I#(O) Lo pllik(z; @) ~ £ik(0; ) lLggpy. Ths, ac s @
finite measure. According to Theorem 2.7.5 of van der Vaart and Wellner (1996), the bracket
covering number for any bounded set in BV[O0, 7] is of order exp{O(1/)} in Lo(u), k=1, ...,

K. Thus, we can construct N, = (1/e)d x exp{O(K/e)} x exp{O(1/¢)} brackets for the set of
(0, A, H) in 3, denoted by

165,01 [AT, AT x [AL AU I X [Hy, HY L, p=1,...,N,,

such that|65 — 65l<e and
i IAY - AL |2dm<a fIHY - Hled,uA<s k=1,...,K.
Any (6, 4, H) must belong to one of these brackets. Obviously, the bracket functions

¥ (0p:05, AL HE]
Y(Ox60 A5

cover all the functions in 3. Since

m=1 m=1

||¢(0,-){|0,£f oL+ 3 RSHOR ,np<s)|du,,n(s0>+2 [IHY (s) — HE (s)ldu,m<s0)} I

K 12

1/2 -
6 0L|+2{ (1A = A ditnT (O ))} +z{ [IHY ) = Pt

<c
m=1

<c

l 2
|0[l,] - 0]L)|+ z_:l{flAmp(s) - mp( S)lzd'u’"} T Z {f()lH (S) - HL(S)FdIum} ]’

where c is a constant depending on K, the L,(P)-distance within each bracket pair is O(e).
Hence, the bracket entropy integral of &#3 is finite, so that 3 is P-Donsker.

Lemma 2
For any bounded random variable (8, A) in ® x BV[0, ], the function g(s) = [E[¥k(¢:; 0, A)
[I(: = )Y (9:; 6, A)]| is left-continuous and satisfies that, for any s € [0, 7], there exist dg, Cg
> 0 such that |g(S) — g(s)| < cs|s — s| for S € (s — Js, s) and |g(s) — g(s+)| < csls —s| for S € (s, s
+ 65)-

Proof

Since wik(t; ©:) is non-decreasing in t, it follows from (C4) that for any s and s,

12(s1) = g(s2)l < E|F©O) [l = 51) = It > 52)ldpix(:0)|
< |E[F Onpin(s1:00)] — ELF (Oi)pir(s2:00)]l.

Stat Sin. Author manuscript; available in PMC 2010 July 1.

_T(O){ I+Zf|A,,,,,(6) AL (Oldpim(s:00)+ [1HY (5) - ,E(S)Idﬂ.-m(S;Of)}, p=1,..., N,



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zeng and Lin

Lemma3

Proof

Page 8

Thus, g(s) is in BV[0, 7] and is left-continuous. In addition, the left- and right-differentiability
of E[&#(9)uik(s; ©:)] in (C4) implies that the second part of the lemma holds.

Forany h(s) € BV[0, 7], the linearmap 2 — || (T)h(l)nom(t, 8360, Ao)dAox(?) is a bounded compact
operator from BVI[0, 7] to BV[O, z].

It is clear from (C6) that this function maps any bounded set in BV[0, 7] into a bounded set
consisting of Lipschitz-continuous functions. The result thus follows since any bounded and
Lipschitz-continuous functions consist of a totally bounded set in BV[0, 7] and the linear map
is continuous.

6. Consistency

Theorem 1

Proof

Step 1

Step 2

The following theorem states the consistency of d and Ay, k=1, ..., K.

o~ K e
Under (CL)~(C5), 10— 601+ D, sUPreq0,rAk() = Ak(Dl =40,

We fix a random sample in the probability space and assume that (C1)—(C5) hold for this
sample. The set of such samples has probability one. We prove the result for this fixed sample.
The entire proof consists of three steps.

We show that the NPMLEs exist or, equivalently, Ay(z) <o (k =1, ..., K) for large n. By (C3),
the likelihood function is bounded by

—c1

n K . _17dN;. (0 :
Mr©)I11] ARz {1+ [ Rt (5)d A (5)) j {1+ [ Ri(8)dA(5)]

k=11t

n K 7 —a
< [n©nll {1+ [ Ri()dAK(9)]

If Ay(z) = oo for some k, then (C2) implies that, with probability one, infie[g  Rik.(t) > 1 for
some i, so that the above function is equal to zero. Thus, the maximum of the likelihood function
can only be attained for Ay(z) < .

We show that lim sup, Ay(z) < oo almost surely, i.e., A(z) is bounded uniformly for all large
n. By differentiating the objective function (1) with respect to Ax{Yi} for which

dNj;,(Yig)=1and Riy(Yik) = 1, we note that Ax{Yijx} satisfies

I OO0, A > Yig)]
(0 :6. A)

Ax (Yas)

J=1

Stat Sin. Author manuscript; available in PMC 2010 July 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zeng and Lin

- {Z (060, AL > s)]} L E [ WOt AL > 9)]

Page 9

In other words,

-1
. n o nj n ‘P O,Z):ﬁ I(->s '
NI AP e ILECLUAES
JoYs

i=1m=1 j=1

To prove the boundedness of Ay(z), we construct another step function &k with jumps only at
the Yy for which dN;,(Yi)=1and Rj(Yin) = 1,

1 X PO 60, AP I(- > Yi)]

A Ya) ¥(0;:60, Ao)

that is,

-1
~ S | o (O30, AN > 5)] .
A== 0{2 {P( 00 70 } Rim($)AN?,, (5).

i=1m=1 j=1

We show that /ik uniformly converges to Agx. By Lemma 1,

(0600, Ao) (060, Ap)

J=1 (2)

uniformly in s € [0, z]. Since the score function along the path Ay = Agk + ¢l(- > s) with the
other parameters fixed at their true values has zero expectation,

Nk N I
— 0(t=5) 1. * Yi(0i360, A I(-25)]
O—E[]Zlfm/)R'“(’)d sz(’)] +E[ V0,00 ]

| & SN ¢V ; W4(01:00. A 1(-25)]
=E [Elkik,(;)d ik[(.s)/ds] [ Aok($)+E [ W] : ©

where 6(t = s) is the Dirac function. The submodel is not in the parameter space; however, we
can always choose a sequence of submodels in the parameter space which approximates this
submodel. Thus, the uniform limit of Ay(t) is

Nk

-1
E ZRikl(S)dek,(S)/ds] //10/\»(5')} Rigm(8)dN},,, ()| =Aok ().
]

S e

m=1

That is, &k(t) uniformly converges to Ag(t).

Stat Sin. Author manuscript; available in PMC 2010 July 1.
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We next show that the difference between the log-likelihood functions evaluated at (6, 4) and
(0p, 4), where 4 = (A, ..., Ak), is negative eventually if some Ay(z) diverges, which will
induce a contradiction. The key arguments are based on (C3). Clearly, n"1£ (4, 1) >
n1&.,(fo, 4). It follows from (2) and (3) that nA{t} converges to

/IOk(’)/E[Z Riu(1)dN;(1)/d1], and is thus uniformly bounded away from zero, where t is an
observed failure time. Therefore,

n K nj ni
1

! L,(60, A )+n“ZZZ [Ri(0)dN;, (Dlogn= n“zzz flog(nAA DRy ()N, ,kl(f)‘”l_lIg":llOgT(Oi;H(),-ﬂO),

i=1 k=11I=

which is bounded away from — oo when n is large. That is,

Nk

n™ L0, Ay ZZZ JRw()dN;(Dlogn=0(1),

i=1 k=1 1I=

where O(1) denotes a finite constant. On the other hand, (C3) implies that

n K nj n — -
' L@ A) <Y Y z JRu(OlogAy {1} AN, (0)+n~" 3 10g¥(01:6. A)
i=lk=1l= i=1

- n K T P
lzlogr.(() y+n~! z z [I(Ri(1)>0)logAy {1} dNig.(1) — n™" ;lkgl Jlog {1+ [ Ric.(s)dA(s)} ANy (1) = ! ;Elcllog{l+ JoRic()dAk(s)}

i=1k=1

where dNiw(0=Y" " Rig)dN;(0), Thus,

n K
o) <n”' )" > [1(Ru.(0>0)lognAy ()N (1

i=1 k=1

n K

_ nflszlog{1+f;R,-k.(S)de(S)}dNik-(f)
i1 k=1
K

_ n—lzzcllog {1+f(;R,-k.(s)de(S)} .

i=1 k=1 (4)

We now show that the right-hand side diverges to — oo if A(z) diverges for some k. The proof
is based on the partitioning idea of Murphy (1994). Specifically, we construct a sequence tgy
=1 >ty >ty > ... in the following manner. First, we define

uargmin {1 € [0,100): 5 EURu(0>0)] > E | IR (00, R ()=0) [* aNu 0]

where Rix.(t) = infse[o 4 Rik.(s). Clearly, such a tyy exists, and the above inequality becomes an
equality if ty > 0. If t1 > 0, we choose a small constant &g such that
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E2) < ClE[I(Eik.(T):O,Eik~(tlk)>0)J
1=20  E[I(Ry.(116)=0, Ry.(0)>0) [{dNy.(1)]’

and define

ty=argmin {1 € [0,11):(1 = £0)E | {er+ [ ;(fi ANy (O} IR (101)=0, Rix.(11)>0)| > E [ IR (111)=0, Rix. (1)>0) [ * AN (1) |}
Such a ty exists. If ty, > 0, the inequality is an equality, and we define

ty=argmin {1 € [0, 10):(1 ~ e)E [ {e1+ [ dNu ()} IRix.(110)=0, Rt (020)>0) | 2 E | IRy (120)=0, Ry (1)>0) [ dNg (0|}

We continue this process. The sequence eventually stops at some ty = 0. If this is not true,
then the sequence is infinite and strictly decreases to some t* > 0. Since all the inequalities are
equalities, we sum all the equations except the first one to obtain

1

(1 - 80)E | {e1+ [ dNw (O} IRix.(1)>0, Ry (1)=0)| =E | IRt (111)=0, R (1)>0) [ dNi. (0|,

which implies that
e1(1 = £ EL R (1)=0. Ry (110)>0)] < &0 | IRy (111)=0. Rix.(0)>0) [ (dNz.(1)].

This contradicts the choice of &. Thus, the sequence stops at some ty, k = 0.

I we write Igx = [tq+1,k tqe), then the right-hand side of (4) can be bounded by

n Ni—1 n Ni—1 n Ni—1

IR (130)=0. Rt (1g11,0>0) [, log (nAxtn}) dNi. —n™' 3 > IR (1g1)=0.Rac tg1,0>0) [ dNylog (LA {tgunnl} =™ 3, > IR (1g0)=0. Ric
=1 ¢=0 ? i=1 g=0 ! i=1 =0

Since log x is a concave function,
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:ZIII(Eik-(tqk)=O, Eik-(tq+l.k)>0)flel AVlog (nXk{t}) dNiy. (1)

S IRl1)=0Ru1410>0) [ nAL0dN0)
€lgk

S IR tg)=0Rigr10>0) [ dNi (o)
I&qu

< { 2 IRi 150)=0, R (1100, ‘dNik.} x log
= qk

I‘lxk {qu}
S 1 Fil1g)=0F e ltge1,0>0) [ ANt
€. ‘I]\

n —_ —
< {le(Rik‘(tqk)'_—Os Rik‘(tq+l.k)>0)f&l AdNik‘} x log
= qk

Therefore, (5) can be further bounded by

K | Ni—1

om=<y | > Zl(R,A (1g)=0, Ric (tg:1,0>0) [, AN

k=1] ¢=0 i=1

n
1 Ri (150)=0. R (1g10>0) [, dNi

x log

Ni—1 n
+ ) logAi(iq) {n—' D I(Ric(1g0)=0, Ri (1411,0>0) [ dN,»k.}

q=0 i=1
n N-1
nt ) D ARi(tg)=0. Ric(tg.1,0>0)f , dNiclog (1+Ax(tg11,0)
i=1 g=0
Nk 1 n
= Dot D IRt =0, Rictgu1.0>0)cl0g {14 A(tgu 140} —n~ Zl(R,k (10)>0)log {1+Ax(1)}
q=0 i=1 i=

By (C2),

n
S I Ric (1g0)=0, Rit.(tg1.0>0) [, dNi
u

— — -1
asE| 1R t@)=0. R ty1.00)f | dNi|) <o,
4

so that

n

K
o) SZ[ Z%I(Eik.(t()k)>0)log{1+Kk(7)]
k=1

i=1

n n
NOCL 5 N =
— —I(Rj. - I(Rj. =0, Rj. Nir.
{n § 5 (Rix-(tox)>0) — n § (Rix-(tox)=0 k(tq+l.k)>0)fm,0kd k}

i=1 i=1
X lOg { 1+Xk(l()k)}

Rucltyo10=0 R y>0) fer [ dNacf - 'S R 1400, R 11,0°0) [, dN.
= i=1

{1
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According to the construction of the tq’s, the coefficients in front of log &k(tqk) are all negative
when n is large enough. Therefore, the corresponding terms cannot diverge to co. However, if
Ay(r) — oo, the first term in the summation goes to —o. We conclude that for all n large enough,
A7) < 0. Thus, lim supp, Ay(z) < oo.

We obtain the consistency result from (C5). Since Ay is bounded and monotone, Ay is weakly
compact. Helly’s Selection Theorem implies that, for any subsequence, we can always choose
a further subsequence such that A, point-wise converges to some monotone function A;.
Without loss of generality, we also assume that 6 converges to some 6*. The consistency will
hold if we can show that A;=A and 0" = 6. Since Agy is continuous, the weak convergence
of Ay to Agk can be strengthened to the uniform convergence of Ay to Agy in [0, 7].

Note that
! Z'}:[‘Pk(()jﬁo, AL = 9)]/¥(Oj360, ff’lo)ld~

- = ————dAi(5).
=130 P00, A > $)1/¥(O;36, Al ©)

A=

Clearly, A is absolutely continuous with respect to &k. By condition (C3),

QRO A2 )] i%(oj;e*,ﬂ*)[l(‘ > s)]

n K
S a— <n"DSY FON-61+ > 1A = A Oldu(t:0:) 4 — 0
VO0.R A WO A) " ,Z‘ ’{ ;f A0 AT ’}

since Ay converges to A; and is bounded and {F(9)uj(t; ©): t € [0, 7]} is a P-Glivenko-
Cantelli class. By Lemma 1 and the Glivenko-Cantelli Theorem,

n .
1 & 906" A=) S IED) . .
n ng .}f(oj;g*ﬂ*) - E[ ‘Ii((),-;ﬁ*.ﬂ*) ] uniformly in s € [0, 7],

! i’: W0:00. A (2] EI:‘PL(OJ';()O,(RO)[ I(25)]
J=1

¥(0,:00.70) ¥(05:00-70) ] uniformly in s € [0, 7].

The numerator and denominator in the integrand of (6) converge uniformly to deterministic
functions, denoted by g1x(s) and gok(s), respectively. It follows from (3) that

nix
gik(s) = E[Z}:lR,-kl(s)dN,-k]*(.,.)/ds]//l,-k(s) is bounded away from zero. We claim that

inf seo, 92k(S) > 0. If this is not true, then there exists some s* €0, 7] such that gy (s™+) = 0
or go(s) = 0. By Lemma 2, there exist 5™ and ¢” such that |goi(s)| < c’|s —s7| fors € (s, s™ +
5™ ors€ (s =07, s"]. On the other hand, for any ¢ > 0,

|'flZ'}:]Tk(()j;eo,ﬂo)”(' > S)]/‘P(Oj;go,ﬂo)ld;\ ©
= — — «(8).
e+l 1 W06, AU > )1/ (0,0, )

A1) 2 [}
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Taking limits on both sides, we obtain O(1) > [ {e+ga(s)} ' gu(s)dAok(s). Let e — 0. By the
Monotone Convergence Theorem, O(1) > [*.* {¢*ls = s*l} " gu(s)do(s)ds, or

o) > [*,_ {c"ls = 5"} gux(s)dok(s)ds. This is a contradiction since the right-hand side is
infinite. The contradiction implies that the limit g,k(s) is uniformly positive. We can take limits
on both sides of (6) to obtain Aj(1)= || :)ggkl (9)81x($)dAok(s). Thus, A; is also absolutely
continuous with respect to Aok and dA; /dAok=g1x/gax- Since Ag(t) is differentiable with

’
respect to t, so is A;(7). Write {/\Z} (n=2,(1). The forgoing arguments show that dA(t)/dA(t)
uniformly converges to A;(r)/Ao(7), which is uniformly positive in [0, ].

It follows from the inequality n=1&.,(4, 1) > n~1&L (6, 4) that

n K nj

-1 dAD) * 1 S g PO:0.A
Y J10g RNy @yn™! Rlog LAER > 0

Py ¥(0;:60.A)

In view of Lemma 1, the Glivenko-Cantelli Theorem and the uniform convergence of dAy/
dAy, taking limits on both sides of the above inequality yields

}Rikl(l)dek,(l)

T T Teef 450 YO, A |

og S— > 0.
15 T e Ao ()YRx NG OR (036, A)

E|l

The left-hand side is the negative Kullback-Leibler distance of the density indexed by (6",
A%). Thus, (C5) entails that 8" = y and A™ = Aq.

7. Weak Convergence and Asymptotic Efficiency

Theorem 2

Proof

Define v = {v € RY, v] < 1}, and @ = {h(t): [|h(t)lly [0 <1} We identify (@6, 4 — A)as
a random element in 1°(V x ¢*) through the definition

@600 v+ > [osdA ~ Ao,

Under (C1)~(C7), nY2(0 — 6, 4 — 42) —q g.in I°(¥ x o¥), where g is a continuous zero-mean
Gaussian process. Furthermore, the limiting covariance matrix of n/2(4 — 6;) attains the
semiparametric efficiency bound.

The proof is based on the likelihood equation and follows the arguments of van der Vaart
(1998, pp. 419-424). Let £.(8, 4) be the log-likelihood function from a single cluster, £ 4(6,
A) be the derivative of £,(0, 4) with respect to 0, and & (0, 4)[Hi] be the path-wise derivative
along the path Ak + eHy. We sometimes omit the arguments in these derivatives when 6 = 6
and A = 4., Let 7= be the empirical measure based on n i.i.d. observations, and 7 be its
expectation.

Let W = (hy, ..., hk) € o*. The likelihood equation for (4, 4) along the path (f+ev, 4+e)vd
4), where v € R and hy € BV [0, 7], is given by
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0=P,

K
V! Lo(0, A+ > L0, A) | [ld|.
k=1

To be specific,

Nik

- 1% lP(}(()l »0 ﬂ)
O-Pn[ OB ] ZP,,

f (DR (AN (D)+P1(O3:60, A) | [hed ]|

Since (6p, ) maximizes P[£.(6, 4)],
=P [V L0, Ap)| . 0=P| LiOo. Ao) | [mdAn]|. he €@, k=1.....K

These equations, combined with the likelihood equation for (6, 4), yield

n'2(P, - P)

K
v £4(6, ﬁ)+Z[k(a A) [ fhkdxk]
=1

_ nl/zp[ VIO A) _ v ¥olOib, o)
¥(0;:0, A) ¥(0i:60, Ao)
W06, AN [ludAe] WO, Aol [ xdAor]
¥(0;:6, A) ¥(Oi360, Ao) '

K

_ an/z

k=1

K
Define No= {(9’ A)16 ~ 90|+Zk:1 [|Ax - AOk”wo_ﬂ <50}, where dg is a small positive constant.
When n is large enough, (6, ) belongs to : with probability one. By Lemma 1 and the Donsker
Theorem,

o K
op(1)4n1 2@, - P) [v’ L0, Ao+ 2 L6, Ao) | | hdeOk]}
@k(O;;aﬁ)[fhkd’/{kl ¥ (01300, A0)| fhdeOk I]

¥(0,:0,A) ¥(Oi:00-A0) ¥(0;:0.A) - ¥(0i300.A0)

]

where 0p(1) represents some random element converging in probability to zero in (v x ).

vio, l]

Under (C6), the first term on the right-hand side of (7) is

n 12 {Zfov Zox(s)d(A — No)+v! Loo(6 — 90)} +0(7l 12[6 - Go|+n'"? Z“Ak - AO"I

k=1
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. Nk g Bem s o m )
The second term is Zk:l” {fohk(l)fl()k(tﬁ,A)dAk(t) fohk(y)UOk(tﬁo,&*’lo)dAOk(l)}. It
follows from (C6) that the above expression is

m=

K
—Zn'/z
k=1

_ K —~ —
Joh(® {U()k(‘(liy()»ﬂ())(ﬁ — o)+ Zlfgflokm(s, 1:60, Ao)d(Am — /\om)(S)} dAok(@)+ [ Onoi(t:600, A (Ax(t) — Aoi(1))

- K |~
+0 (n'/zlé) — Gol+n'? Y “Ak
k=1

K T pr K - T s
=- AZln”2 [(9 —60) [ oh(®moko(t:60, Ao)d Aok (1)+ Zlf o 1en=k)hn (Dm0m(1:60, Ao)+ [[G10km (5. 1:600. A0V $)AA0k(8)} AAn(t) = Ao (1))
(= m=

_ K
+0 (n”zlﬁ — Gol+n'2 Y ‘
k=1

Thus, the right-hand side of (7) can be written as

9
V[0s]

K K
—n 12 {Bl[v, w1 - 90)+Zfsz[v,‘W]d(/\k - /\ok)} +o [nl/zlg - 90|+'11/22“Ak ~ Aok
k=1 k=1

where (By, By, ..., Bok) are linear operators in R4 x {BV [0, ]}, and

K
Bilv, WI=v" oo(60, Ao)+ ) [ofutmora(t:o, Ao)dAow(),
k=1 (8)

K
Balv, W1=v! Zoi(s360, ﬂ0)+hk(f)'70k(t;9o,ﬂo)+2f(T)nomk(S, 1:60, Ap)hm($)dAok(s), k=1,....K.
m=1 (C)]

It follows from the above derivation that

- K 5
Bi[v,WI" v+ % [Bylv, WIWidAo

m=1

—d
T de

~ ~ K ~ ~
s:OP vT£g(00+8 v, ﬂ0+8f %% dﬂ0)+/\§‘1£k(00+8 v, ﬂ()+8f %% dﬂo)[fhkd/\()k] . 10

We can write (By, By, ..., Bog)[v, W] as

v v Z00(00, Ao+ L [ (Omoka(t:60, Ao)d Aoy () — v
no1(t:60, Ap) X h1 (1) .\ VT§01(1;00,ﬂo)+2;f=1foﬂ0m1(s‘,1;90,ﬂo)hm(S)dAOm(S)

Mok (1;909 -7(0) X hK (t) VTgoK(t;HO, ﬂO)"'Z/{-(: 1 f;n()ml((s, 1;9(), ﬂO)hm(S)dAOm(S)

We wish to prove that (B, By, ..., Bok) is invertible. As shown at the end of this section,
nok(t; Gg, A) <0, so that the first term of (Bq, By, ..., Bok) is an invertible operator. It follows
from Lemma 3 that the second term is a compact operator. Thus, (B1, By, ..., Bok) isa
Fredholm operator, and the invertibility of (B, ..., Bok) is equivalent to the operator being
one-to-one (Rudin (1973, pp. 99-103)). Suppose that B;[v, W] =0, ..., and Byk[v, W] =0. It
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K
g® {vT@— 00)+ ) [ d(Ak(t) - AOk(z»} =-n'2(P, - P)
k=1

Page 17

K
is easy to see from (10) that the derivative of P1v' La(60, 5“0)+Z 1o L0, Aol [hidAgil]
along the path (g + ev, 40 + g/ Wwd-4) is zero. That is, the information along this path is zero,

K
or VTLH(Ho,ﬂoHZk:llk(ﬁo,?lo) [fhdeOk] =0 almost surely. By (C7),v=0and W =0, so
that (Bq, B2y, ..., Bok) is one-to-one and invertible.

It follows from (7) that, for any (v, W) € vV x o~

K
n!l? {vT(?i— 00+ ) [ AR ~ Aom))}
k=1

=-n'2@,-P)

K
V' Ly(00, Ag)+ Z&(HO, Ap) [ fhdeOk]
k=1

)
V[0.7]

where (¥, hy, ..., h) = (By, Bay, ..., Ba) 2(v, hy, ..., hy). Since

K
+o0 [nl/Zl’H\_ Ool+ nl/ZZ“Ak — Aok
k=1

K

V'@ = o)+ ), [oDdRLD) = Agr()
k=1

>

= sup
VIOl (v.hy by JEVXQK

K
16— 6o+ Z“Xk = /\Ok|
k=1

we have

K K
n'2 30— o+ Y |[Ae— Aoel| b =0p(D+o| 02— ol 12 Y[Rk - Al
k=1 ol =1

V[0,7] ]

12,5 K~ _ _
Thus, 119 00|+Zk:1“[\k AOk”‘,[O.,]}_OP(l). Consequently,

K
;TLH(HO’ ﬂo)+Z[k(90, Ao) [fhdeOk]
k=1

We have proved that nY2(4- 6, = — 4:) converges weakly to a Gaussian process in [°(V x
%), By choosing h, = 0 for k = 1, ..., K, we see that v'd is an asymptotically linear estimator

&T = K . -~
of vT G with influence function v Lo(6o, ﬂo)+Zk:|£k(90, Aol [ hxdAoc], Since the influence
function lies in the space spanned by the score functions, 4 is an efficient estimator for 6.

It remains to verify that nq(t; 6, 4) < 0. Under (C6),

P | ¥iOis60, Ao) Hil (O30, Ao) | = [ {710x(s360, Ao)dHi(s). The choice of Hi(s) = I(s > 1)
yields W[Py(9:;6g,4)[1(- > )]/ (©:;60,4)] = nok(t; 8o, ). On the other hand, the score function
along the path Agy + el(- > t) with the other parameters fixed at their true values has zero
expectation. We expand this expectation to obtain
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Pe(Oisbo, ADIC 2 01| , .
4 (0100, Ao) == A (DdE [I(Rix()>0)N (1]/d1<0.

Thus, nok(t; 6o, ) <O0.

8. Information Matrix

Theorem 2 implies that the functional parameter 4 can be estimated at the same rate as the
Euclidean parameter 6. Thus, we may treat (1) as a parametric log-likelihood with 8 and the
jump sizes of Ay, k=1, ..., K, at the observed failure times as the parameters and estimate the
asymptotic covariance matrix of the NPMLEs for these parameters by inverting the information
matrix. This result is formally stated in Theorem 3. We impose an additional assumption.

(C8) There exists a neighborhood of (8, 4) such that for (9, 4) in this neighborhood, the first
and second derivatives of log P(¢:; 6, A) with respect to 6 and along the path Ay + ¢Hy with
respect to ¢ satisfy the inequality in (C4).

T T T .
Forany v € v and hy, ..., hx € 2, we consider the vector (vT,Z)l ,...,71),() , Where hy is the
vector consisting of the values of hy(:) at the observed failure times. Let &, be the negative
Hessian matrix of (1) with respect to 4 and the jump sizes of (A4, ..., Ak).

Theorem 3
Assume (C1)—(C8). Then &y, is invertible for large n, and
r T 2T j T -7 1 13 ) T L o
sup  [nOT Ry DTG R k) = AVar | a2 VT @ - 60+ Y [hkd(Ak - Aok)
veV.hi,...h€Q =1
in probability, where AVar denotes the asymptotic variance.
Proof
The proof is similar to that of Theorem 3 in Parner (1998); see also van der Vaart (1998, pp.
419-424). First, (10) implies that, forany v € v and hy, ..., hg € 2,
. . .. v Vv
Lo L L
_99 .m . [hidAo [hidAo . K
S : : , : = B hy, . )+ [Bav b, b hed Ao,
i’ : : k=1
La Lu Lix [hedAy, [hedA,,

where &£ pertains to the second-order derivative of the log-likelihood function.

On the right-hand side of (10), we replace P by 7. to obtain two new linear operators B,1 and
B2k Itis easy to show that B,1 and By,px converge uniformly to B, and By, respectively. Under
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(C8), the results of Lemma 1 apply to the second-order derivatives &£ and the operators (Bj,
B1, ..., Bok). By replacing g, Agx and 7 on both sides of (11) with 4, A, and -, we obtain

- N T o - ~ -
(V »hlv'--a hK)Iﬂ(v ’ hlv'--ahx) =V Bnl(v,h[,---,hK)+ZfB;12k(v,h1,---,hK)hdek"'Op(l)-
k=1

According to the proof of Theorem 2, (By, Byy, ..., Bok) is invertible, and so is (Bpg, ...,

s ~ K -~ ~ ~
B for large n. Note that V' Bai(vs A, .., hK)+Zk:lan2k("’ hi. ... hy)hid Ak can be written
r —T —T r =T >t T ) o .
as(v' ,hy,...,h )XB,(v', hy,..., h,) for some matrix &,. Therefore &, is invertible, and
S0 is \,,. Furthermore,

T —T —T T —T —r 1 T —T —T T —T -1 T
sup Vohy s h )LV hy o hy) =V Ry, h )B (VL Ry, )
veV.hy,...h€Q

— 0.

: - 2@ -6 )+ZK [hd(Ay — Agr)
According to Theorem 2, the asymptotic variance of 0 k=1 RO T 0k
is

1% 1%

Lo L.m Lf"( fl~11d1\01 ﬁudi\m

P —P

>

{Ig v +§;1:k [ [ deAOk]}2

Zkg 'El(l 'LKI( ~ -
fthAOK fthAOK

where (7, ﬁl, HK) is (B1, Ba1, ..., Bok) LV, hy, ..., hk ), which can be approximated by
(Bnt» Bn1, ---, Brok) "XV, hy, ..., hk). Hence, the asymptotic variance can be approximated
uniformly in v and hy’s by its empirical counterpart

T
T —)T _)'1‘ _1 _1 P _N)T _N)T A . .
v hyse s h B 1,8, (v, hys--.5 k) , which is further approximately by
A Y T i A 408
V ,A1s..., Mn Vi, Npseeey 1[{ .

9. Profile Likelihood

Theorem 4

Let pl,(0) be the profile log-likelihood function for 6, and assume (C1)—(C8). For any ¢, =
Op(n~*/2) and any vector v,

L(0+&,v) — 2pL,(0)+pl,(6 — &, -1
_ Pln(B+env) = 2pl,(O)+pli( 8)_}va2 N

ne?
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0p(+n' 2P, = P)| La60, Ao) | [hdio]| = = 02 [(B20, (A, ~ Agy+0,(n?] ¢ —90|)+0,,(n1/2||xé - Ao

Page 20

where 3 is the limiting covariance matrix of n/2(4 — 6,). Furthermore,
2 {Pl,,(’é\) - pln(HO)} _)d)(?{

We appeal to Theorem 1 of Murphy and van der Vaart (2000). Specifically, we construct the
least favorable submodel for 6y and verify all the conditions in their Theorem 1. For notational
simplicity, we assume that K = 1. It is straightforward to extend to K > 1.

It follows from the proof of Theorem 2 that
JoB2(0. Wi dAg=— E | Lan | [H*do, [hdA]|,

where B, stands for the operator (Byy, ..., Bok), and £ A a[H1, Ho] denotes the second-order
derivative of £ (6, A) with respect to A along the bi-directions H; and H,. On the other hand,

E|La| [idio| Lo| = - [ () LaLadAo(s),

where £} is the dual operator of £ 4 in L[0, z]. Thus, if we choose h such that
Ba(0, h)= — L5 Ly then

E [LA [ [ h*d/\oj L;] =-E [zAA [ [r*dN, [ hd./\O” )

By definition, fhdA is the least favorable direction for 6y and £,y — & 5 [[hd Ag] is the efficient
score function. Such an h exists since By(0, -) is invertible. In addition, h € BV [0, z]. Hence,

we can construct the least favorable submodel at (6, A) by e — (¢, A,) with dA, (6, A) ={1 +
(e —0) - h} dA. Clearly, Ay (8, A) = A and

0L(g, A\y)
oe

=Ly~ La| [hdio.

£=00,0=0,A=Ag

If 0 —p g and A maximizes the objective function with @ replaced by 5, we can use the
arguments in the proof of Theorem 1 to show that Aj is consistent. In the likelihood equation

for Aj, we can use the arguments for the linearization of (7) to show that, uniformly in h €

Q
1

The arguments for proving the invertibility of (B1, By) show that h +— B,(0, h) is invertible.
Thus,
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IR, = ol| =0, 6 ~ok+n).
V[0.7]

By condition (C6), we obtain the no-bias condition, i.e.,

E [ L(g, A,) i

\ lzo,,q 9 —6ol+n/).
de &=00.0=0,A=A,

We have verified conditions (8)—(11) of Murphy and van der Vaart (2000).

Condition (C4), together with Lemma 1, implies that the class

0L(e,A\,)
de

tle = 6ol <0, (6, A) € N()}

is P-Donsker and that the functions in the class are continuous at (6y, Ag) almost surely, while
condition (C8) implies that the class

o> A
FLE N, | _ g0l <80, 6, A) € No
0e?

is P-Glivenko-Cantelli and is bounded in L,(P). Therefore, all the conditions in Murphy and
van der Vaart (2000) hold, so that the desired results follows from their Theorem 1.

10. Applications

In this section, we apply the general results to the problems described in Section 2. We identify
a set of conditions for each problem under which regularity conditions (C1)—(C8) are satisfied
so that the desired asymptotic properties hold. These applications not only provide the
theoretical justifications for the work of Zeng and Lin (2007), but also illustrate how the general
theory can be applied to specific problems.

10.1. Transformation Models With Random Effects for Dependent Failure Times

We assume the following conditions.
(D1) The parameter value (Bg, yOT)T belongs to the interior of a compact set ® in RY, and
Ap(n>0forall t€[0, . k=1, ..., K.

(D2) With probability one, Zji(-) and iik|(-) are in BV [0, 7] and are left-continuous with
bounded left-and right-derivatives in [0, z].

(D3) With probability one, P (Cii > t|Zik1) > dg > 0 for some constant dg.

(D4) With probability one, nj is bounded by some integer ng. In addition, E[Njx.(z)] < .
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(D5) Fork =1, ..., K, Gk(x) is four-times differentiable such that G,(0) = 0, G;(x)>0, and for
any integer m >0 and any sequence 0 < X1 < ... <Xy <Y,

m

l—l{(1+X1)G,:(X1)}EXP{—Gk(y)} < pg (14y) ™o
=1

for some constants ugk and xgx > 0. In addition, there exists a constant pgi such that

{|G;; <x>|+|G<3><x>|+|G<4><x)|}
sup 7 : <oo
X G (x)(1+x) o

(D6) For any constant a; > 0,

supE Ubexp {al(N;‘k,(T)+1)|b|} f(b;y)db] <00,
y

and there exists a constant a, > 0 such that for any y,

by
S(byy)

Fbyy)
f(byy)

f(by)
f(byy)

< O(Dexpiaa(1 +[b))}.

(D7) Consider two types of events: k € £ indicates that event k is recurrent and k € £ indicates
that event k is survival time. For k € &: U &=, if there exist ¢y (t) and v such that with probability
1, c(t) + vTZ;(t) = 0 for k € x1 and ¢y (0) + v'Z;jy(0) = 0 for k € «=, then v = 0.

(D8) If there exist constants ay and agy such that for any subset L, C {1, ..., nj} and for any
wy and ty,

Njk

I, T1 Texpliowb” Zua(ta)} T1 T1 explar+b” Zu(0)} f(b:y)db

k€7<[ =1 kGWQIELL
Nk L~ o~
=[, T1 Iexpliowb” Zua(t)} T1 T1 explaoe+b” Zui(0)} f(b3yo)db,
keKI=1 keI leLly

then y = yo. In addition, if for k € - and for any t,
[,ex0 {=Gu( [ 0 anisn} rbivordb=[ exo {~Gi( foe #Odnasn)} Fbiyorae,

then A1 = A,. Furthermore, if for some vector v and constant o,
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1k € 50 [, 240 £ (biyo) vk € K [ e 24O fbiyo) = f (biyo) idb=0,

thenv =0.

(D1)-(D4) are standard conditions for this type of problem. We show that (D5) holds for all
commonly used transformations. We first consider the class of logarithmic transformations G
(X)=plog(l +rx) (p >0, r=>0).Clearly,

11 {14506 0} exp (-G < [T {#52) vy
< {or(1+1/r)}™ min (1, r) p(l+y) P,

Thus, in (D5), we can set uq to pr(1 + 1/r) min(1, r)™” and xq to p. We can verify the polynomial
bounds for G”(x)/G(x), G®)(x)/G(x) and G*)(x)/G(x) by direct calculations. We next consider
the class of Box-Cox transformations G(x) = {(1 + x)* — 1}/p. Clearly,

lfll {(1+Xk)G,(Xk)} exp {-G(y)} < kﬁl(l+xk)/’expl —{d+yy =1} /pl

< (1+y)™exp {—=(1+y)’/2p} exp {-(1+y)’/2p} exp(1/p)
< {4p+exp(1/p)}"(1+y)7P.

Thus, we can set xq to 4p + exp(1/p) and xg to p. The polynomial bounds for G” (x)/G(x),

G (x)/G(x) and G™(x)/G(x) hold naturally. Finally, we consider the linear transformation
model: H(T) =8 T Z + &, where ¢ is standard normal. In this case, G(x) = — log{1 — ®(log X)},
where @ is the standard normal distribution function. We claim that there exists a constant
vo > 0 such that ¢ (x) — vo{1 — ®X)}1 + [X]). If x <0, then p(x) < 27) V2 <2(2n) V2 {1 - @
)@+ |x]). If x>0,

@(x)

~ _ -1/2
[y vy e e COMNE

By the L’Hospital rule,

L0 g ()
lim =275~ = lim 2r52=0,

p(x) p(0)x 1 _
\hfolo[l <I>(‘)l(1+\)_}Ln(}o—w(w(lﬂ)ﬂl <1><~>1—\1£{.L<1+‘>/x {1- d)(x)]/_w(_\»)—l-

Therefore, p(X)/[{1 — ©(X)}(1 + x)] is bounded for x > 0. Without loss of generality, assume
thaty > 1. Clearly,

m [ (x)@(log (X)) / Xk
1_[ {(1+xk)G (xk)} exp (-G} = 1 { 1 — O(log(xx))

k=1 k=

} {1 - @(logy)}.
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Since (1 + x) ¢(log(x))/[x{1 — ®(log x)}] is bounded when x is close to zero and it is bounded
by a multiplier of (1 + log x) when x is close to o, (1 + X)p(log(x))/x{1 — ®(log X)} < vp1 +
vo2 log(1 + x) for two constants vp; and vgy. Therefore,

m

[ [{(+506" o exp (-G} < bror-+voalog(143))" (1 - Bllogy))
k=1

Since 1 — ®(x) < 2V/2 exp(—x2/4) when x > 0, the above expression is bounded by

2124y +vpplog(1+y)} "exp{—(logy)*/4}
< vo3{vor+voalog(1+y)} exp{—voa(log(1+y))*}

< VE(+y) /2,

where all the v’s are positive constants. The polynomial bounds for G” (x)/G(x), G®)(x)/G(x)
and G (x)/G(x) follow from the fact that p(x)={1 — ® (X)} < O(1 + |x]).

Condition (D6) pertains to the tail property of the density function for the random effects f(b;
y). For survival data, N;.(t) < 1, so that the first half of condition (D6) is tantamount to that
the moment generating function of b exists everywhere. This condition holds naturally when
b has a compact support or a Gaussian density tail. The second half of condition (D6) clearly
holds for Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability and non-singularity
of the Fisher information matrix. In most applications, these conditions are tantamount to the
linear independence of covariates and the unique parametrization of the random-effects
distribution. Specifically, if Z;y is time-independent, then the second condition in (D8) is not
necessary; if Z; does not depend on k and I, and b has a normal distribution, then the other
two conditions in (D8) hold as well provided that Zjy is linearly independent with positive
probability; if Z; is time-independent and ¥ is non-empty (i.e., at least one event is recurrent),
then (D8) can be replaced by the linear independence of Zjy for some k € £: and the unique
parametrization of f (b; ).

We wish to show that (D1)-(D8) imply (C1)—(C8), so that the desired asymptotic properties
hold. Conditions (C1) and (C2) follow naturally from (D1)-(D4). To verify (C3), we note that

K nj

W06, A=, | || | Qa8 A0 fBiy)db,

k=l I=1
where

T TS, ’ dN;, (0
Qu(biB, Ak):H{RikI(’)eﬂ Ziw()+b Z,kl(t)Gk(qikl(l))}

I<T

exp{=Gi(gin (M)},

and qi(1)= || ;Rikl(s)exp{ﬂrlvzikl(S)"'bTiikl(S)}dAk(S).
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%Qikl(b;& Ak)’ = ‘Qik/(b;ﬂ, Ax) I {fRfkl(f)Zikl(f)dek,(fHfRikl(f)

e Qua (b3, AL Hi | =

< explO(+N; (OB x { [Rua)

Page 25

If | Akllv [0,7] are bounded, then Qix(biB, Ar) = exp{O(1)N;,(NH (bl < By) for any fixed
constant Bg such that P(Jb| < Bg) > 0. Thus, ¥(9:; 6, A) is bounded from below by
exp{O(1)N;,,(1)}, so that the second half of (C3) holds. It follows from (D5) that

T . dN (1) N (1) —dN* —K
Q,-k1<b;ﬁ,Ak)s0(1)]_[{R,-k/<t)e” Z'*””} st | [0 +qaa @y NP1+ g ()},

I<T 1<t

since exp{8T Zix(s) + bT Zin(s)} > exp{—O(L + |b|)}, we have
1+qin (1) 2 e "M {14 [Ry ()dAk(s)}, s0 that

N (2) . o —dN, (D)
Qua(bsp, Ap) < Oy " PPN [T+ [ Ra(s)dne(s)] |

I<T

1+ [ Ri(dAk(s)]

Thus, the first half of (C3) holds as well.

We now verify (C4). Under (D5),

IQu(b:B. Al < exp{O1+N,(T)Ibl}

1
” d T T
G, (qiLI(I))fUR,L[(.Y)("B Zigt (10" Zikt ) Z, (5)d A(5)

’ ’ T 7 N2 BT 7 (6
7 dN;‘“(t)} - G, (qiu(1)) {foR,-k/(s)e/’IZ"’“ M Zi(5) 7, (5)d A
G, (qu(1)

< exp {O(1+N;, (D) (1+[b)} ,

” ! T T
G/ () [ Ria()e” 7 21 iy 5)

Qini(b:f, Ay) X

, dN;‘;(,(l)} - G]:(qik]('r)) { 1 (T)Rik/(s)eBTZ"“(“')”’]i’“(“')de(S)}]‘
Gy (qin (D)
< exp {O(1+N,(D)(1+[b))

{ JRiu(®)

Thus, it follows from the Mean-Value Theorem that

QB8 A QuaB, M| = | & QuabiB, M| 18D - B2
< exp{O(1+N;, ()IbIBD - g2,

Qb8 AL) = Qua(hiB, AP = |7 Quab8, ADIAL = AL
ﬂ)eﬁ*”'zm(.s->+17"z,-ms>d( A(k h_ Af’)(s) dN’,(1)+ f(r) Rig()eB " Zm+b" Zi(s) g Ai h_ A;?))(S)
< explO(1+N;, (D)1 +bD} x { [RiaIA (1) = AP OlAN; 0+ [JIAL (5) = AP (9)lds}

}

where the last inequality follows from integration by parts and the fact that Zjj(t) and iik|(t)
have bounded variations. It then follows from (D6) that [¥ (©:; 8, ) — ¥ (0:; 9@, 42| is
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nok(s36, A)=E

nok(s:6, A) —

Page 26

bounded by the right-hand side of the inequality in (C4). By the same arguments, we can verify
the bounds for the other three terms in (C4).

To verify (C6), we calculate that

M- 1H”"" Qini(b3B, Am) f(b5y) [ G, (qu (1))
St T QB3 A) fB:)db |71 G (g (1)

Iy

AN (1) - GZ(qfk,(r))} Ri(s)eF' 2ulo'Zus)gp.

For (0, A) in a neighborhood of (6p, ),

K
Onox

0
nok (5360, Ap) — UOA(Y 6o, Ao)" (6 — 6o) — ,9A

(5 60’ ﬂO)[A - AOm

m=1

[|H 90|+Z”Am AO’"”\,[().T]].

Thus, for the second equation in (C6), 7okm(S, t; G, ) is obtained from the derivative of gy
with respect to Ap, along the direction Ay, — Agm, and ngkg is the derivative of #qi with respect
to . Likewise, we can obtain the first equation in (C6). It is straightforward to verify the
Lipschitz continuity of 7okm.

The verification of (C8) is similar to that of (C4), relying on the explicit expressions of ¥ »y
(9:; 8, 4) and the first and second derivatives of W(9:; 6, 4. + ¢#{) with respect to e.

It remains to verify the two identifiability conditions under (D7) and (D8). To verify (C5),
suppose that (8, v, Aq, ..., Ag) yields the same likelihood as (g, yo, A1, ---» Akg)- That is,

K ni K nix
fl_[ l—l/lk(l YNt DQ(b3B, Ar) f (b;)’)db=fl_[ l_l/lko(t)de" OQi(b80, Ako) f(bsy0)db.
b k=1 I=1 bk=11=1

We perform the following operations on both sides sequentially fork=1, ..., Kand I =1
Njk.
(a) If the kth type of event pertains to survival time, for the Ith subject of this type of event, the

first equation is obtained with Ry (t) = 1 and dN;;,(1)=0 for any t <<, i.e., the subject does not
experience any event in [0, z]. The second equation is obtained by integrating t from ty; to z on

both sides under the scenario that Rjy(t) = 1 and N;,(s) has a jump at t, i.e, the subject
experiences the event at time ty;. We then take the difference between these two equations. In

the resulting equation, the terms (1) Q(b:B, Ar) @and A4 (1) Quy(b:B, Axo) are
replaced by exp(-Gi(['exp{B’ Ziu(s)+b" Zi(s)}dA)} and
exp{~Gi( [ explBh Zi(5)+b" Zi($)dAro)}, respectively.

(b) If the kth type of event is recurrent, for the Ith subject of this type of event, we let Rjy(t) =

’ ’
1 and let N, (1) have jumps at sy, S, ..., Smand *1°-*+>% 7 for any arbitrary (m + m’) times in
’ ’

[0, 7]. We integrate sy, ..., S from O to t,; and integrate 1>~ -> 5 7 from 0 to . In the obtained

m

equation, 4,(H) i (b:B, Ay) is replaced by {Gy(diki(tk))}™ {Gk(Giki(z))}™ on both sides.
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Note that m and m’ are arbitrary. We then multiple both sides by {(iwi)™m!}/m’! and sum
overm, m’' =0, 1, ... On both sides of the resulting equation, the terms associated with k and

| are replaced by exp{iwkGk(Qiki(t))}-

After these sequential operations, we obtain

Nik N

L] 1 JexptionGu@imaon | 1] Jexpt-Gugman fbsydb
keK) =1 kTG I1=1

ik ik

=1, [ |[ [expliwnGeammnt | | [ [expt-Gequottanfb:vordp.

kek, I=1 k%, 1=1

For survival time, we can let any subject from the njy subjects have ty = 0, which results in

njk Nk 1
L] [ [exptionGuamtmon | ][ | z-+exet- Gk(q,wkz))}] [(bsy)db
ke, I=1 ek, I=1 Sk
Nik ik 1
—fbl—”_[exp 1w Gr(gikio(tk))} 1_[ l_[ ;+€XP{ GA(Q;AIO(’I\I))}J J(b:yo)db,
ke, I=1 kek =1 | &

where & is any positive variable.

The above expression implies that {G(qjk (1)), k € £} as a function of

Nk

111

]\'6‘7(3 =1

1
—+3XP{-Gk(6]ik1(tk1))}l f(byy)
&

has the same distribution as {Gy(qikio(t)), k € ~:} as a function of

s

n- T[]

kek I=1

—+exp{ Gk(q,uo(fu))}] S(biyo);

so this is true between {d; (1)} and {qiko(t)} because of the one-to-one mapping. Thus, the

distributions of { logq,/,\,(t)} and { logq,’uo(t)} should also agree and they have the same
expectation. Now let ty; = O for k € k-, Since E[b{] = E[b,] = 0, we obtain

logAi(D)+B" Zyy(1)=log Ay (1)+B1 Zy(1) for k € £, The above arguments also yield

Nik Nk

LI [exot Ziaan [ [ ]

kekKy I1=1 k€T 1=1

—+6Xp{ Gk(flzkl(tkl))}] J(byy)db

Nik Nk

=/, l_[ l_[exp{b Zin(tx)} I_[ l—[

keKy I=1 kel 1=1

—+CXP =Gr(qirio(tr))} ] Sf(byyo)db.
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We compare the coefficients of & for k € 2. This yields that for any subset Ly C {1, ...,
Nik}

Nk

P l_[ l_[exp{lw,\,b Zik(ta)} l_[ HGXP ~Gi(qia (D))} f(biy)db
kekK, =1 keI leLy
Nk

=/, l_[ l—[exp{iwklb]éikl(lkl)} l_[ 1—[eXP{—Gk(qiklo(l))}f(b;)’o)db-

keKy I=1 keI leLy

We differentiate the above expression with respect to ty at 0 for k € £=. It then follows from
(D8) that log 24(0) — log Aok(0) + (8 — Bo)T Zii(0) = 0 and y = yo. Thus, (D7) implies that g =
Po and 2y (t) = Agk(t) for k € £1. On the other hand, for any fixed k € x=, we let ty = 0 if K’ #k

or I'# 1. Thus, [y exp{~ Gk(diki(tx)) }f (0; yo)db = fb exp{- Gk(Qo.kl(tkl))}f (b; yo)db. Therefore,
Ay = Agk for k € £: according to (D8).

To verify (C7), we write v = (vg, v,). We perform operations (a) and (b) on the score equation
in (C7). The arguments used in proving the identifiability yield

Nk

(bry0) &, :
P Z leuf\Iu(fu)GA(q,uo(sz)) = Z ZA1A1(1A1)+ / f(bVo )Vy‘ Xexp { Z lelek(qikm(fkl)) = Z ZGk(C]ikIO(tkl))} S (byy0)db=0,

ke I=1 keI le Ly ke I=1 keI le Ly

(12)

where A ()= f O(hA(S)+Zzu(S) Vﬁ)eﬂ B Zuo+b Zu(5) dAI\O(S)(Ij\(qkaO(l)) We differentiate (12)
Wlth respect to ti twice at 0 for k € k1. Comparison of the coefficients for wy, yields |,
e2Ziki0) f/(p; )T vy db 0. We also differentiate (12) with respect to ty at 0 for k € k2. Thus,
for each k € %2 and I = Nk,

i l,(hk(0)+Zik1(O)T"ﬂ)ebrz’*’(o)f (bsy0)db= — G;(O) ) ,,ebrz‘“(o)f /(b:yo)Tvydb. It then follows from
(D8) that v, = 0. For fixed kg and lo, with the fact of v, = 0, the score equation under operations
(a) and (b), where in (a) we let dN;,,(1)=0 for any t < z and in (b) we let m = 0 whenever k #
ko or I # I, becomes a homogeneous integral equation for hy, (t) + Zikgl, 7 V. The equation
has a trivial solution, so hy, (t) + Zikglg 7 V4= 0. Since ko and |l are arbitrary, (D7) implies
that hy = 0 and vg= 0.

Remark 2—For survival time, (D5) is required to hold only form=0and m = 1.
Remark 3—The above results do not apply directly to the proportional hazards model with
gamma frailty because (D6) does not hold when b has a gamma distribution. It is

mathematically convenient to handle this model because the marginal hazard function has an
explicit form. The likelihood is a special case of ours with
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n;

PO, N=[ || [Yuep™ O] [0+0N: @)™ {146 [(Y: BN W)

j=lizr 1<t

}—(l/(i+N,u(T))

in the notation of Parner (1998). Clearly, Y satisfies (C3) when 8 > 0. The other conditions
can be verified in the same manner as before.

Remark 4—Our theory does not cover the case in which the true parameter values lie on the
boundary of ®. It is delicate to deal with the boundary problem. One possible solution is to
follow the idea of Parner (1998) by extending the definition of the likelihood function outside
® and verifying (C2)—(C8) for the extended likelihood function.

Remark 5—We have assumed known transformations. We may allow Gy to belong to a
parametric family of distributions, say Gg(; ¢), where ¢ is a parameter in a compact set. Then
@ contains ¢. Our results and proofs apply to this situation if (D5) holds uniformly in ¢ and the
two identifiability conditions are satisfied.

10.2. Joint Models for Repeated Measures and Failure Times

For the (parametric) generalized linear mixed model, the likelihood can be viewed as a special
case of that of Section 10.1 except that there is an additional parameter o in f(y|x; b). We assume
that (D1)-(D8) hold but with (D6) replaced by the following condition.

(D6") For any constant a; > 0,

n;

[,exp{aiN; @+ Dbl [ ] 71501 (bsy)ab

=1

SupE
ayy

<00,

and there exists a constant a, > 0 such that for any y and a,

fy(k)(b;y)
f(byy)

fx(yk)(yiﬂxij, b)
fYijlXij, b)

3
Z < r3(0))exp {ax(1+|b])}
k=1

almost surely, where r3(©:) is a random variable in Ly(P).

Under these conditions, the desired asymptotic properties follow from the arguments of Section
10.1.

Under the semiparametric linear transformation model for continuous repeated measures, the
likelihood is in the form of that of Section 2.2 with K = 2 and nj, = nj, where the time to the
second type of failure is defined by Yj; (assuming without loss of generality that Yjj > 0). Thus,
if we regard Yj; as a right-censored observation when it is greater than a very large value (i.e.,
the upper limit of detection), then the asymptotic results given in Section 10.1 hold. When such
an upper limit does not exist, the estimator for A can be unbounded when sample size goes to
infinity. Then our proof of Theorem 1 does not apply.
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¥(0;:6, A)=]_[[R,-(z)e/’72f<'>+y’zf{1+ iR Z0anc)” " x 6’

[1

I<T

10.3. Transformation Models for Counting Processes
We verify (C1)-(C8) under the following conditions.

(E1) The parameter value (37, y%)" belongs to the interior of a compact set ® in RY, and
Ay(ty>0for all t € [0, 7].

(E2) With probability one, P (C > 7Z) > dp > 0 for some constant dj.

(E3) Condition (D5) holds.

(E4) With probability one, Z(') and Zare in BV [0, 7] and are left-continuous with bounded
left- and right-derivatives in [0, 1].

(E5) If yT Zis equal to a constant with probability one, then y = 0. In addition, if 4T Z(t) = ¢
(t) for a deterministic function c(t) with probability one, then g = 0.

In this case,

{1+ﬂ)Ri(S)eﬁTZiMdA(S)}ﬂ | {1+f (T)I"i(s)e"rz'“’dA(S)}ey :

-~ 1\AN; (1)
7 i
] exp [—G

I<t

By (D5),

= 17 TS, dN;‘(z)
(Ri(t)eﬂrz"(’”yrzi{H [ (r)R;(s)eﬂTZ"(“')dA(.s')}ey G {1+ :)R,v(s)eﬁTZf(”dA(s)]ey ZD GXP(—G

{1+f:;Ri(S)e/jTZ,'(.S‘)dA(S)}gY z,-]]

T35
—-dN —ke?" Zi

<y 11+ [ R A dN ) Ol TR EOdN(s))

for some constant x1. Thus, (C3) follows from the boundedness of y" ii. We can verify the
other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that N; (¢) has jumps at X, X1, ..., Xy, for
some integer m. After integrating both sides of the equation in (C5) over xy, ..., Xm from 0 to
rand integrating x from x to z, we obtain

{l+f;e”52fu>d/\o(l)]ey$%f
X [G
fo
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Multiplying both sides of this equation by 1/m! and summing over m > 0, we obtain

T BT 8752"
G| {1+ [0 % Pdny(1)

-G

- 5 zi
{1+ [ geﬂéz,-md/\o(t)}eyo ]

=G

T BTZ(1) g A % ol
{14 [ #0dn (1))

-G

T e}/*’lvii
{143 #0dn" (1)) ] :
Setting N; (1)=0 in the likelihood function yields

TQ,. *T”l
G {1+ f(’)eﬁgzxﬁd/\o(z)}em =G {l+ f(’)eﬁ*rz,-(od/\*(t)}ey “

[

Thus

T
e Zi

{1+fgeﬁ(§zf(r>dA0(;)}emz,-:{1+fgeﬁ*rz,(/)dA*(t)]

Then A" (t) is absolutely continuous with respect to t. Differentiating both sides with respect
to x and letting x = 0 yield A* (0) > 0. When x converges to zero, the left-hand side is

" Zi 78 Zi . . -
[exp{B] Z:(0)}0(0)x]° " 1o(x*”") while the right-hand side is

*T
er
]

[exp{B*T Z:(0)}4* (0)x Zi+()( Al ) Thus, v{ Z=y""Z:. By (E5), yo = 7 *. Furthermore,
eﬁng(f)dAO(,)/d;:eB*"Zi(r>dA*(;)/d;. It follows from (E5) that S = ﬁ* and Ag = A"

To verify (C7), we assume that the score function along (8o + ¢hg, yo + eh,, dAg + ehdAo) is
&

(e Zi R
zero. Equivalently, if we let go(t)={1+ﬂ)‘ﬂgz'(‘s)d/\o(-¥) , then we obtain
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0= [h(OR:()dN; (1)
+[Ri(0) {hTZ;(t)+h;fZ} dN; (1)

R Zi-1) 1 BYZi) (1T 7 (o E : *
A [ oans | [e9% R Zi(5)+h(s)ldAo(s)| dN; (1)

+ [Ri(t)h? Zie" Zilog {1+ [ ;eﬂgzmd/\o(s)} dN: (1)
+ [Ri0) 9D g0(nh] Z;6 Zog {1+ [ 07 dNo(5)] dN; (1)
G (go(0)

TS B T
02 f OB Zi(syrh(s))dols)
-y -
1+ [ L% dno(s)

+fR (t)(l (cO(f))g ( )

AN’ (1)
(go(1)

-G (go(T))go(T)hI Zie" Zilog {1+, ;eﬁng("‘)d/\o(s)}

/ eygi,- T
-G (80(1)go(7) Fo LN Zi(5)+h(s)}d Ao (s).
’ ’ +f eﬁozf(‘)dAo(s)f ’

We multiply both sides by the likelihood function and let N} (r) have jumps at times ty, tp, ...,
tm. We integrate t; fromOtotand tj, 1 <I<m from 0 to z. By multiplying the resulting equation
by 1/(m — k)! and summing over m=1, 2, ..., we obtain

[oeAZ OB Zi(s)+h($)} dAols) _0
1+ [1 2O dN(s) B

nl Zilog {1+ [(#%0) dno(s)) +

Differentiation with respect to t then yields

[o5% (W Zi(sy+h(s)) diols)
1+f FoZOdN(s)

Y Zi+ (b} Z0)+h(n)} -

Combining the above two equations, we have

[o@ % WS Zi(s)+h(s)) dAo(s) | ]
+ —
1+ [ o7 d Ao (s) log{1+ [ ? %) dAq(s)}

{hy Zi(t)+h(1)} —

This is a homogeneous integral equation for hng(t)+h(t) and has zero solution. That is,
hy Zi(0)+h(1)=0, 1t follows from (E5) that h(t) = 0 and h= 0. Thus, h, = 0.

11. Concluding Remarks

We have developed a general asymptotic theory for the NPMLESs with right censored data and
shown that this theory applies to the models considered by Zeng and Lin (2007). This theory
can also be used to establish the desired asymptotic properties for other existing semiparametric
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models, particularly the models mentioned in Sections 7.1-7.4 of Zeng and Lin (2007), as well
as those that may be invented in the future. It is much simpler to verify the set of sufficient
conditions identified in this paper than to prove the asymptotic results from scratch. Conditions
(C1) and (C2) are standard conditions required in all censored-data regression; (C3), (C4) and
(C6) are certain smoothness conditions that can be verified directly, as demonstrated in Section
10; (C5) and (C7) are two minimal identifiability conditions that need to be verified for any
specific problem.

Although the basic structures of our proofs mimic those of Murphy (1994; 1995) and Parner
(1998), our technical arguments are innovative and substantially more difficult because we
deal with a very general form of likelihood function rather than specific problems. In all
previous work, verification of the Donsker property relies on the specific expressions of the
functions, whereas our Lemma 1 provides a universal way to verify this property. In verifying
the invertibility of the information operator, all previous work requires an explicit expression
of the information operator that is identified as the sum of an invertible operator and a compact
operator, whereas we allow a very generic form of information operator obtained from the
likelihood function (1). Murphy and van der Vaart (2001) stated that the consistency of
NPMLESs needs to be proved on a case-by-case basis; however, we were able to prove the
consistency for a very general likelihood function. Although we borrowed the partitioning idea
of Murphy (1994), our technical arguments are very different because of the generic form of
the likelihood.

In some applications, the failure times are subject to left truncation in addition to right
censoring. To accommodate general censoring/truncation patterns, we define N(t) as the
number of events observed by time t and R(t) as the at-risk indicator at time t, reflecting both
left truncation and right censoring. Assume that the truncation time has positive mass at time
0, so that (C2) is satisfied. Then all the results continue to hold.

This paper is concerned with the theoretical aspect of the NPMLEs and complements the work
of Zeng and Lin (2007). The interested readers are referred to the latter for the calculations of
the NPMLEs and for the use of the semiparametric regression models and NPMLEs in practice.
The latter also provides rationale for the kind of model considered in Sections 2 and 10 of this
paper. Although the latter contains some theoretical elements, this paper presents the theory
(especially the regularity conditions) in a more rigorous manner and provides all the proofs.
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