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Abstract
We establish a general asymptotic theory for nonparametric maximum likelihood estimation in
semiparametric regression models with right censored data. We identify a set of regularity conditions
under which the nonparametric maximum likelihood estimators are consistent, asymptotically
normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by
the inverse information matrix or the profile likelihood method. The general theory allows one to
obtain the desired asymptotic properties of the nonparametric maximum likelihood estimators for
any specific problem by verifying a set of conditions rather than by proving technical results from
first principles. We demonstrate the usefulness of this powerful theory through a variety of examples.
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1. Introduction
Semiparametric regression models are highly useful in investigating the effects of covariates
on potentially censored responses (e.g. failure times and repeated measures) in longitudinal
studies. It is desirable to analyze such models by the nonparametric maximum likelihood
approach, which generally yields consistent, asymptotically normal, and asymptotically
efficient estimators. It is technically difficult to prove the asymptotic properties of the
nonparametric maximum likelihood estimators (NPMLEs). Thus far, rigorous proofs exist only
in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with right censored
data. The theory is very encompassing in that it pertains to a generic form of likelihood rather
than specific models. We prove that, under a set of mild regularity conditions, the NPMLEs
are consistent, asymptotically normal, and asymptotically efficient with a limiting covariance
matrix that can be consistently estimated by the inverse information matrix or the profile
likelihood method.

This paper is the technical companion to Zeng and Lin (2007), in which several classes of
models were proposed to unify and extend existing semiparametric regression models. The
likelihoods for those models can all be written in the general form considered in this paper.
For each class of models in Zeng and Lin (2007), we identify a set of conditions under which
the regularity conditions for the general theory hold so that desired asymptotic properties are
ensured.
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2. Some Semiparametric Models
We describe briefly the three kinds of models considered in Zeng and Lin (2007). We assume
that the censoring mechanism satisfies coarsening at random (Heitjan and Rubin (1991)).

2.1. Transformation Models for Counting Processes
Let N*(t) record the number of events that the subject has experienced by time t, and let Z(·)
denote the corresponding covariate processes. Zeng and Lin (2007) proposed the following
class of transformation models for the cumulative intensity function of N*(t)

where G is a continuously differentiable and strictly increasing function with G′(1) > 0 and G
(∞) = ∞, R*(·) is an indicator process, Z ̃ is a subset of Z, β and γ are regression parameters, and
Λ(·) is an unspecified increasing function. The data consist of {Ni(t), Ri(t), Zi(t); t ∈ [0, τ]} (i
= 1, …, n), where , Ci is the censoring time, and τ is a
finite constant. The likelihood is

where dNi(t) = Ni(t) − Ni(t−).

2.2. Transformation Models With Random Effects for Dependent Failure Times

For i = 1, …, n, k = 1, …, K and l = 1, …, nik, let  denote the number of the kth type of
event experienced by the lth individual in the ith cluster, and Zikl(·) the corresponding covariate
processes. Zeng and Lin (2007) assumed that the cumulative intensity for  takes the form

where Gk, Λk, and  are analogous to G, Λ, and R* of Section 2.1, Z ̃ikl is a subset of Zikl plus
the unit component, and bi is a vector of random effects with density f (b; γ). Let Cikl, Nikl, and
Rikl be defined analogously to Ci, Ni, and Ri of Section 2.1. The likelihood is
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2.3. Joint Models for Repeated Measures and Failure Times
For i = 1, …, n and j = 1, …, ni, let Yij be the response variable at time tij for the ith subject,
and Xij the corresponding covariates. We assume that (Yi1, …, Yini) follows a generalized linear
mixed model with density fy(y|Xij; bi), where bi is a set of random effects with density f (b; γ).
We define  and Zi as in Section 2.1, and assume that

where Z ̃i is a subset of Zi plus the unit component, ψ is a vector of unknown constants, and
v1 ◦ v2 is the component-wise product of two vectors v1 and v2. The likelihood is

For continuous measures, Zeng and Lin (2007) proposed the semiparametric linear mixed
model

where H ̃ is an unknown increasing function with H ̃(−∞) = −∞, H ̃(∞) = ∞, and H ̃(0) = 0, α is a
set of regression parameters, X̃ij is typically a subset of Xij, and εij (i = 1, …, n; j = 1, …, nij)
are independent with density fε. Write Λ̃(y) = eH ̃(y). The likelihood is

3. Nonparametric Maximum Likelihood Estimation
All the likelihood functions given in Section 2 can be expressed as

where , θ is a d-vector of regression parameters and variance components,  =
(Λ1, …, ΛK),  pertains to the observation on the ith cluster, and Ψ is a functional of , θ,
and . For nonparametric maximum likelihood estimation, we allow  to be discontinuous
with jumps at the observed failure times and maximize the modified likelihood function
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where Λk{t} denotes the jump size of the monotone function Λk at t. Equivalently, we maximize
the logarithm of the above function

(1)

We wish to establish an asymptotic theory for the resulting NPMLEs θ ̂ and .

4. Regularity Conditions
We impose the following conditions on the model and data structures.

(C1) The true value θ0 lies in the interior of a compact set Θ, and the true functions Λ0k are

continuously differentiable in [0, τ] with , k = 1, …, K.

(C2) With probability one, P(infs∈[0,t] Rik·(s) ≥ 1|Zikl, l = 1, …, nik) > δ0 > 0 for all t ∈ [0, τ],

where .

(C3) There exist a constant c1 > 0 and a random variable r1( ) > 0 such that E[log r1( )] <
∞ and, for any θ ∈ Θ and any finite Λ1, …, ΛK,

almost surely, where . In addition, for any constant c2,

where ||h||V[0,τ] is the total variation of h(·) in [0, τ], and r2( ), which may depend on c2, is a
finite random variable with E[|log r2( )|] < ∞.

We require certain smoothness of Ψ. Let Ψ̇θ denote the derivative of Ψ( ; θ, ) with respect
to θ, and let Ψ̇k[Hk] denote the derivative of Ψ( ; θ, ) along the path (Λk + εHk), where Hk
belongs to the set of functions in which Λk + εHk is increasing with bounded total variation.

(C4) For any (θ(1), θ(2)) ∈ Θ, and  with
uniformly bounded total variations, there exist a random variable ℱ( ) ∈ L4(P) and K
stochastic processes μik(t; ) ∈ L6(P), k = 1, …, K, such that
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In addition, μik(s; ) is non-decreasing, and E[ℱ( )μik(s; )] is left-continuous with
uniformly bounded left- and right-derivatives for any s ∈ [0, τ]. Here, the right-derivative for
a function f(x) is defined as limh→0+(f (x + h) − f (x+))/h.

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If

almost surely, then θ* = θ0 and  for t ∈ [0, τ], k = 1, …, K.

The next assumption is more technical and will be used in proving the weak convergence of
the NPM-LEs. For any fixed (θ, ) in a small neighborhood of (θ0, ) in Rd × {BV[0, τ]}K,
where BV[0, τ] denotes the space of functions with bounded total variations in [0, τ], (C4)
implies that the linear functional

is continuous from BV[0, τ] to R. Thus, there exists a bounded function η0k(s; θ, ) such that

(C6) There exist functions ζ0k(s; θ0, ) ∈ BV[0, τ], k = 1, …, K, and a matrix ζ0θ(θ0, ) such
that

In addition, for k = 1, …, K,
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where η0km is a bounded bivariate function and η0kθ is a d-dimensional bounded function.
Furthermore, there exists a constant c3 such that |η0km(s, t1; θ0, ) − η0km(s, t2; θ0, )| ≤ c3|
t1 − t2| for any s ∈ [0, τ] and any t1, t2 ∈ [0, τ].

The final assumption ensures that the Fisher information matrix along any finite-dimensional
sub-model is non-singular.

(C7) (Second Identifiability Condition) If with probability one,

for some constant vector v ∈ Rd and hk ∈ BV[0, τ], k = 1, …, K, then v = 0 and hk = 0 for k =
1, …, K.

Remark 1
(C1)–(C2) are standard assumptions in any analysis of censored data. (C3) pertains to the model
structure, and (C4) and (C6) essentially impose the smoothness of this structure. Although they
appear technical, these conditions are easy to verify in practice. (C5) and (C7) usually require
some work to verify, but can be translated to simple conditions in specific cases.

5. Some Useful Lemmas
Lemma 1

For any constant c, the following classes of functions are P-Donsker:

Proof
We only prove that ℱ3k is P-Donsker; the proofs for the other two classes are similar. For k =
1, …, K, we define a measure μ̃k in [0, τ] such that, for any Borel set A ⊂ [0, τ],

Zeng and Lin Page 6

Stat Sin. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Condition (C4) implies that μ̃k([0, τ]) ≤ ||ℱ( )||L4(P)||μik(τ; ) − μik(0; )||L6(P). Thus, μ̃k is a
finite measure. According to Theorem 2.7.5 of van der Vaart and Wellner (1996), the bracket
covering number for any bounded set in BV[0, τ] is of order exp{O(1/ε)} in L2(μ̃k), k = 1, …,
K. Thus, we can construct Nε ≡ (1/ε)d × exp{O(K/ε)} × exp{O(1/ε)} brackets for the set of
(θ, , H) in ℱ3k, denoted by

such that  and

Any (θ, , H) must belong to one of these brackets. Obviously, the bracket functions

cover all the functions in ℱ3k. Since

where c is a constant depending on K, the L2(P)-distance within each bracket pair is O(ε).
Hence, the bracket entropy integral of ℱ3k is finite, so that ℱ3k is P-Donsker.

Lemma 2
For any bounded random variable (θ, Λ) in Θ × BV[0, τ], the function g(s) ≡ |E[Ψ̇k( ; θ, )
[I(· ≥ s)]/Ψ ( ; θ, )]| is left-continuous and satisfies that, for any s ∈ [0, τ], there exist δs, cs
> 0 such that |g(s̃) − g(s)| ≤ cs|s̃ − s| for s̃ ∈ (s − δs, s) and |g(s̃) − g(s+)| ≤ cs|s̃ − s| for s̃ ∈ (s, s
+ δs).

Proof
Since μik(t; ) is non-decreasing in t, it follows from (C4) that for any s1 and s2,
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Thus, g(s) is in BV[0, τ] and is left-continuous. In addition, the left- and right-differentiability
of E[ℱ( )μik(s; )] in (C4) implies that the second part of the lemma holds.

Lemma 3

For any h(s) ∈ BV[0, τ], the linear map  is a bounded compact
operator from BV[0, τ] to BV[0, τ].

Proof
It is clear from (C6) that this function maps any bounded set in BV[0, τ] into a bounded set
consisting of Lipschitz-continuous functions. The result thus follows since any bounded and
Lipschitz-continuous functions consist of a totally bounded set in BV[0, τ] and the linear map
is continuous.

6. Consistency
The following theorem states the consistency of θ ̂ and Λ̂k, k = 1, …, K.

Theorem 1

Under (C1)–(C5), .

Proof
We fix a random sample in the probability space and assume that (C1)–(C5) hold for this
sample. The set of such samples has probability one. We prove the result for this fixed sample.
The entire proof consists of three steps.

Step 1
We show that the NPMLEs exist or, equivalently, Λ ̂k(τ) < ∞ (k = 1, …, K) for large n. By (C3),
the likelihood function is bounded by

If Λk(τ) = ∞ for some k, then (C2) implies that, with probability one, inft∈[0,τ] Rik·(t) ≥ 1 for
some i, so that the above function is equal to zero. Thus, the maximum of the likelihood function
can only be attained for Λ̂k(τ) < ∞.

Step 2
We show that lim supn Λ ̂k(τ) < ∞ almost surely, i.e., Λ̂k(τ) is bounded uniformly for all large
n. By differentiating the objective function (1) with respect to Λk{Yikl} for which

 and Rikl(Yikl) = 1, we note that Λ̂k{Yikl} satisfies
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In other words,

To prove the boundedness of Λ ̂k(τ), we construct another step function Λ̃k with jumps only at
the Yikl for which and Rikl(Yikl) = 1,

that is,

We show that Λ̃k uniformly converges to Λ0k. By Lemma 1,

(2)

uniformly in s ∈ [0, τ]. Since the score function along the path Λk = Λ0k + εI(· ≥ s) with the
other parameters fixed at their true values has zero expectation,

(3)

where δ(t = s) is the Dirac function. The submodel is not in the parameter space; however, we
can always choose a sequence of submodels in the parameter space which approximates this
submodel. Thus, the uniform limit of Λ̃k(t) is

That is, Λ̃k(t) uniformly converges to Λ0k(t).

Zeng and Lin Page 9

Stat Sin. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We next show that the difference between the log-likelihood functions evaluated at (θ ̂, ) and
(θ0, ), where  = (Λ̃1, …, Λ̃K), is negative eventually if some Λ ̂k(τ) diverges, which will
induce a contradiction. The key arguments are based on (C3). Clearly, n−1ℒn(θ ̂, ) ≥
n−1ℒn(θ0, ). It follows from (2) and (3) that nΛ̃k{t} converges to

, and is thus uniformly bounded away from zero, where t is an
observed failure time. Therefore,

which is bounded away from − ∞ when n is large. That is,

where O(1) denotes a finite constant. On the other hand, (C3) implies that

where . Thus,

(4)

We now show that the right-hand side diverges to − ∞ if Λ ̂k(τ) diverges for some k. The proof
is based on the partitioning idea of Murphy (1994). Specifically, we construct a sequence t0k
= τ > t1k > t2k > … in the following manner. First, we define

where R̄ik·(t) = infs∈[0,t] Rik·(s). Clearly, such a t1k exists, and the above inequality becomes an
equality if t1k > 0. If t1k > 0, we choose a small constant ε0 such that
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and define

Such a t2k exists. If t2k > 0, the inequality is an equality, and we define

We continue this process. The sequence eventually stops at some tNk,k = 0. If this is not true,
then the sequence is infinite and strictly decreases to some t* ≥ 0. Since all the inequalities are
equalities, we sum all the equations except the first one to obtain

which implies that

This contradicts the choice of ε0. Thus, the sequence stops at some tNk,k = 0.

If we write Iqk = [tq+1,k, tqk), then the right-hand side of (4) can be bounded by

(5)

Since log x is a concave function,

Zeng and Lin Page 11

Stat Sin. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Therefore, (5) can be further bounded by

By (C2),

so that
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According to the construction of the tqk’s, the coefficients in front of log Λ ̂k(tqk) are all negative
when n is large enough. Therefore, the corresponding terms cannot diverge to ∞. However, if
Λ ̂k(τ) → ∞, the first term in the summation goes to −∞. We conclude that for all n large enough,
Λ ̂k(τ) < ∞. Thus, lim supn Λ ̂k(τ) < ∞.

Step 3
We obtain the consistency result from (C5). Since Λ ̂k is bounded and monotone, Λ ̂k is weakly
compact. Helly’s Selection Theorem implies that, for any subsequence, we can always choose
a further subsequence such that Λ̂k point-wise converges to some monotone function .
Without loss of generality, we also assume that θ ̂ converges to some θ*. The consistency will
hold if we can show that  and θ* = θ0. Since Λ0k is continuous, the weak convergence
of Λ ̂k to Λ0k can be strengthened to the uniform convergence of Λ̂k to Λ0k in [0, τ].

Note that

(6)

Clearly, Λ̂k is absolutely continuous with respect to Λ̃k. By condition (C3),

since Λ̂k converges to  and is bounded and {ℱ( )μjk(t; ): t ∈ [0, τ]} is a P-Glivenko-
Cantelli class. By Lemma 1 and the Glivenko-Cantelli Theorem,

The numerator and denominator in the integrand of (6) converge uniformly to deterministic
functions, denoted by g1k(s) and g2k(s), respectively. It follows from (3) that

 is bounded away from zero. We claim that
inf s∈[0,τ] g2k(s) > 0. If this is not true, then there exists some s* ∈ [0, τ] such that g2k(s*+) = 0
or g2k(s*) = 0. By Lemma 2, there exist δ* and c* such that |g2k(s)| ≤ c*|s − s*| for s ∈ (s*, s* +
δ *) or s ∈ (s* − δ *, s*]. On the other hand, for any ε > 0,
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Taking limits on both sides, we obtain . Let ε → 0. By the

Monotone Convergence Theorem, , or

. This is a contradiction since the right-hand side is
infinite. The contradiction implies that the limit g2k(s) is uniformly positive. We can take limits

on both sides of (6) to obtain . Thus,  is also absolutely
continuous with respect to Λ0k and . Since Λ0k(t) is differentiable with

respect to t, so is . Write . The forgoing arguments show that dΛ ̂k(t)/dΛ̃k(t)
uniformly converges to , which is uniformly positive in [0, τ].

It follows from the inequality n−1ℒn(θ ̂, ) ≥ n−1ℒn(θ0, ) that

In view of Lemma 1, the Glivenko-Cantelli Theorem and the uniform convergence of dΛ ̂k/
dΛ̃k, taking limits on both sides of the above inequality yields

The left-hand side is the negative Kullback-Leibler distance of the density indexed by (θ*,
). Thus, (C5) entails that θ* = θ0 and Λ* = Λ0.

7. Weak Convergence and Asymptotic Efficiency
Define  = {v ∈ Rd, |v| ≤ 1}, and  = {h(t): ||h(t)||V [0,τ] ≤ 1 }. We identify (θ ̂ − θ0,  − ) as
a random element in l∞(  × ) through the definition

.

Theorem 2
Under (C1)–(C7), n1/2(θ ̂ − θ0,  − ) →d ℊ in l∞(  × ), where ℊ is a continuous zero-mean
Gaussian process. Furthermore, the limiting covariance matrix of n1/2(θ ̂ − θ0) attains the
semiparametric efficiency bound.

Proof
The proof is based on the likelihood equation and follows the arguments of van der Vaart
(1998, pp. 419–424). Let ℒ(θ, ) be the log-likelihood function from a single cluster, ℒ̇θ(θ,

) be the derivative of ℒ(θ, ) with respect to θ, and ℒ̇k(θ, )[Hk] be the path-wise derivative
along the path Λk + εHk. We sometimes omit the arguments in these derivatives when θ = θ0
and  = . Let  be the empirical measure based on n i.i.d. observations, and  be its
expectation.

Let  = (h1, …, hK) ∈ . The likelihood equation for (θ ̂, ) along the path (θ ̂+εv, +ε∫ d
), where v ∈ Rd and hk ∈ BV [0, τ], is given by
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To be specific,

Since (θ0, ) maximizes [ℒ(θ, )],

These equations, combined with the likelihood equation for (θ ̂, ), yield

Define , where δ0 is a small positive constant.
When n is large enough, (θ ̂, ) belongs to  with probability one. By Lemma 1 and the Donsker
Theorem,

(7)

where op(1) represents some random element converging in probability to zero in l∞(  × ).

Under (C6), the first term on the right-hand side of (7) is
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The second term is . It
follows from (C6) that the above expression is

Thus, the right-hand side of (7) can be written as

where (B1, B21, …, B2K) are linear operators in Rd × {BV [0, τ]}K, and

(8)

(9)

It follows from the above derivation that

(10)

We can write (B1, B21, …, B2K)[v, ] as

We wish to prove that (B1, B21, …, B2K) is invertible. As shown at the end of this section,
η0k(t; θ0, ) < 0, so that the first term of (B1, B21, …, B2K) is an invertible operator. It follows
from Lemma 3 that the second term is a compact operator. Thus, (B1, B21, …, B2K) is a
Fredholm operator, and the invertibility of (B1, …, B2K) is equivalent to the operator being
one-to-one (Rudin (1973, pp. 99–103)). Suppose that B1[v, ] = 0, …, and B2K[v, ] = 0. It
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is easy to see from (10) that the derivative of 
along the path (θ0 + εv,  + ε∫ d ) is zero. That is, the information along this path is zero,

or  almost surely. By (C7), v = 0 and  = 0, so
that (B1, B21, …, B2K) is one-to-one and invertible.

It follows from (7) that, for any (v, ) ∈  × ,

where (ṽ, h̃1, …, h̃K) = (B1, B21, …, B2K)−1(v, h1, …, hK). Since

we have

Thus, . Consequently,

We have proved that n1/2(θ ̂− θ0,  − ) converges weakly to a Gaussian process in l∞(  ×
). By choosing hk = 0 for k = 1, …, K, we see that vTθ ̂ is an asymptotically linear estimator

of vT θ0 with influence function . Since the influence
function lies in the space spanned by the score functions, θ ̂ is an efficient estimator for θ0.

It remains to verify that η0k(t; θ0, ) < 0. Under (C6),

. The choice of Hk(s) = I(s ≥ t)
yields [Ψ̇k( ;θ0, )[I(· ≥ t)]/Ψ( ;θ0, )] = η0k(t;θ0, ). On the other hand, the score function
along the path Λ0k + εI(· ≥ t) with the other parameters fixed at their true values has zero
expectation. We expand this expectation to obtain
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Thus, η0k(t; θ0, ) < 0.

8. Information Matrix
Theorem 2 implies that the functional parameter  can be estimated at the same rate as the
Euclidean parameter θ. Thus, we may treat (1) as a parametric log-likelihood with θ and the
jump sizes of Λk, k = 1, …, K, at the observed failure times as the parameters and estimate the
asymptotic covariance matrix of the NPMLEs for these parameters by inverting the information
matrix. This result is formally stated in Theorem 3. We impose an additional assumption.

(C8) There exists a neighborhood of (θ0, ) such that for (θ, ) in this neighborhood, the first
and second derivatives of log Ψ( ; θ, ) with respect to θ and along the path Λk + εHk with
respect to ε satisfy the inequality in (C4).

For any v ∈  and h1, …, hK ∈ , we consider the vector , where h⃗k is the
vector consisting of the values of hk(·) at the observed failure times. Let ℐn be the negative
Hessian matrix of (1) with respect to θ ̂ and the jump sizes of (Λ̂1, …, Λ ̂K).

Theorem 3
Assume (C1)–(C8). Then ℐn is invertible for large n, and

in probability, where AVar denotes the asymptotic variance.

Proof
The proof is similar to that of Theorem 3 in Parner (1998); see also van der Vaart (1998, pp.
419–424). First, (10) implies that, for any v ∈  and h1, …, hK ∈ ,

(11)

where ℒ̈ pertains to the second-order derivative of the log-likelihood function.

On the right-hand side of (10), we replace  by  to obtain two new linear operators Bn1 and
Bn2k. It is easy to show that Bn1 and Bn2k converge uniformly to B1 and B2k, respectively. Under
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(C8), the results of Lemma 1 apply to the second-order derivatives ℒ̈ and the operators (B1,
B21, …, B2K). By replacing θ0, Λ0k and  on both sides of (11) with θ ̂, Λ̂0k and , we obtain

According to the proof of Theorem 2, (B1, B21, …, B2K) is invertible, and so is (Bn1, …,

Bn2k) for large n. Note that  can be written

as  for some matrix ℬn. Therefore ℬn is invertible, and
so is ℐn. Furthermore,

According to Theorem 2, the asymptotic variance of 
is

where (ṽ, h̃1, …, h̃K) is (B1, B21, …, B2K)−1(v, h1, …, hK ), which can be approximated by
(Bn1, Bn21, …, Bn2K)−1(v, h1, …, hK). Hence, the asymptotic variance can be approximated
uniformly in v and hk’s by its empirical counterpart

, which is further approximately by

.

9. Profile Likelihood
Theorem 4

Let pln(θ) be the profile log-likelihood function for θ, and assume (C1)–(C8). For any εn =
Op(n−1/2) and any vector v,
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where Σ is the limiting covariance matrix of n1/2(θ ̂ − θ0). Furthermore,

.

Proof
We appeal to Theorem 1 of Murphy and van der Vaart (2000). Specifically, we construct the
least favorable submodel for θ0 and verify all the conditions in their Theorem 1. For notational
simplicity, we assume that K = 1. It is straightforward to extend to K > 1.

It follows from the proof of Theorem 2 that

where B2 stands for the operator (B21, …, B2K), and ℒ̈ΛΛ[H1, H2] denotes the second-order
derivative of ℒ(θ, A) with respect to Λ along the bi-directions H1 and H2. On the other hand,

where  is the dual operator of ℒΛ in L2[0, τ]. Thus, if we choose h such that
, then

By definition, ∫hdΛ0 is the least favorable direction for θ0 and ℒ̇θ − ℒ̇Λ [∫hd Λ0] is the efficient
score function. Such an h exists since B2(0, ·) is invertible. In addition, h ∈ BV [0, τ]. Hence,
we can construct the least favorable submodel at (θ, Λ) by ε ↦ (ε, Λε) with dΛε (θ, Λ) = {1 +
(ε − θ) · h} dΛ. Clearly, Λθ (θ, Λ) = Λ and

If θ̃ →p θ0 and Λ̂θ̃ maximizes the objective function with θ ̂ replaced by θ̃, we can use the
arguments in the proof of Theorem 1 to show that Λ ̂θ̃ is consistent. In the likelihood equation
for Λ ̂θ̃, we can use the arguments for the linearization of (7) to show that, uniformly in h ∈

,

The arguments for proving the invertibility of (B1, B2) show that h ↦ B2(0, h) is invertible.
Thus,
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By condition (C6), we obtain the no-bias condition, i.e.,

We have verified conditions (8)–(11) of Murphy and van der Vaart (2000).

Condition (C4), together with Lemma 1, implies that the class

is P-Donsker and that the functions in the class are continuous at (θ0, Λ0) almost surely, while
condition (C8) implies that the class

is P-Glivenko-Cantelli and is bounded in L2(P). Therefore, all the conditions in Murphy and
van der Vaart (2000) hold, so that the desired results follows from their Theorem 1.

10. Applications
In this section, we apply the general results to the problems described in Section 2. We identify
a set of conditions for each problem under which regularity conditions (C1)–(C8) are satisfied
so that the desired asymptotic properties hold. These applications not only provide the
theoretical justifications for the work of Zeng and Lin (2007), but also illustrate how the general
theory can be applied to specific problems.

10.1. Transformation Models With Random Effects for Dependent Failure Times
We assume the following conditions.

(D1) The parameter value  belongs to the interior of a compact set Θ in Rd, and

 for all t ∈ [0, τ], k = 1, …, K.

(D2) With probability one, Zikl(·) and Z ̃ikl(·) are in BV [0, τ] and are left-continuous with
bounded left-and right-derivatives in [0, τ].

(D3) With probability one, P (Cikl ≥ τ|Zikl) > δ0 > 0 for some constant δ0.

(D4) With probability one, nik is bounded by some integer n0. In addition, E[Nik·(τ)] < ∞.
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(D5) For k = 1, …, K, Gk(x) is four-times differentiable such that Gk(0) = 0, , and for
any integer m ≥0 and any sequence 0 < x1 < … < xm ≤ y,

for some constants μ0k and κ0k > 0. In addition, there exists a constant ρ0k such that

(D6) For any constant a1 > 0,

and there exists a constant a2 > 0 such that for any γ,

(D7) Consider two types of events: k ∈  indicates that event k is recurrent and k ∈  indicates
that event k is survival time. For k ∈  ∪ , if there exist ck(t) and v such that with probability
1, ck(t) + vTZikl(t) = 0 for k ∈  and ck(0) + vTZikl(0) = 0 for k ∈ , then v = 0.

(D8) If there exist constants αk and α0k such that for any subset Lk ⊂ {1, …, nik} and for any
ωkl and tkl,

then γ = γ0. In addition, if for k ∈  and for any t,

then Λ1 = Λ2. Furthermore, if for some vector v and constant αk,
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then v = 0.

(D1)–(D4) are standard conditions for this type of problem. We show that (D5) holds for all
commonly used transformations. We first consider the class of logarithmic transformations G
(x) = ρ log(1 + rx) (ρ > 0, r > 0). Clearly,

Thus, in (D5), we can set μ0 to ρr(1 + 1/r) min(1, r)−ρ and κ0 to ρ. We can verify the polynomial
bounds for G″(x)/G(x), G(3)(x)/G(x) and G(4)(x)/G(x) by direct calculations. We next consider
the class of Box-Cox transformations G(x) = {(1 + x)ρ − 1}/ρ. Clearly,

Thus, we can set μ0 to 4ρ + exp(1/ρ) and κ0 to ρ. The polynomial bounds for G″ (x)/G(x),
G(3)(x)/G(x) and G(4)(x)/G(x) hold naturally. Finally, we consider the linear transformation
model: H(T) = β T Z + ε, where ε is standard normal. In this case, G(x) = − log{1 − Φ(log x)},
where Φ is the standard normal distribution function. We claim that there exists a constant
ν0 > 0 such that φ (x) − ν0{1 − Φ(x)}(1 + |x|). If x < 0, then φ(x) ≤ (2π)−1/2 ≤ 2(2π)−1/2 {1 − Φ
(x)}(1 + |x|). If x ≥ 0,

By the L’Hospital rule,

Therefore, φ(x)/[{1 − Φ(x)}(1 + x)] is bounded for x ≥ 0. Without loss of generality, assume
that y > 1. Clearly,
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Since (1 + x) φ(log(x))/[x{1 − Φ(log x)}] is bounded when x is close to zero and it is bounded
by a multiplier of (1 + log x) when x is close to ∞, (1 + x)φ(log(x))/x{1 − Φ(log x)} ≤ ν01 +
ν02 log(1 + x) for two constants ν01 and ν02. Therefore,

Since 1 − Φ(x) ≤ 21/2 exp(−x2/4) when x > 0, the above expression is bounded by

where all the ν’s are positive constants. The polynomial bounds for G″ (x)/G(x), G(3)(x)/G(x)
and G(4)(x)/G(x) follow from the fact that φ(x)={1 − Φ (x)} ≤ O(1 + |x|).

Condition (D6) pertains to the tail property of the density function for the random effects f(b;
γ). For survival data, , so that the first half of condition (D6) is tantamount to that
the moment generating function of b exists everywhere. This condition holds naturally when
b has a compact support or a Gaussian density tail. The second half of condition (D6) clearly
holds for Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability and non-singularity
of the Fisher information matrix. In most applications, these conditions are tantamount to the
linear independence of covariates and the unique parametrization of the random-effects
distribution. Specifically, if Z ̃ikl is time-independent, then the second condition in (D8) is not
necessary; if Z ̃ikl does not depend on k and l, and b has a normal distribution, then the other
two conditions in (D8) hold as well provided that Z ̃ikl is linearly independent with positive
probability; if Z ̃ikl is time-independent and  is non-empty (i.e., at least one event is recurrent),
then (D8) can be replaced by the linear independence of Z ̃ikl for some k ∈  and the unique
parametrization of f (b; γ).

We wish to show that (D1)–(D8) imply (C1)–(C8), so that the desired asymptotic properties
hold. Conditions (C1) and (C2) follow naturally from (D1)–(D4). To verify (C3), we note that

where

and .
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If ||Λk||V [0,τ] are bounded, then  for any fixed
constant B0 such that P(|b| ≤ B0) > 0. Thus, Ψ( ; θ, ) is bounded from below by

, so that the second half of (C3) holds. It follows from (D5) that

Since exp{βT Zikl(s) + bT Z ̃ikl(s)} ≥ exp{−O(1 + |b|)}, we have

, so that

Thus, the first half of (C3) holds as well.

We now verify (C4). Under (D5),

Thus, it follows from the Mean-Value Theorem that

where the last inequality follows from integration by parts and the fact that Zikl(t) and Z ̃ikl(t)
have bounded variations. It then follows from (D6) that |Ψ ( ; θ(1), ) − Ψ ( ; θ(2), )| is
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bounded by the right-hand side of the inequality in (C4). By the same arguments, we can verify
the bounds for the other three terms in (C4).

To verify (C6), we calculate that

For (θ, ) in a neighborhood of (θ0, ),

Thus, for the second equation in (C6), η0km(s, t; θ0, ) is obtained from the derivative of η0k
with respect to Λm along the direction Λm − Λ0m, and η0kθ is the derivative of η0k with respect
to θ. Likewise, we can obtain the first equation in (C6). It is straightforward to verify the
Lipschitz continuity of η0km.

The verification of (C8) is similar to that of (C4), relying on the explicit expressions of Ψ̈ θθ
( ; θ, ) and the first and second derivatives of Ψ( ; θ,  + εℋ) with respect to ε.

It remains to verify the two identifiability conditions under (D7) and (D8). To verify (C5),
suppose that (β, γ, Λ1, …, Λk) yields the same likelihood as (β0, γ0, Λ10, …, Λk0). That is,

We perform the following operations on both sides sequentially for k = 1, …, K and l = 1, …,
nik.

(a) If the kth type of event pertains to survival time, for the lth subject of this type of event, the
first equation is obtained with Rikl(t) = 1 and  for any t ≤ τ, i.e., the subject does not
experience any event in [0, τ]. The second equation is obtained by integrating t from tkl to τ on
both sides under the scenario that Rikl(t) = 1 and  has a jump at t, i.e, the subject
experiences the event at time tkl. We then take the difference between these two equations. In
the resulting equation, the terms  and  are

replaced by  and

, respectively.

(b) If the kth type of event is recurrent, for the lth subject of this type of event, we let Rikl(t) =

1 and let  have jumps at s1, s2, …, sm and  for any arbitrary (m + m′) times in

[0, τ]. We integrate s1, …, sm from 0 to tkl and integrate  from 0 to τ. In the obtained
equation,  is replaced by {Gk(qikl(tkl))}m {Gk(qikl(τ))}m′ on both sides.
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Note that m and m′ are arbitrary. We then multiple both sides by {(iωkl)m/m!}/m′! and sum
over m, m′ = 0, 1, … On both sides of the resulting equation, the terms associated with k and
l are replaced by exp{iωklGk(qikl(tkl))}.

After these sequential operations, we obtain

For survival time, we can let any subject from the nik subjects have tkl = 0, which results in

where ξkl is any positive variable.

The above expression implies that {Gk(qikl(t)), k ∈ } as a function of

has the same distribution as {Gk(qikl0(t)), k ∈ } as a function of

so this is true between {qikl(t)} and {qikl0(t)} because of the one-to-one mapping. Thus, the

distributions of { } and { } should also agree and they have the same
expectation. Now let tkl = 0 for k ∈ . Since E[b1] = E[b2] = 0, we obtain

 for k ∈ . The above arguments also yield
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We compare the coefficients of ξkl for k ∈ . This yields that for any subset Lk ⊂ {1, …,
nik},

We differentiate the above expression with respect to tkl at 0 for k ∈ . It then follows from
(D8) that log λk(0) − log λ0k(0) + (β − β0)T Zikl(0) = 0 and γ = γ0. Thus, (D7) implies that β =
β0 and λk(t) = λ0k(t) for k ∈ . On the other hand, for any fixed k ∈ , we let tk′l′ = 0 if k′ ≠ k
or l′ ≠ l. Thus, ∫b exp{− Gk(qikl(tkl))}f (b; γ0)db = ∫b exp{− Gk(q0ikl(tkl))}f (b; γ0)db. Therefore,
Λk = Λ0k for k ∈  according to (D8).

To verify (C7), we write v = (vβ, vγ). We perform operations (a) and (b) on the score equation
in (C7). The arguments used in proving the identifiability yield

(12)

where . We differentiate (12)
with respect to tkl twice at 0 for k ∈ . Comparison of the coefficients for ωkl yields ∫b
e2bTZ ̃ikl(0) f′(b; γ0)T vγdb = 0. We also differentiate (12) with respect to tkl at 0 for k ∈ . Thus,
for each k ∈  and l = 1, …, nik,

. It then follows from
(D8) that vγ = 0. For fixed k0 and l0, with the fact of vγ = 0, the score equation under operations
(a) and (b), where in (a) we let  for any t ≤ τ and in (b) we let m = 0 whenever k ≠
k0 or l ≠ l0, becomes a homogeneous integral equation for hk0 (t) + Zik0l0 (t)T vβ. The equation
has a trivial solution, so hk0 (t) + Zik0l0 (t)T vβ= 0. Since k0 and l0 are arbitrary, (D7) implies
that hk = 0 and vβ= 0.

Remark 2—For survival time, (D5) is required to hold only for m = 0 and m = 1.

Remark 3—The above results do not apply directly to the proportional hazards model with
gamma frailty because (D6) does not hold when b has a gamma distribution. It is
mathematically convenient to handle this model because the marginal hazard function has an
explicit form. The likelihood is a special case of ours with
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in the notation of Parner (1998). Clearly, Ψ satisfies (C3) when θ > 0. The other conditions
can be verified in the same manner as before.

Remark 4—Our theory does not cover the case in which the true parameter values lie on the
boundary of Θ. It is delicate to deal with the boundary problem. One possible solution is to
follow the idea of Parner (1998) by extending the definition of the likelihood function outside
Θ and verifying (C2)–(C8) for the extended likelihood function.

Remark 5—We have assumed known transformations. We may allow Gk to belong to a
parametric family of distributions, say Gk(·; φ), where φ is a parameter in a compact set. Then
θ contains φ. Our results and proofs apply to this situation if (D5) holds uniformly in φ and the
two identifiability conditions are satisfied.

10.2. Joint Models for Repeated Measures and Failure Times
For the (parametric) generalized linear mixed model, the likelihood can be viewed as a special
case of that of Section 10.1 except that there is an additional parameter α in f(y|x; b). We assume
that (D1)–(D8) hold but with (D6) replaced by the following condition.

(D6′) For any constant a1 > 0,

and there exists a constant a2 > 0 such that for any γ and α,

almost surely, where r3( ) is a random variable in L2(P).

Under these conditions, the desired asymptotic properties follow from the arguments of Section
10.1.

Under the semiparametric linear transformation model for continuous repeated measures, the
likelihood is in the form of that of Section 2.2 with K = 2 and ni2 = ni, where the time to the
second type of failure is defined by Yij (assuming without loss of generality that Yij ≥ 0). Thus,
if we regard Yij as a right-censored observation when it is greater than a very large value (i.e.,
the upper limit of detection), then the asymptotic results given in Section 10.1 hold. When such
an upper limit does not exist, the estimator for Λ̃ can be unbounded when sample size goes to
infinity. Then our proof of Theorem 1 does not apply.
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10.3. Transformation Models for Counting Processes
We verify (C1)–(C8) under the following conditions.

(E1) The parameter value  belongs to the interior of a compact set Θ in Rd, and

 for all t ∈ [0, τ].

(E2) With probability one, P (C ≥ τ|Z) > δ0 > 0 for some constant δ0.

(E3) Condition (D5) holds.

(E4) With probability one, Z(·) and Z ̃ are in BV [0, τ] and are left-continuous with bounded
left- and right-derivatives in [0, τ].

(E5) If γT Z ̃ is equal to a constant with probability one, then γ = 0. In addition, if βT Z(t) = c
(t) for a deterministic function c(t) with probability one, then β = 0.

In this case,

By (D5),

for some constant μ1. Thus, (C3) follows from the boundedness of γT Z ̃i. We can verify the
other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that  has jumps at x, x1, …, xm for
some integer m. After integrating both sides of the equation in (C5) over x1, …, xm from 0 to
τ and integrating x from x to τ, we obtain
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Multiplying both sides of this equation by 1/m! and summing over m ≥ 0, we obtain

Setting  in the likelihood function yields

Thus

Then Λ* (t) is absolutely continuous with respect to t. Differentiating both sides with respect
to x and letting x = 0 yield λ* (0) > 0. When x converges to zero, the left-hand side is

 while the right-hand side is

. Thus, . By (E5), γ0 = γ *. Furthermore,
. It follows from (E5) that β0 = β* and Λ0 = Λ*.

To verify (C7), we assume that the score function along (β0 + εhβ, γ0 + εhγ, dΛ0 + εhdΛ0) is

zero. Equivalently, if we let , then we obtain
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We multiply both sides by the likelihood function and let  have jumps at times t1, t2, …,
tm. We integrate t1 from 0 to t and tl, 1 < l ≤ m from 0 to τ. By multiplying the resulting equation
by 1/(m − k)! and summing over m = 1, 2, …, we obtain

Differentiation with respect to t then yields

Combining the above two equations, we have

This is a homogeneous integral equation for  and has zero solution. That is,

. It follows from (E5) that h(t) = 0 and hβ= 0. Thus, hγ = 0.

11. Concluding Remarks
We have developed a general asymptotic theory for the NPMLEs with right censored data and
shown that this theory applies to the models considered by Zeng and Lin (2007). This theory
can also be used to establish the desired asymptotic properties for other existing semiparametric
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models, particularly the models mentioned in Sections 7.1–7.4 of Zeng and Lin (2007), as well
as those that may be invented in the future. It is much simpler to verify the set of sufficient
conditions identified in this paper than to prove the asymptotic results from scratch. Conditions
(C1) and (C2) are standard conditions required in all censored-data regression; (C3), (C4) and
(C6) are certain smoothness conditions that can be verified directly, as demonstrated in Section
10; (C5) and (C7) are two minimal identifiability conditions that need to be verified for any
specific problem.

Although the basic structures of our proofs mimic those of Murphy (1994; 1995) and Parner
(1998), our technical arguments are innovative and substantially more difficult because we
deal with a very general form of likelihood function rather than specific problems. In all
previous work, verification of the Donsker property relies on the specific expressions of the
functions, whereas our Lemma 1 provides a universal way to verify this property. In verifying
the invertibility of the information operator, all previous work requires an explicit expression
of the information operator that is identified as the sum of an invertible operator and a compact
operator, whereas we allow a very generic form of information operator obtained from the
likelihood function (1). Murphy and van der Vaart (2001) stated that the consistency of
NPMLEs needs to be proved on a case-by-case basis; however, we were able to prove the
consistency for a very general likelihood function. Although we borrowed the partitioning idea
of Murphy (1994), our technical arguments are very different because of the generic form of
the likelihood.

In some applications, the failure times are subject to left truncation in addition to right
censoring. To accommodate general censoring/truncation patterns, we define N(t) as the
number of events observed by time t and R(t) as the at-risk indicator at time t, reflecting both
left truncation and right censoring. Assume that the truncation time has positive mass at time
0, so that (C2) is satisfied. Then all the results continue to hold.

This paper is concerned with the theoretical aspect of the NPMLEs and complements the work
of Zeng and Lin (2007). The interested readers are referred to the latter for the calculations of
the NPMLEs and for the use of the semiparametric regression models and NPMLEs in practice.
The latter also provides rationale for the kind of model considered in Sections 2 and 10 of this
paper. Although the latter contains some theoretical elements, this paper presents the theory
(especially the regularity conditions) in a more rigorous manner and provides all the proofs.
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