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Abstract
A priori global identifiability is a structural property of biological and physiological models. It is
considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering
uniquely the unknown model parameters from measured input-output data, under ideal conditions
(noise-free observations and error-free model structure). Of course, determining if the parameters
can be uniquely recovered from observed data is essential before investing resources, time and effort
in performing actual biomedical experiments. Many interesting biological models are nonlinear but
identifiability analysis for nonlinear system turns out to be a difficult mathematical problem.
Different methods have been proposed in the literature to test identifiability of nonlinear models but,
to the best of our knowledge, so far no software tools have been proposed for automatically checking
identifiability of nonlinear models. In this paper, we describe a software tool implementing a
differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear
dynamic models described by polynomial or rational equations. Our goal is to provide the biological
investigator a completely automatized software, requiring minimum prior knowledge of
mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY
(Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological
modelling studies, especially in physiology and clinical medicine, where research experiments are
particularly expensive and/or difficult to perform. Practical examples of use of the software tool
DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.
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1 INTRODUCTION
Parameters characterizing the behavior of unobservable features of biological and
physiological systems, e.g. the effect of a drug on its target organ, are usually not amenable to
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direct measurement. Their measurement is thus usually approached indirectly as a parameter
estimation problem [1,13]. A dynamic model describing the internal structure of the system is
formulated theoretically, based on physical, chemical, conservation and transport laws e.g. of
enzyme kinetics and pharmacokinetics. In general, these physiological models take the
mathematical form of linear or nonlinear dynamic state-space models, depending on unknown
parameters. Usually these parameters are unknown and cannot be pre-specified, and need to
be estimated from data collected experimentally by measuring the observable model variables
(inputs and outputs). In order to solve the estimation problem, input-output (I/O) experiments
are designed. A fundamental prerequisite for parameter estimation to be well posed is global
identifiability of the parametric model (see e.g. [1,5,8,13]). This property states that, under
ideal conditions of noise-free observations and error-free model structure, the unknown
parameters of the postulated model can be uniquely (and exactly) recovered from the
knowledge of the input-output variables of the designed input-output experiment.

Note that the property of a priori identifiability regards an ideal context of error-free model
structure and noise-free measurements and thus it is a necessary, but not a sufficient condition
to ensure that an accurate identification of the model parameters from real input/output data is
possible (e.g. data may be too noisy or the problem too badly conditioned, etc.). However, if
the parameters of the postulated model are not uniquely identifiable, even in the theoretical
most favorable situation, they will never be identifiable in a practical experiment where model
structure misspecification and noise in the measurements are inevitably present. Without a
guarantee of a priori identifiability, the estimates of the parameters which could, nevertheless,
sometimes be obtained by some numerical optimization algorithms, will be totally unreliable
and random. Unfortunately, despite its essential role in parameter identification, identifiability
analysis has often been neglected by many researchers. Use of a non uniquely identifiable
model in a clinical setting, may possibly compromise the distinction of the normal vs.
pathological state, ultimately leading the researcher physician to draw potentially erroneous
conclusions.

Identifiability also impacts on the design of experiments, by providing guidelines on the
selection of input and output sites to allow unique identifiability [12]. This is particularly useful
when dealing with intact physiological systems, where both the number and the location of
possible inputs and outputs is often very limited. It has been shown that a priori identifiability
results can be used to achieve the formulation of a minimal, i.e. necessary and sufficient, input-
output configuration for complex experimental design.

Identifiability analysis can be helpful also to provide guidelines to deal with non-identifiability,
either providing hints on how to simplify the model structure or indicating when more
information (measured data) are needed for the specific experiment.

Identifiability analysis of nonlinear systems is in general very difficult. The need for such a
theory is unquestionable as dealing with nonlinear models, i.e. the Michaelis-Menten equation,
is very common in modelling say enzyme kinetics and drug metabolism. Unfortunately its
applicability has been seriously hampered by the heavy computational burden of the available
techniques. Specifically, the problem translates mathematically into checking solvability of an
unusually large system of nonlinear algebraic equations. The number of equations and their
degree generally increases with the model order. Note that identifiability of the linearized
model can provide information on the identifiability of the original nonlinear model only under
certain restrictions [4] but, in general, this is not true and the identifiability of nonlinear models
has to be tackled directly.
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Different approaches have been proposed in literature [1,2,5,4,8,9,14] but, to the best of our
knowledge, no general software tools currently exist to perform the identifiability analysis for
a nonlinear dynamic model, despite the crucial importance of this step in the modelling process.

As our contribution to the solution of this problem, we have developed a new differential
algebra algorithm [2,11] which integrates the different strategies proposed in [8,9] and
broadens their domain of applicability to models described by (linear and) nonlinear models
involving polynomial or rational functions, and are initialized at either unknown or known
initial conditions. We refer the reader to [2,11] where this algorithm is described in detail. In
this paper we shall present a new software tool, DAISY (Differential Algebra for Identifiability
of SYstems) implementing the algorithm in the symbolic language REDUCE version 3.8. The
goal of this new software tool, which we propose to make broadly available, is to bring to the
field of biomedical applications a piece of software which, although being based on a rather
sophisticated set of mathematical tools, will not require knowledge of higher mathematics and
computer algebra by the user and yet will allow them to tackle problems which are hard and
computationally intensive in a transparent way, without requiring any knowledge of high-level
programming languages.

The layout of the paper is the following:

• In Section 2, the basic dynamic structure of the models under test is introduced. Some
definitions regarding parameter identifiability are recalled and the identifiability test
based on the characteristic set is briefly illustrated.

• In Section 3, a simple example to illustrate the differential algebra method is
presented.

• In Section 4, the algorithm and its features are described.

• In Section 5, the software tool DAISY is presented.

• In Section 6, a case of usage of the software DAISY for the analysis of a priori global
identifiability of a biomedical model is presented in some detail. In particular, the
input file that the user has to provide to DAISY and the corresponding output file with
the identifiability results are reported.

• Some basic concepts of differential algebra useful for identifiability analysis test are
recalled in the Appendix. In particular, differential ideals and the characteristic set
are defined together with their principal properties.

2 CHECKING A PRIORI IDENTIFIABILITY
This section provides the reader with a brief description of the theory behind our software tool.
Such an overview is not meant to be complete. A detailed documentation of the theory is
reported in [2,11].

2.1 Definitions
Many dynamic models of biological and physiological systems can be described by a general
nonlinear system Σp in state space form, depending on an unknown parameter vector p:

(1)
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(2)

where x is the n-dimensional state variable, representing e.g. masses, concentrations etc.; u the
m-dimensional input vector made of smooth functions 1; y is the r-dimensional output, e.g.
time histories of drug concentrations; p ∈  is a ν-dimensional vector of unknown parameters.
The entries of f, G = [g1, …, gm] and h are assumed to be polynomial or rational functions of
their arguments.

Note that (1,2) describe the system together with a certain choice of input-output variables
which is designed for the identification experiment. In biological/medical applications,
identification experiments are often performed on systems at rest or started from known
(equilibrium) initial conditions. If initial conditions are specified, the relevant equation x(t0)
= x0 (or x(t0) = x0(p) if initial conditions are parameter dependent), is added to the system. The
essential assumption here is that the system is accessible from its initial conditions, which is
a “generic” controllability-like assumption. See [11]2.

Equality constraints (linear or nonlinear) on p may be also present. We shall denote them

(3)

where E is a polynomial or a rational vector function.

A priori global identifiability of the system-experiment model (1,2), is a condition guaranteeing
theoretical uniqueness of solution to the problem of recovering the model parameters from
input-output data.

In more precise terms, a priori global identifiability addresses the following question: given
arbitrary parameters p1, p2 ∈ , p1 ≠ p2 and assuming the systems Σp1 and Σp2 are initialized
at the same initial state; does there exist (at least) an input function u for which systems Σp1
and Σp2 yield different outputs? If so, Σp1 and Σp2 are distinguishable from the experiment and
the system Σp is said to be a priori globally (or uniquely) identifiable from input-output data.
In this case, at least in principle, the parameter values p1 and p2 can be distinguished (from at
least one input-output experiment). If instead systems Σp1 and Σp2 yield the same output no
matter which input function is applied and no matter what initial state the system is started at,
the parameter values p1 and p2 can never be distinguished and are said to be indistinguishable
from input-output experiments.

If there are at most a finite number of indistinguishable parameter values, the system is called
locally (or nonuniquely) identifiable from input-output data.

Finally, if there is an infinite number of different indistinguishable parameter values, the system
is commonly called nonidentifiable or unidentifiable [1,5,8,14].

1Sometimes in biological/medical applications the input functions are assumed to be impulsive. Clearly nonlinear operations on
distributions are in general not defined and mathematically impulsive inputs cannot in general be applied to nonlinear systems. The
difficulty is however purely formal, and can be circumvented by noting that in reality the input is always a smooth function of time.
“Impulsive inputs” are a mathematical idealization to describe signals which have a support of duration negligible with respect to the
slowest time constant of the system.
2For systems satisfying this assumption, the software presented in this paper performs global identifiability analysis in a completely
automatized way. The software works also for systems which are not accessible from initial conditions, but in this case requires an external
intervention by the user.

Bellu et al. Page 4

Comput Methods Programs Biomed. Author manuscript; available in PMC 2010 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One should point out that the definition above does not exactly apply to many concrete
identification problems of biological/biomedical systems. In these applications, most of the
time there is very little (if none at all) freedom to choose a suitable input function guaranteeing
identifiability. See for example the model describing the control of insulin on glucose
utilization in humans and the model of glucose metabolism in the brain from PET data
(Examples 2 and 4, respectively, in [2]). Often one has to deal with experiments where the
input function is fixed (typically an impulse-like function of time). The condition of a priori
global identifiability from input-output data has to be replaced with the (more stringent)
condition of a priori global identifiability with a fixed input function. The approach presented
in this paper also applies to this notion of identifiability, provided of course, one keeps in mind
that the input function is fixed.

2.2 The differential algebra approach to identifiability
In order to see how differential algebra techniques play a role in system identifiability analysis,
we shall look upon the set of n + r equations defining the dynamic system (1,2) just as a system
of algebraic (in fact, polynomial or, more generally, rational) equations in the relevant state,
input, output variables and their derivatives. The algebraic apparatus of differential algebra
permits to deal with polynomials which may involve derivatives of some variables (typically
the state), and allows polynomials themselves to be differentiated, still keeping a formal
similarity with classical commutative algebra. See the Appendix for a very succinct review of
basic concepts. A basic idea is that of characteristic set of a differential ideal. The choice of
which particular (differential) polynomial ring one wants to work is nontrivial. In [11,2] it is
shown that the ring of differential polynomials with rational (in p) coefficients, denoted R(p)
[u, y, x], is a particularly convenient choice for identifiability analysis. Here the variables u,
y, x represent inputs, outputs, states, and, possibly, their derivatives of some finite order.

A characteristic set is a special basis (i.e. a “minimal” set of differential polynomials) which
generates the same differential ideal generated by an arbitrary given set of differential
polynomials. Practically speaking, knowledge of a characteristic set in our base ring, allows
one to eliminate the state variables and to find the input-output relation of the dynamic system:
a set of r polynomial differential equations involving only the variables (u, y).

It can be shown that the characteristic set of a dynamic system in state space form has a special
structure which easily allows one to test parameter identifiability. The computation of the
characteristic set is performed via the famous Ritt’s pseudodivision algorithm [10], a far-
reaching generalization of the Euclidian algorithm for polynomials.

As described in the Appendix, in order to calculate the characteristic set of the differential ideal
generated by the polynomials defining the dynamic system (1,2), we need to apply the
pseudodivision algorithm. This requires the introduction of a ranking among the model
variables (inputs, outputs and states and their derivatives)3. The standard ranking used in
system identification declares the input and the output components, which are known variables
in this context, as the lowest ranked variables, and the highest rank is given to the state variable
components:

(4)

In principle, given the rank among the variables, their derivatives can be ranked in different
ways. In system identifiability it has turned out convenient to choose the following ranking:

3For checking identifiability of a dynamic system, it is sufficient to consider the derivative up to n (model order) of the input and output
variables and only the first derivative of the state variables.
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(5)

The pseudodivision algorithm to calculate the characteristic set is then applied with respect to
the declared ranking (5). The result is a family of differential polynomials belonging to the
differential ring R(p)[u, y, x] of the following form:

(6)

where the explicit dependence on p is not shown. Equating these polynomials to zero provides
a (finite) set of n + r nonlinear differential equations which generate exactly the same totality
of functions (u, y, x) which satisfy the equations of the original system (1,2).

Note that the first r differential polynomials Ai, i = 1, …, r of (6) do not depend on x. In fact,
they are obtained after elimination of the state variables x from the system (1,2). In principle,
these differential polynomials are identically known hence all their coefficients are known.
The corresponding polynomial differential equations are called the input-output relation of the
system. They describe all input-output pairs which satisfy the system equations (1,2). These
r input-output differential equations are the basic tool used in input-output identifiability
analysis.

To fix uniquely the coefficients of the polynomials listed in (6), one has to normalize each of
the above polynomials to make it monic. Denote with cij ∈ R(p), i = 1, …, r, j = 1, …, νi, (here
j is an index running over the monomial indices of the polynomial Ai, the monomials being
ordered, say, in a lexicographic ordering) the coefficients of the first r polynomials listed in
(6). It follows that the functions cij(p) are uniquely attached to the input-output relation of the
system. Let ν := ∑i νi and let c :  → ℝν be the map defined by stacking the scalar components,
{cij}, in some prescribed order. The map c is called the exhaustive summary of the model [9],
since c embodies the parameter dependence of the input-output model completely.

After the exhaustive summary is found, in order to test global input-output identifiability of
the system (1,2) the injectivity of the map c from the parameter space  to its range, a subset
of the ν-dimensional Euclidean space, has to be checked. To do this, one has to solve the system
of algebraic nonlinear equations

(7)

for arbitrary right-hand members  in the range of c. Equality constraints (3), if present, can
be added to (7).

The resulting system of nonlinear equations may be solved by a suitable computer algebra
method, using e.g. the Buchberger algorithm [3]. This algorithm calculates the Groebner basis,
which is a set of polynomials with specific properties which make it a powerful tool for solving
systems of nonlinear equations. In particular, from the structure of the Groebner basis it is
possible to see by inspection if the system admits one solution, a finite number of solutions or
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infinitely many solutions for each parameter, thus allowing one to distinguish between global
or local identifiability or unidentifiability. This is particularly useful in biological and
biomedical modelling applications, where, due to the possibility of imposing physiological
plausibility constraints, in some cases, models may still be useful even if they are only locally
identifiable.

2.3 Identifiability with known initial conditions
It has been shown that the construction of the characteristic set ignores the initial conditions.
However, in the fortunate circumstances of known initial conditions, the data available to solve
the identifiability problem should include also this knowledge. In this case the additional
assumption of algebraic observability 4 is required.

In particular, assume that l, (l ≤ n), initial conditions of a dynamical model of order n are known.
To check global identifiability, first we have to check if the corresponding states are
algebraically observable. To do this one has to verify if the derivatives of these state
components appear or not in the corresponding l polynomials of the characteristic set. If not,
the above states are algebraically observable and we can proceed with the identifiability test
as follows. The l polynomials are evaluated at time t = 0 and set equal to their corresponding
known values. Note that the right hand members of these equations, evaluated at t = 0 become
known polynomial functions of p with coefficients in the known data x0, u(0), u ̇(0), ü(0), …,
y(0), ẏ(0), ÿ(0),…. The identifiability test should be based on the new exhaustive summary of
the model obtained by adding these l equations to the previous exhaustive summary (calculated
in absence of known initial conditions).

For example we have shown, by applying our software DAISY, that the follow mamillary
model of four compartments

(8)

when all the initial conditions are unknown is locally identifiable, while when at least two
initial conditions between x2(0), x3(0), x4(0) are known it becomes globally identifiable.

3 ANALYSIS OF AN EXAMPLE
Here we shall analyze in mathematical notation, a nonlinear model for which the calculations
can be done by hand. This is meant to illustrate the basic steps of the differential algebra
identifiability algorithm described in the previous section. Another example analyzed via the
software tool, will be presented in Section 6.

Example 1
Consider a two-compartment model with Michaelis-Menten kinetics. The model structure,
together with its input-output configuration, is shown in Fig. 1. The model is mathematically
described by the following rational differential equations:

4We remember that a state of a dynamical model of order n is algebraically observable if its derivatives do not appear in the last n
polynomials of the characteristic set of the model [8]
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(9)

where x1, x2 are drug masses in blood and tissues respectively, u is the drug input, y the
measured drug output in the blood, p1 is a constant rate parameter, vmax and km are the classical
Michaelis-Menten parameters.

The question is whether the unknown parameter vector p = [p1, vmax, km] is globally identifiable
from the input-output experiment.

The following (standard) ranking of the input, output and state variables is declared

(10)

The differential polynomials of the system are ranked according to the above chosen rank:

(11)

With this information, the pseudodivision algorithm to calculate the characteristic set can start.
Since the third polynomial contains the leader of the first polynomial, we have to reduce it with
respect to the first polynomial. The remainder of this first pseudodivision is calculated:

(12)

The new system is:

(13)

Now the second polynomial is already reduced with respect the first one, while the third
polynomial has to be reduced with respect to the first. The result of the pseudodivision is:

(14)

The new system is:
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(15)

Now the system is autoreduced, thus it is the characteristic set for the model.

The first polynomial has been obtained after elimination of the state variable x and represents
the input-output relation of the model (1,2). As explained in Section 2.2, to fix uniquely the
coefficients of the input-output relation, we have to make it monic. To do this, the first
polynomial in (15) is divided by the factor km vmax, obtaining

(16)

To construct the exhaustive summary of the model, the coefficients of the above input-output
polynomial are extracted:

(17)

To calculate the range set of this function, the coefficients (17) are evaluated at a symbolic
parameter value p = [α, β, γ].

This gives the following set of algebraic nonlinear equations:

(18)

Solving this system (18) by the Buchberger algorithm provides the following Groebner basis:

(19)
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showing that the parameters have one and only one solution, i. e. the model is globally
identifiable.

In practice, to speed up the process, instead of choosing a symbolic parameter value, we can
use a set of pseudo-randomly chosen numerical points in the range set. For example, choose a
numerical value for the parameter vector, say

(20)

and calculate the corresponding value of the coefficients of the input-output relation, as we did
before with the symbolic value.

This provides the following system of algebraic nonlinear equations:

(21)

Solve this system by the Buchberger algorithm, which provides a unique value for the Groebner
basis:

(22)

This shows that the model is identifiable about the parameter value (20). Repeating this
procedure for a “reasonably” chosen set of parameter values provides a “practical” test of global
identifiability 5. Here, by repeating the test, one obtains that the model is globally identifiable,
as obtained with the symbolic point.

4 THE DAISY (Differential Algebra for Identifiability of SYstems) ALGORITHM
The input of the algorithm is provided by the differential polynomials defining the dynamic
system (1, 2), the number of inputs and outputs, the ranked list of input, output and state
variables, the list of the unknown parameters and, if present, the equality constraints among
the parameters (3).

The algorithm consists of the following sequence of steps:

1. If one or more polynomials are rational, they are reduced to the same denominator
(this can be easily accomplished using the built-in REDUCE commands).

5Since a priori identifiability is a structural property, i.e. it holds almost everywhere, the numerical point strategy gives the right result
with probability one. To be sure that the pseudo-randomly chosen numerical point does not belong to a set of zero measure, the user is
required to repeat several times the identifiability test.
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2. A binary matrix is assembled, where all the information on the structure of the
dynamical system can be summarized. This matrix has as many rows as model
equations, and as many columns as there are variables (inputs, outputs and states) and
their corresponding derivatives. In particular, the matrix is constructed by considering
one equation, i.e. row, at a time, and by writing 1 (one) if the corresponding variable
or derivative is present in the equation, 0 (zero) if that element is absent.

3. In the input file the specific components of the input, output and state variables are
assigned in the standard ranking (inputs<outputs<states) to a list. These variables are
automatically ranked with their derivatives as follows:

(23)

This implies a rank between the polynomials. Thus, the polynomials defining the
system are ranked by increasing rank.

4. Each polynomial is compared with the previous ones. If it is of equal or higher rank,
it is reduced with respect to the preceding ones by applying the pseudodivision
algorithm.

5. Steps 2 - 4 are repeated until no further reductions can be performed. At the end, the
autoreduced set of minimum rank is reached. This constitutes the characteristic set.

6. An observability test is performed: if in the characteristic set a state component
appears without derivatives then it is algebraically observable [8].

7. Extract from the characteristic set the polynomials without the x variable, i.e.
containing only y, u and their derivatives. These polynomials must be as many as the
model outputs and constitute the input-output relation of the dynamic model (1,2).
Their coefficients are polynomial functions of p. If some input-output relation does
not contain a monomial term with coefficient equal to one, it is suitably normalized
to make it monic.

8. The coefficients, functions of the unknown parameter p, of the monomials in y, u and
their derivatives, are extracted from the input-output relation and provide the
exhaustive summary of the original dynamic model. If parameter equality constraints
(3) are present, they are included in the exhaustive summary.

9. Each function of the unknown p in the exhaustive summary is evaluated at a pseudo-
randomly chosen numerical value for the vector p and set equal to the obtained
numerical value. Thus, a system of algebraic nonlinear equations in the unknown p
is constructed 6.

10. These algebraic nonlinear equations are submitted to the REDUCE module
“groebner”, which solves the system with the routine “groesolve” and returns the
solutions for each unknown parameter thus providing the model identifiability results,
i.e. global or local identifiability or nonidentifiability.

11. If j initial conditions of algebraically observable states are known, the corresponding
j polynomials of the characteristic set (6) are evaluated at time t = 0. These known

6The use of a pseudo-random numerical point allows one to significantly reduce the symbolic computation and hence broaden the class
of testable models. When the system dimension increases, in fact, the use of a symbolic point affects the complexity of the Groebner
basis calculation, thus severely limiting the class of testable models. In this case, to test global identifiability, the user is required to repeat
the test several times (see last paragraph of Section 3).
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algebraic polynomial functions of p are added to the polynomials calculated in step
7. The algorithm proceeds with step 8 where, in particular, the added polynomials are
set equal to their corresponding known values, and step 9 which provides the
identifiability results.

The computation of the identifiability results is usually very fast (few seconds) also for complex
nonlinear models of order 4 or 5 even in a computer with only 128 M of RAM. Note that the
most computationally demanding step of the whole algorithm is represented by the Buchberger
algorithm (embedded Reduce function) for solving the system of algebraic nonlinear equations
provided by the exhaustive summary. Thus, if the model is very complex, for example with
more than one nonlinearity, the algorithm may not successfully terminate due to a lack of
memory of the system running the application. Very likely, this limit will be substantially
improve in the future due to the rapid progress in hardware.

5 THE SOFTWARE TOOL DAISY
The software tool implementing the above algorithm is written in REDUCE version 3.8.
REDUCE 3.8 is an interactive program designed for general algebraic computations of interest
to mathematicians, scientists and engineers. The main aim of REDUCE is to support algebra
calculations that are not feasible by hand. The REDUCE computer algebra system is not public
domain, but it is available at a small fee. The identifiability software tool DAISY is available
at the web site http://www.dei.unipd.it/~pia/.

The identifiability test program involves a number of subroutines. Below is a list of the
components of DAISY:

• DAISY.B is the REDUCE compiled module which loads all the subroutines into
memory for all the successive elaborations.

• The subroutine DAISY computes the characteristic set and the exhaustive summary
of the model and calls the REDUCE module “groebner” which solves the exhaustive
summary system with the routine “groesolve” and returns the solutions for each
unknown parameter thus providing the model identifiability results. In particular
DAISY invokes the following subroutines:

— The subroutine CREATEIO assembles a vector with all variables and their
derivatives in the given ranking.

— The subroutine CREATE assembles one suitable matrix where all the
information on the dynamic system is present and writes all the input data to a
file.

— The surboutine SORTG sorts the system equations according to the particular
ranking given as input.

— The subroutine SORTEQ exchanges the matrix rows according to the given
ranking.

— The subroutine SORTV exchanges the elements of the equation leaders vector
according to the given ranking.

— The subroutine REDUCTION simplifies the equations according to the
presence of common factors.

— The subroutine PSEUDOREM calculates the rest of the pseudodivision
among polynomials.
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— The subroutine CONDINIZ, if called by the user in the input file, deals with
the known initial conditions. In particular, the subroutine implements step 11 of
the algorithm.

To run the identifiability program, one must submit an input file that follows a specific format,
which is described in the next Section, where also the format of the output file provided by the
software tool is reported.

The program is available together with a README file where detailed instructions about its
usage are reported and a folder with the input and the output files of some representative
biological case studies is available to the user.

6 A CASE STUDY
DAISY has been tested and evaluated “in house” on a representative set of biological and
biomedical cases. To check global identifiability with DAISY, the dynamical model should be
provided in a separate file according to a specific scheme. We shall illustrate this scheme by
giving an example.

We will use a very common model in enzyme kinetics and drug metabolism, i.e. the two-
compartment open model with Michaelis-Menten elimination. The model structure, together
with its input-output configuration, is shown in Fig. 2. The model is mathematically described
by the following rational differential equations:

(24)

where x1, x2 are drug masses in blood and tissues respectively, u1 is the input, y1 and y2 the
measured outputs, p = [p21, p12, vmax, km] is the unknown parameter vector.

The question is whether the unknown parameter vector p is globally identifiable from the input-
output experiment.

To solve this identifiability problem with DAISY, the standard ranking of the input, output
and state variables is assigned

(25)

In the following, the input file that the user has to provide to DAISY to check the global
identifiability of model (24) and the corresponding output file with all the identifiability results
are reported.

6.1 The input file
Here we write in lower letters the portion to be inserted by the user in order to distinguish it
from the fixed structure, written in upper letters, of the file. Note that in REDUCE comments
to the code are preceded by symbol %.

WRITE “Case study 1. A two-compartment Michaelis-Menten model”$

% B_ is the vector of all the input, output and state variables
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B_:={u1,y1,y2,x1,x2}$

FOR EACH EL_ IN B_ DO DEPEND EL_,T$

% B1_ is the vector of the unknown parameters

B1_:={p21,p12,vmax,km}$

% NY_ and NU_ indicate the number of inputs and outputs respectively

NU_:=1$

NY_:=2$

% C_ is the system’s differential equations describing the dynamic model

C_:={df(x1,t)+(p21+vmax/(km+x1))*x1-p12*x2-u1,

  df(x2,t)-p21*x1+p12*x2,

  y1-x1,

  y2-x2}$

% main program and subroutines

DAISY() $

% If the initial conditions are equal to given values, the user should write these values and call
the CONDINIZ subroutine, for example:

% LET x10=1,x20=2$

% CONDINIZ()$

6.2 The output file
The results provided by DAISY are shown below. To be as brief as possible, we do not report
the whole results file, but just the relevant results for identifiability testing:

Case study 1. A two-compartment Michaelis-Menten model$

NUMBER OF EQUATIONS$

n_:= 4$

VARIABLE VECTOR$

b_ := {u1, y1, y2, x1, x2}$

PARAMETER VECTOR$

b1_ := {p21,p12,vmax,km}$

RANKING AMONG THE VARIABLES$
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bb_ := {u1, y1, y2, df(u1,t), df(u1,t,2), df(y1,t),df(y1,t,2),df(y2,t),df(y2,t,2), x1,x2,df(x1,t),df
(x2,t)}$

NUMBER OF INPUTS$

nu_ := 1$

NUMBER OF OUTPUTS$

ny_ := 2$

MODEL EQUATIONS$

c_ := {df(x1,t)*(km + x1) + km*(- p12*x2 + p21*x1

  - u1) - p12*x1*x2 + p21*x1**2 - u1*x1 + vmax*x1,

  df(x2,t) + p12*x2 - p21*x1,

  - x1 + y1,

  - x2 + y2}$

CHARACTERISTIC SET$

% aa(1)_ and aa(2)_ constitute the input-output relation of the system

aa(1)_ :=df(y1,t)*(km + y1) + km*(- p12*y2 + p21*y1 - u1) + - p12*y1*y2 + p21*y1**2 -
u1* y1 + vmax*y1$

aa(2)_ :=df(y2,t) + p12*y2 - p21*y1$

aa(3)_ := - x1+ y1$

aa(4)_ := - x2 + y2$

THE SYSTEM IS ALGEBRAICALLY OBSERVABLE$

PSEUDO-RANDOM NUMERICAL PARAMETER VECTOR$

b2_ := {14,28,15,17}$

EXHAUSTIVE SUMMARY$

flist_:= {km - 17, - km + 17, p21 - 14, - p12 + 28, - km*p12 + 476, - p21 + 14, p12 - 28, km*p21
+ vmax - 253}$

MODEL PARAMETER SOLUTION(S)$

g := {{vmax=15,p12=28,p21=14,km=17}}$

The results show that the model is globally identifiable, since the Groebner basis g provides
one and only one solution for each model parameter.
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7 CONCLUSIONS
In this paper we have described DAISY (Differential Algebra for Identifiability of SYstems),
a general software tool allowing biomedical researchers to perform global identifiability
analysis for linear and nonlinear dynamic models. In particular, DAISY effectively facilitates
the solution to the underappreciated problem of determining if unique parameter estimation
from the experimental data is theoretically possible. Although DAISY is a computer-algebra
code implementing a differential algebra algorithm, high-level programming languages,
mathematical and computer algebra skills are not prerequisites for using the software. The
design of an intuitive graphical user interface is under study, in particular, we are planning to
develop a graphical interface by translating the REDUCE identifiability algorithm in C++. We
are confident that this will also improve the execution speed of the program. The software tool
can be downloaded from the website http://www.dei.unipd.it/~pia/.
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APPENDIX

Background on differential algebra
For a formal treatment of differential algebra, the reader is referred to [7,6,10]. Here we shall
just recall the definitions and notions which are necessary to follow the notations used in the
rest of the paper.

Let z := [z1, …, zn] be a vector of smooth functions of the variable t (time); the totality of
polynomials in the variables zi and their derivatives with coefficients in a field K, is a differential
polynomial ring which will be denoted K[z].

Consider a set S of differential polynomials belonging to K[z]. The differential ideal I = IS,
sometimes also denoted I(S), generated by S, is the smallest subset of K[z] containing S, which
is closed with respect to addition, multiplication by arbitrary elements of K[z] and with respect
to differentiation. The elements of S are generators of the ideal.

A differential ideal I is called prime if AiAj ∈ I implies that Ai ∈ I or Aj ∈ I and perfect if A ∈
I whenever Ak does (i.e. a perfect ideal coincides with its own radical).

In order to handle differential ideals, a ranking, i.e. a total ordering, denoted “<”, among the

variables and their derivatives, must be introduced. Let  and  be arbitrary derivatives.
Then the ranking should be such that, for arbitrary positive integer k:

(26)

The leader uj of a polynomial Aj is the highest ranking derivative of the variables appearing in
that polynomial (in particular it can be a derivative of order zero).

The polynomial Ai is said to be of lower rank than Aj if ui < uj or, whenever ui = uj and
degui(Ai) < deguj(Aj), where degu(A) denotes the algebraic degree.

A polynomial Ai will be said to be reduced with respect to a polynomial Aj if Ai contains neither
the leader of Aj with equal or greater algebraic degree, nor its derivatives.
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If Ai is not reduced with respect to Aj it can be reduced by using the pseudodivision
algorithm described below.

1. if Ai contains the kth-derivative,  (possibly k = 0), of the leader of Aj, Aj is

differentiated k times so its leader becomes ;

2. multiply the polynomial Ai by the coefficient of the highest power of ; let R be the

remainder of the division of this new polynomial by  with respect to the variable

. Then R is reduced with respect to . The polynomial R is called the
pseudoremainder of the pseudodivision;

3. the polynomial Ai is replaced by the pseudo-remainder R and the process is iterated

using  in place of  and so on, until the pseudoremainder is reduced with
respect to Aj.

A set of differential polynomials A := {A1, A2, …, Ar} that are all reduced with respect to each
other, is called an autoreduced set.

Let π be a differential polynomial. If we apply the pseudodivision algorithm to reduce π with
respect to all Aj, j = 1, …, r, the final pseudoreminder is called the pseudoremainder of π with
respect to the autoreduced set A. Such a pseudoremainder is said to be reduced with respect
to A (compare [10] where an autoreduced set is called a chain).

Two autoreduced sets, A = {A1, A2, …, Ar} and B = {B1, B2, …, Bs} ordered in increasing rank
so that A1 < A2 < … < Ar, B1 < B2 < … < Bs, are ranked according to the following principle.

• If there is an integer k, k ≤ min(s, r) such that rank Ai = rank Bi, i = 1, …k - 1, rank
Ak < rank Bk then A is said to be of lower rank than B.

• If r < s and rank Ai = rank Bi, i = 1,…r, then A is also said to be of lower rank than
B.

Definition 1 A lowest rank autoreduced set that can be formed with polynomials from a given
set S of differential polynomials, is called a characteristic set of S.

The concept of characteristic set of a differential ideal has been introduced by Ritt [10] who
also proposed the pseudodivision algorithm to construct it. The important property of a
characteristic set is that it can be used to generate a differential ideal by means of a finite number
of polynomials [6].

In principle, the characteristic set is not unique. It can however be normalized in such a way
as to render it unique.
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LEGEND FIG.1.
A nonlinear two-compartment model with Michaelis-Menten kinetics. The input-output
experiment configuration is also shown (the large arrow denotes the input and the dashed line
ending with a bullet the output).
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LEGEND FIG.2.
A nonlinear two-compartmental model. The same notation of Fig.1 is used.
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