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Abstract
Substantial improvements in the treatment of chronic liver disease have accelerated interest in
uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident
hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a
dominant theme driving the field. However, several new areas of rapid progress in the past 5–10
years also have taken root, including: (1) identification of different fibrogenic populations apart from
resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow– derived cells,
as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as
finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple
pathways controlling gene expression during stellate cell activation including transcriptional, post-
transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of
fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in
fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining
reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior,
cancer, and regeneration. Clinical and translational implications of these advances have become clear,
and have begun to impact significantly on the management and outlook of patients with chronic liver
disease.

The field of hepatic fibrosis is flourishing thanks to continued experimental advances
complemented by exciting progress in the treatment of chronic liver disease.1 Control of
chronic hepatitis B and C by antiviral therapies has established that advanced fibrosis can
regress in association with improved clinical outcomes,2-4 thereby intensifying enthusiasm to
uncover the mechanistic basis for hepatic fibrogenesis and its attenuation. At the same time,
simple paradigms defining the cellular sources of extracellular matrix (ECM), and the roles of
cytokines and paracrine interactions among resident liver cells and inflammatory cells have
yielded a more nuanced understanding of how the liver responds to injury. These advances
have had a collateral benefit towards understanding fibrosis in other organs, particularly the
pancreas.5 Thus, a review of the mechanisms underlying hepatic fibrosis is not only timely,
but is more clinically relevant than ever. This article focuses on recent advances in the field,
building on established principles from earlier reviews6,7 while weaving in their clinical
relevance, but also emphasizing the molecular subtleties that have emerged through continued
progress in the field.

General Principles
Fibrosis, or scarring of the liver, is a wound-healing response that engages a range of cell types
and mediators to encapsulate injury. Although even acute injury will activate mechanisms of
fibrogenesis, the sustained signals associated with chronic liver disease caused by infection,
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drugs, metabolic disorders, or immune attack are required for significant fibrosis to accumulate.
Occasionally, fibrosis may be rapidly progressive over weeks to months, for example, as a
result of drug injury, hepatitis C virus (HCV) after liver transplantation,8 or human
immunodeficiency virus (HIV)/HCV co-infection,9 but for the most part this is a response that
evolves over decades. The protracted nature of this response, in contrast to the more rapid
progression of fibrosis in kidney or lung, has been classically ascribed to the liver’s unique
regenerative capacity, but the molecular underpinnings of this capacity remain mysterious.

In many ways, the liver’s response to injury is an angiogenic one, with evidence of new blood
vessel formation, sinusoidal remodeling, and pericyte (ie, stellate cell) expansion.10 Thus,
mediators familiar to the angiogenesis field are equally relevant in understanding hepatic
fibrosis, including platelet-derived growth factor (PDGF), vascular endothelial growth factor
(VEGF), and their cognate receptors, as well as vasoactive mediators that include nitric oxide
and carbon monoxide. For example, increased VEGF concentrations may contribute to
accelerated progression of fibrosis in smokers who have hepatitis C.11

Cirrhosis, the most advanced stage of fibrosis, connotes not only more scar than fibrosis alone,
but also distortion of the liver parenchyma associated with septae and nodule formation, altered
blood flow, and risk of liver failure. However, cirrhosis still remains a dynamic and evolving
state, as discussed later (see Clinical and Translational Implications section), such that
interventions even at these advanced stages could regress scar and improve clinical outcomes.

Continued progress in the field also has exploited steady refinements in both cell culture and
animal models of fibrosis.12 Although there are no rodent models that closely mimic hepatitis
B virus (HBV), HCV, or nonalcoholic steatohepatitis (NASH), the development of genetic
mouse models has continued to accelerate progress by enabling reductionist approaches that
focus on the role of individual gene products in fibrogenesis, and by permitting genetic lineage
tracing to define cellular phenotypes and their evolution.13 Animal and culture models also
have benefited from improving technology, in particular the use of gene array and proteomics.
For example, gene expression patterns from stellate cells (the key resident fibrogenic cell type)
isolated from rats with fibrosis from either CCl4 or bile duct ligation are remarkably similar,
but differ substantially from ultrapurified (ie, using flow cytometry) culture-activated stellate
cells.14 However, stellate cells isolated using standard gradient methods more closely
resembled activated cells from fibrotic liver, indicating that standard cell isolation methods
yield gene expression data that are relevant to the biology of stellate cells during fibrosis in
vivo.14

Liver Injury and Inflammation: Established Mediators and New Players
Fibrosis requires some element of liver injury, albeit not necessarily defined by the presence
of inflammatory cells. For example, although the most prevalent diseases in clinical practice
(viral hepatitis, alcoholic steatohepatitis [ASH], and NASH) are characterized by leukocyte
infiltration, metabolic diseases such as hemachromatosis are notable for their lack of
inflammatory cells, yet they too lead to cirrhosis and risk of hepatocellular carcinoma. Thus,
any chronic perturbation of hepatic homeostasis, whether visible by light microscopy or not,
may elicit the signals necessary to stimulate fibrogenesis.

One family of such established mediators are reactive oxygen species. These unstable
compounds include superoxide and hydroxyl radicals, hydrogen peroxide, and aldehydic end
products including 4-hydroxy-2,3-nonenal and 4-hydroxy-2,3-alkenals. These mediators are
generated through lipid peroxidation, and can derive from hepatocytes, macrophages, stellate
cells, and inflammatory cells.15,16 Several substrates may enhance reactive oxygen species
production including ethanol, polyunsaturated fatty acids, and iron. The classic pathway of
reactive oxygen species generation in hepatocytes results from induction of cytochrome P450
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2E1, especially in either ASH or NASH,17,18 leading to pericentral (zone 3) injury. More
recently, however, reduced nicotinamide adenine dinucleotide phosphate oxidase has emerged
as another source of oxidant stress that mediates pathways of fibrogenic activation in hepatic
stellate cells, as well as in Kupffer cells, the resident liver macrophages.19 Reduced
nicotinamide adenine dinucleotide phosphate oxidase also may mediate liver injury and fibrosis
generated by angiotensin signaling because animals genetically lacking the p47 subunit of
reduced nicotinamide adenine dinucleotide phosphate oxidase have reduced superoxide
production and attenuated hepatic fibrosis after injury.20

More recently, increasing attention also has been directed to nitrosative stress generated by
hepatocyte mitochondrial injury and induction of nitric oxide synthase 2,21,22 although links
from this pathway to fibrogenesis are not as well defined.

Apoptosis of parenchymal cells is no longer viewed as a silent consequence of liver injury, but
rather as an important inflammatory stimulus23 that activates stellate cells, which display a
surprising capacity to phagocytose apoptotic bodies,24 leading to induction of reduced
nicotinamide adenine dinucleotide phosphate oxidase.25 This response to apoptotic
hepatocytes in part reflects the interaction of hepatocyte DNA with Toll-like receptor 9 (TLR9)
expressed on stellate cells.26 A profibrogenic response also can be elicited by hepatocyte
apoptosis after disruption of the anti-apoptotic mediator Bcl-xL,27 and by Fas.28 Thus, efforts
to block hepatocyte apoptosis therapeutically are being developed as a potential antifibrotic
strategy.29 On the other hand, selective stimulation of apoptosis in stellate cells rather than
hepatocytes would be antifibrotic, mediated by either tumor necrosis factor-related apoptosis-
inducing ligand,30 gliotoxin,31 or proteasome inhibitors.32

Although necrosis of cells is a classic morphologic feature of liver injury, its pathogenic
contribution to hepatic fibrosis has been overlooked, largely because there are no classic
biochemical or molecular hallmarks of necrosis similar to those that have been uncovered for
apoptosis.33 Yet, in human disease both necrosis and apoptosis are evident in liver sections,
although specific inflammatory pathways of necrosis have not been identified. Necrosis may
simply represent a more severe cellular response than apoptosis when concentrations of
injurious stimuli are higher,15,16 but the relative potencies of necrosis compared with apoptosis
in stimulating fibrogenesis are unknown.

Among the most compelling pathways of injury are those recently uncovered for innate
immune signaling in liver. Specifically, the discovery of TLRs has led to major advances in
understanding how the human organism responds to pathogens.34 The identification of TLR4,
the receptor for bacterial lipopolysaccharide, on Kupffer cells, was therefore not a surprise,
but its expression on stellate cells was unexpected.35 Moreover, although TLR4 signaling in
macrophages may be essential for inflammatory responses,36 recent studies have indicated that
signaling by stellate cells in response to lipopolysaccharide and possibly endogenous ligands
of TLR4 (eg, high-mobility group box 1, biglycan, and heparan sulfate) may be more important
than in Kupffer cells in eliciting a fibrogenic response by down-regulating bone morphogenic
protein (BMP) and activin membrane-bound inhibitor, a transmembrane suppressor of
transforming growth factor β1 (TGFβ1), which is the major fibrogenic cytokine in the liver.
37 This finding has converged with evidence that specific single-nucleotide polymorphisms of
TLR4 contribute to the rate of fibrosis progression in HCV infection,38 thereby linking a genetic
risk marker to disease pathogenesis.

Evidence that stellate cells play a pivotal role in orchestrating hepatic immune responses
extends beyond the TLR pathway and is among the most surprising findings of the past 5 years.
Stellate cells produce a host of chemotactic peptides (especially chemokines) that amplify
infiltration by inflammatory cells. They also interact directly with lymphocyte subsets,
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including natural killer cells (see Mehal and Friedman39 for detailed review). Indeed, CD8 T
cells appear to be more fibrogenic towards stellate cells than CD4 cells,40 which could account
for the increased rate of fibrosis in patients with HIV and HCV, in whom the CD4/CD8 ratio
typically is reduced.41 In contrast, natural killer cells play an important role in clearing activated
stellate cells,42,43 an activity enhanced by gamma interferon and retinoic acid44 and abrogated
by ethanol.45 Intriguingly, stellate cells also are antigen-presenting cells,46 and may contribute
to the liver’s immunotolerant properties through T-cell suppression.47 Finally, B lymphocytes,
which comprise up to 50% of the total lymphocyte pool in liver, contribute to the fibrogenic
milieu because mice lacking B cells (JH−/− animals) have attenuated fibrosis, apparently by
more rapid ECM degradation after CCl4 injury, implicating an unknown interaction with
pathways of matrix degradation.48

Cellular Sources of ECM in Hepatic Fibrosis: An Evolving Paradigm
The discovery of stellate cell activation—a transdifferentiation from a quiescent vitamin A–
storing cell to a proliferative myofibroblast—remains among the most informative discoveries
to date in unlocking the basis for hepatic fibrogenesis. However, the simple paradigm
conceived 15 years ago6 that all fibrosis derives from activated stellate cells has grown far
more multifaceted, both in terms of the pathways of activation and the overall contribution of
stellate cells to the total fibrogenic population during liver injury. It is increasingly clear that
these fibrogenic cells derive not only from resident stellate cells, but also from portal
fibroblasts,49-51 circulating fibrocytes,52 bone marrow,53 and epithelial–mesenchymal cell
transition.13 Although the relative contribution of each source varies, these differences are
likely to reflect differing contributions with disease progression and among different etiologies
(Figure 1). For example, portal fibroblasts appear to be especially important in cholestatic liver
diseases and ischemia,51 where paracrine interactions between cholangiocytes and fibroblasts
involve both chemokines54 and extracellular nucleotides.55 In contrast, progressive
recruitment of bone-marrow– derived cells may occur over time, such that these cells can
represent a substantial fraction of the total fibrogenic population in more chronic injury. Bone
marrow recruitment of mesenchymal cells remains a somewhat confusing event because of
contradictory findings that on the one hand, bone marrow may provide fibrogenic cells, yet on
the other hand autologous bone marrow56,57 and marrow-derived endothelial progenitor
cells58 can be antifibrotic. It remains unclear which cells within marrow contribute to
fibrogenesis and which might be antifibrotic, and/or what mediators regulate these apparently
divergent activities of bone-marrow– derived cells.

Because cellular sources of fibrogenic cells may differ among different etiologies, the relative
value of particular antifibrotic therapies also may depend on the underlying disease. For
example, the integrin αvβ6 is up-regulated only on biliary epithelium during experimental
cholestatic liver fibrosis,59 implying that antagonists to this integrin might be more rational in
biliary than in parenchymal liver diseases.

Pathways of Stellate Cell Activation: A Moving Target
Initiating Pathways

Stellate cell activation unfolds progressively in sequential stages; this paradigm provides a
useful framework for defining fibrogenic events after liver injury (Figure 2). In particular, the
initiation phase, which refers to early events that render the quiescent stellate cell responsive
to a range of growth factors, remains an important focus. Rapid induction of β-PDGF receptor,
development of a contractile and fibrogenic phenotype, as well as modulation of growth factor
signaling are the cardinal features of this early response. Initiating stimuli include paracrine
signals such as reactive oxygen species from apoptotic hepatocytes and injured cholangiocytes,
as detailed earlier (see Liver Injury and Inflammation section).
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Changes in ECM composition—Initiating events in stellate cell activation are occurring
on a background of progressive changes in the surrounding ECM within the subendothelial
space of Disse. Over time, the subendothelial matrix composition changes from one comprised
of type IV collagen, heparan sulfate proteoglycan, and laminin (the classic constituents of a
basal lamina) to one rich in fibril-forming collagens, particularly types I and III. One important
yet subtle change is the deposition of a specific isoform of cellular fibronectin from sinusoidal
endothelial cells, which has an activating effect on stellate cells.60 Because this response is
TGF-β dependent,61 however, induction of this cytokine must occur first, either from autocrine
or paracrine sources.

These progressive changes in ECM composition as fibrosis accumulates instigate several
positive feedback pathways that further amplify fibrosis. First, dynamic changes in membrane
receptors, in particular integrins, sense altered matrix signals that provoke stellate cell
activation and migration through focal adhesion disassembly62-64 while also linking to other
growth factor receptors through integrin-linked kinase.65,66 Matrix-provoked signals also
engage membrane-bound guanosine triphosphate binding proteins, in particular Rho67 and
Rac,68 which transduce signals to the actin cytoskeleton that promote migration and
contraction. Second, activation of cellular matrix metalloproteases leads to release of growth
factors from matrix-bound reservoirs in the extracellular space that may stimulate cellular
growth and fibrogenesis.69,70 Third, the enhanced density of ECM leads to increasing matrix
stiffness, which is a significant stimulus to stellate cell activation, at least in part through
integrin signaling.71 Interestingly, however, increased stiffness caused by edema and
inflammation in animal models and human beings may precede the increase in matrix content.
72,73 These experimental findings nicely complement the increasing use of Fibroscan74,75

(Echosens, Paris, France) and magnetic resonance elastography,76,77 two clinical techniques
that noninvasively assess hepatic stiffness as a reflection of ECM content.

Molecular mechanisms underlying stellate cell activation—Because activation
occurs so rapidly, attention has focused on regulatory pathways that can respond quickly to
injurious stimuli, either by activating or repressing gene transcription, by epigenetic regulation,
or by posttranscriptional control. In addition, although microRNAs have emerged as important
layers of regulatory control in many systems,78 their roles in liver injury and stellate cell
activation have not yet been explored.

Among the many target genes of transcription factors described in stellate cells, those most
comprehensively characterized include type I collagen (alpha 1 and alpha 2 chains), α-smooth
muscle actin, TGFβ1, and TGFβ receptors, matrix metalloproteinase (MMP)-2, and tissue
inhibitors of metalloproteinases (TIMPs) 1 and 2 (see Rippe and Brenner,79 Mann et al,80 and
Tsukamoto et al81 for reviews).

Foxf1, JunD, and C/EBPβ are among the clearest examples of activating transcription factors.
Deletion of one Foxf1 allele reduces stellate cell activation and fibrosis.82 Similarly, knockout
of JunD, a member of the AP-1 transcription factor complex,83 protects mice from CCl4induced
hepatic fibrosis, which is associated with reduced numbers of activated stellate cells and
diminished expression of hepatic TIMP-1.84 Finally, phosphorylation of the transcription
factor C/EBPβ by the RSK kinase promotes stellate cell survival.85

The LIM homeodomain protein, Lhx2, on the other hand, is a protein that preserves stellate
cell quiescence, and whose loss leads to activation of stellate cells. In fact, Lhx2−/− mice
develop spontaneous congenital fibrosis.86 A similar role has been uncovered for the
transcription factor FoxO1; viz. Stellate cell activation and fibrogenesis are amplified in cells
from mice with reduced FoxO1 activity.87
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Similar to Lhx2, the peroxisome proliferator activated receptor γ nuclear receptor down-
regulates stellate cell activation and reduces collagen gene expression.88 This and related
observations89 have prompted the use of peroxisome proliferator activated receptor γ ligands
in clinical trials not only in fibrosis associated with NASH, but also as a candidate antifibrotic
in patients with HCV fibrosis. Other nuclear receptors regulating stellate cell behavior include
pregnane X receptor,90,91 and retinoid receptors.92,93

Epigenetic regulation is a tightly controlled pathway that modulates stellate cell activation in
part through induction of the molecules CBF1 and MeCP2.94,95 These proteins repress gene
expression of the inhibitory protein inhibitor kappa beta (IκB) by CpG island methylation,
thereby unleashing nuclear factor κ B activity, which promotes stellate cell survival and thus
increases fibrosis. Interestingly, sulfasalazine inhibits the kinase (inhibitor kappa kinase, IκK)
that activates IκB, and thus may accelerate recovery from experimental fibrosis by clearance
of activated stellate cells through apoptosis.94,96 Because these activated cells typically express
high levels of TIMP-1, a metalloproteinase inhibitor, their clearance leads to increased net
activity of matrix degrading proteases.

Finally, messenger RNA (mRNA) stabilization also contributes to increased gene expression
during stellate cell activation. Specifically, there is a 16-fold increase in collagen alpha 1(I)
mRNA stabilization during stellate cell activation as a result of interaction of a specific protein,
αCP, to a specific sequence in the 3′ untranslated region of the mRNA,97 and also involving
the interaction of a 120-kilodalton protein with the 5′ stem-loop structure.98 Similarly, there is
enhanced interaction of the RNA binding protein, RBMS3, with the 3′ untranslated region of
the homeobox protein Prx1, thereby increasing its mRNA stability.99

Perpetuating Pathways
The stellate cell that is activated by initiating stimuli then is primed to respond to a host of
cytokines and growth factors. These signals conspire to generate scar through enhanced
proliferation, contractility, fibrogenesis, matrix degradation, and proinflammatory signaling.
Although earlier models suggested that the pathways of activation were identical regardless of
the disease, it is now clear that there are disease-specific pathways of fibrosis (see Disease-
Specific Pathways of Hepatic Fibrosis section), and, moreover, that not all cytokine pathways
are necessarily activated in parallel. For example, although PDGF stimulation may drive
cellular proliferation in parallel with fibrogenic stimulation in some settings, TLR9 activation
blocks PDGF-mediated migration while provoking fibrogenesis,26 thereby providing a stop
signal that allows activated cells to accumulate at sites of injury where they can deposit more
scar.

Proliferation—Autocrine signaling by PDGF was the first cytokine loop uncovered during
stellate cell activation and remains among the most potent.100 Both the PDGF ligand and the
beta isoform of its receptor are rapidly induced in vivo and in culture.101,102 In addition to the
well-characterized A and B chains of plateletderived growth factor (PDGF), C and D isoforms
also have been discovered more recently; in fact, PDGF-D may be the most potent and
physiologically relevant PDGF subunit in stellate cell activation.100 Interestingly, although
both mice with transgenic expression of either PDGF-B103 or PDGF-C have hepatic fibrosis,
104 the PDGF-C transgenic animals also develop hepatocellular carcinoma,104 mimicking the
progression from fibrosis to cancer that occurs in human beings. Downstream consequences
of PDGF signaling in stellate cells include signaling by PI3 kinase, ERK, and other pathways,
105-107 as well as stimulation of Na+/H+ exchange, providing a potential site for therapeutic
intervention by blocking ion transport.108 Other stellate cell mitogens include VEGF,109

thrombin and its receptor,110,111 epidermal growth factor, TGFα, keratinocyte growth factor,
112 and basic fibroblast growth factor.113
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Chemotaxis—Stellate cells can migrate towards sites of injury driven by chemoattractants
that include PDGF,114,115 monocyte chemoattractant protein-1,116 and CXCR3 ligands.117

Functionally, PDGF-stimulated chemotaxis provokes cell spreading at the tip, movement of
the cell body towards the stimulant, and retraction of trailing protrusions associated with
transient myosin phosphorylation.118

In contrast to PDGF, adenosine blunts chemotaxis, thereby providing a counter-regulatory
pathway that fixes cells at sites of injury.119 Paradoxically, enhanced adenosine signaling also
may contribute to alcoholic fibrosis by stimulating stellate cell fibrogenesis,120 which not only
represents a potential fibrogenic mechanism, but also may explain the protective effect of
caffeine (which inhibits adenosine generation) reported in epidemiologic surveys.121

Fibrogenesis—Collagen type I is the prototype constituent of the fibril-forming matrix in
fibrotic liver, and its expression is regulated both transcriptionally and posttranscriptionally as
described earlier and in several reviews.122-124

TGFβ1, derived from both paracrine and autocrine sources, remains the classic fibrogenic
cytokine (see Inagaki and Okazaki124 and Breitkopf et al125 for reviews). Signals downstream
of TGFβ converge on Smad proteins, which fine-tune and enhance the effects of TGFβ during
stellate cell activation; Smads 2 and 3 are stimulatory whereas Smad 7 is inhibitory124,126,
127 and is antagonized by Id1.128 TGFβ1 also stimulates collagen transcription in stellate cells
through a hydrogen peroxide– and C/EBPβ-dependent mechanism.129 The response of Smads
in stellate cells evolves as injury becomes chronic, further enhancing fibrogenesis.126,130

Connective tissue growth factor (CTGF/CCN2) is also a potent fibrogenic signal towards
stellate cells131-133 that is up-regulated by hyperglycemia and hyperinsulinemia.134 Although
stimulation of CTGF production traditionally has been considered TGFβ-dependent,135

TGFβ-independent regulation is increasingly likely as well.136 Moreover, TGFβ stimulates
CTGF primarily in hepatocytes, not stellate cells,137,138 a notable exception to the general rule
that cytokine signaling in stellate cell activation typically is autocrine.

Neurohumoral signaling contributes to stellate cell responses.139 In particular, cannabinoids
have emerged as potent mediators of hepatic steatosis, stellate cell activation, and fibrosis
(reviewed in Mallat et al140), as well as provoking the hemodynamic alterations associated
with advanced liver disease.141 Two receptors, CB1 and CB2, exert opposing effects, with
CB1 a fibrogenic pathway and CB2 antifibrotic. Thus, antagonism of CB1 signaling in stellate
cells has emerged as a promising antifibrotic strategy, as exemplified by the clinical agent
Rimonabant (Sanofi-Aventis, Paris, France).142 Conversely, agonism of CB2 receptors, which
also are expressed by stellate cells, reverses fibrosis in experimental animals.143 The
fundamental challenge of developing cannabinoid therapeutics for liver disease is to minimize
central nervous system effects because CB1 and CB2 receptors are expressed abundantly in
brain. Similarly, opioids signal in stellate cells and promote fibrogenesis,144,145 which is
antagonized by naltrexone. Finally, sympathetic neurotransmitters also contribute to activation
pathways.146

Contractility—Contraction of stellate cells contributes to increased portal resistance during
liver fibrosis that presumably is reversible before the thickened septae, intrahepatic shunts, and
lobular distortion of cirrhosis develop, leading to fixed increases in portal pressure. Even in
earlier stages of fibrosis, activated stellate cells already show features of smooth muscle–like
cells, characterized by expression of a number of contractile filaments including α smooth
muscle actin147 and myosin,148 which generate calcium-dependent and calcium-independent
contractile forces that contribute to cellular contractility.149-151 Culture models increasingly
recapitulate many of these smooth muscle features, in part by restoring a more physiologic
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substratum, as well as by including other resident cell types in a co-culture system, especially
Kupffer cells.152

As reviewed recently, stellate cells are recognized as liver-specific pericytes that contribute to
angiogenesis in liver development, regeneration, and the response to injury.10 After partial
hepatectomy, stellate cells migrate along with endothelial cells to establish vascular
connections with hepatocytes, thereby creating new sinusoidal branches.153 Although it is
unclear to what extent these responses occurring during pure regeneration are mounted during
liver injury, the 2 responses—repair and regeneration— occur concurrently in chronic liver
disease, and thus similar angiogenic behavior is likely to underlie repair. Moreover, progressive
fibrosis with angiogenesis also contributes to tumor vascularization in which activated stellate
cells play a vital role.10,154

As fibrosis advances, the collagenous bands typical of end-stage cirrhosis contain large
numbers of activated stellate cells.155 These cells progressively impede portal blood flow by
both constricting individual sinusoids and by contracting the cirrhotic liver, mediated by
pathways that allow interaction with the ECM.156,157 At the same time, stellate cell density
and coverage of the sinusoidal lumen increases.10,153 Endothelin-1 and nitric oxide are the key
opposing counter-regulators that control stellate cell contractility, in addition to
angiotensinogen II, eicosanoids, atrial natriuretic peptide, somatostatin, and carbon monoxide,
among others (see Rockey155 and Reynaert et al158 for reviews). Progressive development of
intrahepatic shunts also is likely to require angiogenic responses driven by stellate cells.159,
160

The therapeutic implications of elucidating angiogenic signaling in liver fibrosis are not so
clear. Although a simple paradigm would suggest that anti-angiogenic agents, for example,
VEGF inhibitors, are an effective anti-inflammatory and antifibrotic strategy,161 their long-
term impact on regeneration is uncertain. For example, sustained and complete inhibition of
angiogenesis might compromise hepatic blood flow and oxygen delivery, especially because
the liver has high metabolic demands and receives primarily venous blood. Thus, there is a
delicate balance between the requirement for angiogenesis to preserve blood flow, and its
negative impact on liver structure and function. Moreover, strategies to antagonize contractile
proteins also may have unintended consequences. For example, mice lacking α smooth muscle
actin protein in myofibroblasts have increased renal fibrosis in experimental
glomerulonephritis,162 suggesting that α-actin induction may be a counter-regulatory response
to enhanced fibrogenesis. Moreover, missense mutations of this protein have been linked to
aortic aneurysms in human beings,163 indicating that the protein also may contribute to vascular
integrity.

Inflammatory signaling—As reviewed earlier (see Liver Injury and Inflammation:
Established Mediators and New Players section), stellate cells have emerged as central
modulators of hepatic inflammation and immunity, and not just passive targets of inflammatory
cytokines. In particular, a growing list of chemokines and their cognate receptors serve the
dual function of provoking further fibrogenesis, as well as interacting with inflammatory cells
to modify the immune response during injury.164-166

Matrix Degradation and Resolution of Fibrosis
Evidence that fibrosis and even cirrhosis are reversible has intensified interest in understanding
the regulation of matrix degradation and fibrosis resolution, in hopes that therapies might
exploit those endogenous pathways that reverse disease (Figure 3). Simplistically put, this
response would be considered therapeutic matrix degradation, whereas early liver injury is
marked by pathologic matrix degradation that disrupts hepatic homeostasis. Thus, in early liver
injury matrix-degrading proteases with activity towards type IV collagen (eg, MMP-2),
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degrade the low-density basement membrane present in the subendothelial space. Its
replacement with fibril-forming matrix has deleterious effects on differentiated cell function,
in particular on hepatocytes.

Enzymes controlling matrix degradation comprise a family of matrix-metalloproteinases (also
known as matrixins), which are calcium-dependent enzymes that specifically degrade
collagens and noncollagenous ECM substrates.12,167

Stellate cells are a key source of the basement membrane proteases MMP-2,168 MMP-9,169

and stromelysin (MMP-3),170 as well as the interstitial collagenase MMP-13 (the rodent
equivalent of MMP-1).171

A major determinant of progressive fibrosis is failure to degrade the increased fibril-forming,
or interstitial, scar matrix. MMP-1 is the main protease that can degrade type I collagen, the
principal collagen in fibrotic liver. However, sources of this enzyme are not as clearly
established as for the type IV collagenases MMP-2 and MMP-9. Stellate cells express modest
levels of MMP-1 mRNA and thus it is uncertain whether this represents the primary interstitial
collagenase responsible for matrix resorption as liver fibrosis regresses. Alternative interstitial
proteases might include either matrix type 1 MMP or even MMP-2, which also displays some
interstitial collagenase activity.

The cross-linking of collagen by lysyl oxidase and tissue transglutaminase, and the maturation
of hepatic scar through the action of a disintegrin and metalloproteinase with thrombospondin–
type repeats metalloproteinase with thrombospondin type I motif (ADAMTS2) are important
determinants of hepatic fibrosis reversibility. The long-standing clinical dogma that the slower
the pace of injury, the less reversible the scar, is borne out by animal studies in which even
advanced fibrosis of short duration is reversible, which is limited primarily by the extent of
collagen cross-linking caused by tissue transglutaminase.172 Moreover, as advanced fibrosis
resolves, the micronodules typical of active cirrhosis dissolve, coalescing into macronodules.
172 This finding correlates remarkably well with recent clinical data showing that increased
septal thickness and smaller nodule size are significant predictors of poorer clinical outcomes.
173 Similar studies have been performed in knockout mice lacking ADAMTS2, which catalyzes
the N-propeptide excision of procollagens I, III, and V, which allows the polymerization of
collagen fibrils.174 In the ADAMTS2 knockout animals, the extent of liver injury after CCl4
was similar to that of wild-type mice, yet fibrosis reversal was slightly faster, associated with
much less dense collagen fibrils, and smaller fibril diameters.175 Recently, increased
proteolytic activity ascribed to ADAMS-13 also has been reported in activated stellate cells.
176 However, the native substrate(s) and biological role of this protease are not known.

Hepatic macrophages are re-emerging as critical regulators of matrix remodeling. An elegant
study using a genetic model that allows for the selective, timed depletion of macrophages
during different stages of liver injury and resolution has shown divergent roles for these cells.
177 During progression of liver fibrosis, macrophages augment fibrogenesis, whereas during
resolution they hasten matrix degradation, primarily through increased production of
MMP-13.178

Inactivation of proteases by binding to TIMPs also is emerging as an important locus of
control12 because sustained production of these proteins during liver injury could inhibit the
activity of interstitial collagenases, leading to reduced degradation of the accumulating matrix.
In addition, TIMP-1 is anti-apoptotic towards stellate cells,179 and thus its sustained expression
in liver injury will enlarge the population of activated stellate cells by preventing their
clearance. In support of TIMP’s role in vivo, either transgenic over expression of TIMP-1 in
liver, or administration of TIMP-neutralizing antibodies, delay regression of liver fibrosis in
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experimental animals.180 Conversely, the use of MMP-9 mutant proteins as TIMP-1
scavengers reduces fibrosis accumulation by enhancing matrix resorption.181

Stellate cells express uroplasminogen activator receptor and its inhibitor, as well as other
components of the plasmin system.182-184 Collectively, these findings suggest that stellate cells
contain most, if not all, of the molecules necessary to either activate or inhibit
metalloproteinases.

Clearance of activated stellate cells by apoptosis remains an appealing target for antifibrotic
therapy because this would use an endogenous pathway of fibrosis regression. In addition, data
from cultured stellate cells185,186 and liver slices187 suggest that activated cells also can revert
to a quiescent phenotype, such that this response may be an antifibrotic pathway worth
exploiting.

Disease-Specific Pathways of Hepatic Fibrosis
Although key pathways of stellate cell activation are common to all forms of liver injury and
fibrosis, disease-specific pathways are being unearthed as well, particularly in ASH and NASH,
and in HCV disease.

NASH and ASH
The accelerating obesity epidemic is tied to an increasing prevalence of NASH and subsequent
cirrhosis.188 Adipokines mediate fibrogenesis and many hepatic manifestations of obesity.
189,190 Specifically, leptin, a circulating adipogenic hormone, promotes stellate cell
fibrogenesis and enhances TIMP-1 expression,191-193 which is associated with increased leptin
signaling.191 Concurrently, adiponectin, a counter-regulatory hormone that antagonizes the
fibrogenic activity of leptin is reduced in hepatic fibrosis,194 and mice lacking adiponectin
have enhanced fibrosis after toxic liver injury.195 Equally important to fibrosis is insulin
resistance per se, whether associated with steatosis196 or HCV.197,198 As noted earlier,
cannabinoids also mediate steatosis, and daily cannabis use is a risk factor for steatosis and
fibrosis in HCV.199,200 Interestingly, a recent study directly links CB1 receptor signaling to
alcoholic steatosis in rodents fed a liquid ethanol diet.201 Moreover, in these animals, activated
stellate cells are a key source of the endogenous cannabinoid, 2-AG, which drives increased
CB1 signaling.201 As noted earlier, oxidant stress associated with ethanol metabolism is an
important stimulus to fibrogenesis. In contrast, aldehydes, although fibrogenic, are unlikely to
account entirely for ethanol-induced fibrosis.15

HCV and HIV
Stellate cells express the putative HCV receptors CD80, LDL receptor, and C1q, raising the
possibility of direct HCV infection in vivo, which has not yet been established. Moreover,
expression of HCV nonstructural and core proteins induces stellate cell proliferation, release
of inflammatory signals,202 and CTGF,203 although interaction of HCV E2 protein stimulates
MMP-2 expression.204 Furthermore, hepatocytes harboring replicating HCV in culture
produce fibrogenic stimuli towards stellate cells.205 In HCV-infected liver, chemokines
promote lymphocyte recruitment.165 HCV proteins also may interact directly with sinusoidal
endothelium.206 Remarkably, no studies have reported potential interactions between HBV
and stellate cells, or HBV-specific pathways of fibrogenesis.

The increased rate of fibrosis in patients co-infected with HCV and HIV compared with those
with HCV alone has been well documented.41 The reduced CD4/CD8 ratio typical of HIV
infection has been invoked as a cause, because CD8 cells may be relatively fibrogenic
compared with CD4 cells; however, recent preliminary data additionally suggest that hepatic
stellate cells may be infected directly by HIV,207 which also might account for why fibrosis
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progression is slowed when HIV is suppressed by antiretroviral therapy in co-infected patients.
208

Links Between Stellate and Progenitor Cells, Fibrosis, and Cancer
The remarkable phenotypic plasticity of stellate cells, combined with the recent demonstration
that they express the stem cell marker CD133,209 have raised the fascinating prospect that they
are true progenitor cells (Figure 4). Further studies are required to establish bona fide and robust
pluripotency, but intriguing possibilities are raised. First, activated stellate cells appear to
contribute to the stem cell niche based on histologic studies,210 raising the possibility that they
are actually differentiating into stem cells directly. Second, could this cellular behavior provide
a missing link between fibrosis and hepatocellular cancer that is derived from stem cells?
Although epithelial to mesenchymal transition is well established, the possibility of
mesenchymal to epithelial transition, while still quite speculative at this point, should not be
ignored. Support for this suggestion includes the presence in stellate cells of both
hedgehog211,212 and Wnt signaling,213 two pathways implicated in stem cell differentiation
and cancer.214 Moreover, the near-absolute requirement for fibrosis to occur before
hepatocellular carcinoma develops in patients with chronic HCV remains completely
unexplained. Potential explanations have included the presence of secreted survival factors
that prevent apoptosis of DNA-damaged hepatocytes and activated stellate cells (eg,
Gas6215), reduced tumor surveillance owing to decreasing natural killer cell number and
function, and/or the accelerated shortening of telomeres that accompanies progressive fibrosis.
The question of how fibrosis promotes hepatocellular carcinoma is a vital one that demands
clearer answers.

Clinical and Translational Implications
The tightening links between the biology of hepatic fibrosis and clinical expression of disease
attest to the importance of continued basic and translational research into mechanisms of
hepatic fibrogenesis. In particular, newly uncovered correlations between matrix stiffness and
fibrogenesis, ECM cross-linking and reversibility, and both cirrhotic nodule size and septal
thickness with clinical outcomes, have emerged from cell culture and animal studies, yet they
lead directly to new modes of diagnosis and therapy. Moreover, cirrhosis can no longer be
viewed as a single, irreversible end stage of disease but rather as a much broader category
subdivided by progressive stages of ECM accumulation, nodule size, portal pressure,
reversibility, and clinical risk (Figure 5). More refined and rigorous characterization of
cirrhosis will be essential for accurate randomization of patients in clinical trials of antifibrotic
therapies and stratification of disease risk, possibly including the risk of hepatocellular
carcinoma. Indeed, a key lesson from antifibrotic trials to date is that fibrosis may continue to
accrue rapidly even in patients with cirrhosis when therapy is not effective.216 Based on this
lesson, it is clear that trials in such cirrhotic patients will need to be lengthy, with the use of
more sensitive and specific biomarkers that do not rely on biopsy alone.217 Further progress
in understanding, diagnosing, and treating hepatic fibrosis will continue to rely on the
exploration of fundamental mechanisms of fibrogenesis, which is certain to lead to a
meaningful impact on the prognosis of patients with chronic liver disease.
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ADAMTS2 a disintegrin and metalloproteinase with thrombospondin–type repeats
metalloproteinase with thrombospondin type I motif

ASH alcoholic steatohepatitis
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ECM extracellular matrix

HIV human immunodeficiency virus

MMP matrix metalloproteinase

NASH nonalcoholic steatohepatitis

PDGF platelet-derived growth factor

TGF transforming growth factor

TIMP tissue inhibitors of metalloproteinase

TLR Toll-like receptor

VEGF vascular endothelial growth factor
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Figure 1.
Contributions of activated stellate cells and other fibrogenic cell types to hepatic fibrosis.
Quiescent stellate cell activation is initiated by a range of soluble mediators (Figure 2). The
activated cell is stimulated further by key cytokines (detailed further in Figure 2) into
myofibroblasts (which contain contractile filaments). Over time, however, other sources also
contribute to fibrogenic populations in liver, including bone marrow (which likely gives rise
to circulating fibrocytes), portal fibroblasts, and epithelial mesenchymal transition (EMT) from
hepatocytes and cholangiocytes. Relative contributions and the stages at which these cell types
add to the myofibroblast population is likely to differ among various etiologies of liver injury
(see text).
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Figure 2.
Pathways of hepatic stellate cell activation. Features of stellate cell activation can be
distinguished between those that stimulate initiation and those that contribute to perpetuation.
Initiation is provoked by soluble stimuli that include oxidant stress signals (reactive oxygen
intermediates), apoptotic bodies, lipopolysaccharide (LPS), and paracrine stimuli from
neighboring cell types including hepatic macrophages (Kupffer cells), sinusoidal endothelium,
and hepatocytes. Perpetuation follows, characterized by a number of specific phenotypic
changes including proliferation, contractility, fibrogenesis, altered matrix degradation,
chemotaxis, and inflammatory signaling. FGF, fibroblast growth factor; ET-1, endothelin-1; NK,
natural killer; NO, nitric oxide; MT, membrane type. Modified with permission from Friedman.7
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Figure 3.
Pathways of matrix degradation in fibrosis progression and regression. Macrophages have
assumed an important role in matrix degradation, which is profibrogenic during progression
of fibrosis but antifibrotic during fibrosis resolution. Although key sources of matrix degrading
activity are uncertain, it seems increasingly likely that both scar-associated macrophages and
stellate cells are sources of interstitial collagenases. At the same time, decreased TIMP-1 fosters
apoptosis of fibrogenic myofibroblasts. Figure adapted from studies of Duffield and
Iredale177 (and accompanying editorial, pp 29–32).

Friedman Page 26

Gastroenterology. Author manuscript; available in PMC 2010 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Possible links between stellate cells, fibrosis, regeneration, and cancer. Upon liver injury,
activated stellate cells release paracrine factors that may promote progenitor cell expansion,
the outcome of which could be either hepatic regeneration and/or promotion of hepatocellular
cancer. The possibility also exists that stellate cells may harbor the potential to
transdifferentiate into progenitor cells directly, which remains speculative. Moreover, fibrosis
promotes hepatocarcinogenesis through unknown mechanisms that may include release of
survival signals.
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Figure 5.
Cirrhosis is a series of progressive stages, not a single stage. Within the spectrum of cirrhosis,
the disease is characterized by progressive increases in hepatic venous pressure gradient
(HVPG), decompensation, and matrix cross-linking, associated with shrinking nodule size,
thickening septae, and enhanced risk of decompensation. For each 1-mm increase in HVPG
the risk of decompensation increases by 11%. Concepts presented here are not rigorously
supported by primary data for all features, but rather are intended to convey the progressive
changes that underlie deterioration in patients with chronic hepatic injury and fibrosis. Stages
are based on data from D’Amico et al.218 HE, hepatic encephalopathy; VH, variceal hemorrhage.
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