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Abstract

Background: It is currently believed that face processing predominantly activates the right hemisphere in humans, but
available literature is very inconsistent.

Methodology/Principal Findings: In this study, ERPs were recorded in 50 right-handed women and men in response to 390
faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to
objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of
face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a
significant bilateral face-age coding effect in women.

Conclusions/Significance: LORETA reconstruction showed a significant left and right asymmetry in the activation of the
fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain
functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in
the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face
perception during processing of face identity, structure, familiarity or affective content.
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Introduction

It is believed that face processing involves the activation of the

face fusiform area [1] (FFA) mediating the analysis of face

structure, the superior temporal sulcus mediating the analysis of

eye gaze and facial expressions [2] and the inferior occipital gyrus,

being particularly responsive to face parts [3]. Some researchers

suggest that face processing predominantly activates the right

hemisphere [1], whereas others hold that face processing involves

both left and right FFA [4] although each may contribute in a

different way [5]. It was hypothesized that left FFA is involved in

unfamiliar face coding, whereas right FFA would recognize

familiar faces [6]. In another study [7] it was found that FFA

lateralization depended on handedness: FFA activation was right

lateralized in right-handers but not in left-handers (24/32

participants were females). Rhodes et al., [8] found that both left

and right FFAs were activated more strongly to faces than to

objects while the total volume of activation was significantly larger

in the right than the left hemisphere. However, in a recent fMRI

study performed only in women [9] they found a clearly bilateral

activation of FG in emotional face processing. Overall, the

literature is highly inconsistent about FFA hemispheric lateraliza-

tion [10] [11], [12] since virtually no neuroimaging study has ever

considered viewer’s sex.

Electromagnetic recordings have identified a posterior negative

response peaking at about 170 ms (N170) that is larger to faces

than other visual objects over the right hemisphere, and thought to

reflect processes involved in the structural encoding of faces. The

combination of electromagnetic and neuroimaging data identified

the N1 generator in the ventral occipito-temporal cortex [13–16],

suggesting that N1 might be the manifestation of FFA activity [17].

A closer examination of the literature shows that face-specific

N170 topographic distribution is often but not always right-sided

in right-handed individuals. It is of great interest that N170

response was found to be bilateral or even left-sided in studies

involving a sample in which women were the majority [18] [19]

[20] [21] [22]. The study’s aim was to investigate whether there

are sex-related hemispheric asymmetries for face processing. Face-

sensitive N1 responses were measured over the occipital/temporal

cortices in 50 right-handed observers. In two previous studies

[23,24] we found a bilateral activation of occipito/temporal cortex

in women and right–lateralized activation in men during infant

face processing as indexed by sensory ERP responses. Since in

those studies all stimuli were infant faces, it lacked a control

condition with non-face objects. We devised a paradigm in which

face processing of persons of various age was contrasted with that

of technological objects.

Methods

Participants
Fifty healthy right-handed Italian University students (25 males

and 25 females) were recruited as volunteers for this experiment.

They earned academic credits for their participation. All students

were matched for educational level across sexes. Their mean age

was 22.36 years (men = 23, women = 21.77). All had normal or
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corrected-to-normal vision and reported no history of neurological

illness or drug abuse. Their handedness was assessed by the Italian

version of the Edinburgh Handedness Inventory, a laterality

preference questionnaire reporting right-handedness (0.80) and

right ocular dominance for all participants. An ANOVA on

laterality quotients proved no sex difference in the degree of lateral

preference between men (0.81, SE = 0.03) and women (0.79,

SE = 0.03). Almost half of the women practiced contraceptive

control (N = 11). About half women were in the pre-ovulatory

phase (N = 12), the others in the post-ovulatory phase (N = 11) at

the time of EEG recording. 2 women did not provide data.

Experiments were conducted with the understanding and the

written consent of each participant. The experimental protocol

was approved by the ethical committee of the University of

Milano-Bicocca. Data from all participants were included in data

analysis.

Stimuli
Stimulus set comprised 520 colour pictures depicting nice-

looking male and female faces of various ages (130 adults of 20–

50 ys., 130 children of 7–11 ys., 130 toddlers of 1–2 ys.) and 130

technologic/electronic complex objects of similar size and spatial

distribution (see Fig. 1). Attractive faces were used to avoid possible

subjective differences in aesthetic appreciation of faces, leading to

differences in ERP amplitudes [25]. Possibly gender-biased objects

(such as electric iron or shaver) were not included. Faces included

neck and the upper portion of chest. Normal proportions between

infants and adults were maintained to preserve authenticity of

perceptual experience. Eyes were aligned to fixation point. Except

for the toddler category (sometimes sex was indistinguishable), all

faces depicted an equal number of females and males. All people

were smiling or showing a positive facial expression. Positive

expressions were used since they are more interesting and are

likely to generate greater evoked potentials than neutral expres-

sions [24]. On the other hand, negative expressions were avoided

since they are known to strongly activate emotion-related brain

regions [26], therefore leading to possible sex differences in brain

activation. Faces and objects were presented randomly mixed with

44 equiluminant infrequent targets depicting common natural or

urban landscapes without visible persons (e.g., streets, offices,

countryside, seascape, etc.). Stimulus size was 7u 99 56068u 239 10,

and average luminance was 16.2 cd/cm2. An ANOVA showed no

difference in stimulus luminance as a function of stimulus type

(faces: adults = 16.4; children = 15.6; toddlers = 16.7. Ob-

jects = 16 cd/cm2;). Each slide was presented for 800 ms at the

centre of a PC screen with an ISI ranging from 1300 to 1500 ms.

The outer background was dark grey.

Task and procedure
In order to keep subject’s attention toward visual stimulation,

the task consisted of responding as accurately and quickly as

possible to photos displaying landscapes (urban or natural

scenarios without visible persons) by pressing a response key with

the index finger of the left or right hand while ignoring all other

pictures. The two hands were used alternately during the

recording session. The order of the hand and task conditions

was counterbalanced across subjects. Participants were comfort-

ably seated in a darkened, acoustically and electrically shielded test

area. They faced a high-resolution VGA computer screen located

80 cm from their eyes. They were instructed to gaze at the centre

of the screen, where a small circle served as fixation point, and to

avoid any eye or body movements during the recording session.

Figure 1. Exemplars of pictures used as stimuli, depicting female and male faces of 3 different age classes, and technological
objects as control stimuli.
doi:10.1371/journal.pone.0011242.g001
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Stimuli were presented at the centre of the screen, randomly

mixed in 8 different short runs lasting about 2 minutes and a half.

For each experimental run target stimuli varied between 4–7.

Sequence presentation order differed across subjects.

EEG recording and analysis
The EEG was continuously recorded from 128 scalp sites at a

sampling rate of 512 Hz. Horizontal and vertical eye movements

were also recorded. Linked ears served as the reference lead. The

EEG and electro-oculogram (EOG) were amplified with a half-

amplitude band pass of 0.016–100 Hz. Electrode impedance was

kept below 5 kV. EEG epochs were synchronized with the onset of

stimuli presentation. Computerized artifact rejection was per-

formed before averaging to discard epochs in which eye

movements, blinks, excessive muscle potentials or amplifier

blocking occurred. The artifact rejection criterion was peak-to-

peak amplitude exceeding 50 mV, and the rejection rate was ,5%.

ERPs were averaged off-line from 2100 ms before to 1000 ms

after stimulus onset. ERP components were identified and

measured, with reference to the average baseline voltage over

the interval from 2100 ms to 0 ms, at sites and latency where they

reached their maximum amplitude.

The peak amplitude of occipito/temporal N170 component was

measured at P9 and P10 in the time window 140–195 ms. ERP

data were subjected to multifactorial repeated-measures ANOVA

with one factor between (sex: males, females) and 2 factors within

groups. The within factors were: stimulus content (ADULTS,

CHILDREN, TODDLERS, OBJECTS), and hemisphere (left,

right) for ERP data. Multiple comparisons of means were done by

post-hoc Tukey tests.

Topographical voltage maps of ERPs were made by plotting

colour-coded isopotentials obtained by interpolating voltage values

between scalp electrodes at specific latencies. Low Resolution

Electromagnetic Tomography (LORETA) was performed on ERP

waveforms at n170 time latency. LORETA, which is a discrete

linear solution to the inverse EEG problem, corresponds to the 3D

distribution of neuronal electric activity that has maximum

similarity (i.e. maximum synchronization), in terms of orientation

and strength, between neighboring neuronal populations (repre-

sented by adjacent voxels). In this study an improved version of

standardized weighted low-resolution brain electromagnetic to-

mography (sLORETA) was used, which incorporates a singular

value decomposition-based lead field weighting: swLORETA [27].

Source space properties were: grid spacing (the distance between

two calculation points) = 5 point; estimated signal to noise ratio

(SNR, which defines the regularization; a higher value for SNR

means less regularization and less blurred results) was 3. LORETA

was performed on group data and it identified statistical significant

electromagnetic dipoles (p,0.05), the larger the magnitude, the

more significant the activation.

Figure 2. Grand-average ERP waveforms (N = 50) recorded in men and women as a function of stimulus type over left and right
occipito/temporal electro sites. On the right a graphic shows N170 peak amplitude values recorded in response to the 4 stimulus types.
doi:10.1371/journal.pone.0011242.g002
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A realistic boundary element model (BEM) was derived from a

T1 weighted 3D MRI data set by segmentation of the brain tissue.

The BEM model consisted of one homogenic compartment made

up of 3446 vertices and 6888 triangles. The head model was used

for intra-cranial localization of surface potentials. Segmentation

and head model generation were performed using the ASA [28].

Results

Fig. 2 shows grand-average waveforms recorded at occipito/

temporal electrode sites as a function of the viewer’s gender and

stimulus content. Strong gender differences are visible, especially

in the degree of N170 lateralization and discriminative response.

Figure 3. Isocolour voltage topographical maps (left and right side views) showing N170 scalp distribution in female and male
observers. N170 response is relative to adult face processing. The time window corresponds to its peak (150–170 ms) of maximum activation.
doi:10.1371/journal.pone.0011242.g003
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The ANOVA performed on the peak amplitude values of N170

revealed a significant effect of stimulus content (F3,144 = 90.4;

p,0.000001), showing a larger response to childish (tod-

dler = 23.95 mV, SE = 0.37; child = 23.44 mV) than adult faces

(22.7 mV, SE = 0.33), as proved by post-hoc comparisons

(p,0.01). Furthermore, N170 to faces was much larger (p,0.01)

than to objects (20.32 mV, SE 0.26). The further significance of

hemisphere x sex (F1,48 = 7.57; p,0.008) showed the presence of

a sex difference in N170 lateralization, with larger N170 over the

right (22.92 mV, SE = 0.55) than the left hemisphere in men

(21.95 mV, SE = 0.42), as indicated by post-hoc tests (p,0.01),

and no significant asymmetry in women (RH = 22.35 mV,

SE = 0.55, LH = 23.21 mV, SE = 0.42).

ANOVA yielded the significance of stimulus content x

hemisphere x sex (F 3,144 = 3.51, p,0.018). Post-hoc tests

revealed no sex difference in the amplitude of N170 to objects.

Furthermore, they showed a much larger face-specific response

over the right than left hemisphere (Tod-obj = 5.4 mV at P10 and

2.41 at P9) in men (p,0.01), and a bilateral face specific response

in women (Tod-obj = 3.79 mV at P10 and 3.0 mV at P9). It was

also found a lack of face coding effect over the left hemisphere in

men, with no difference in N170 to faces as a function of person’s

age. Conversely, a significant age-coding effect of over both

hemispheres was found in women, with a larger N170 to toddler

than adult faces (p,0.01) at both P9 and P10 sites and no

hemispheric difference in the amplitude of N170 to faces. On the

other hand, results showed larger right than left hemispheric

responses to faces in men (adults, p,0.04; toddlers and children,

p,0.00001). The latter effect is visible in topographical maps of

Fig. 3, computed for N170 surface voltages recorded in response to

adult faces, separately for men and women.

In order to locate the possible neural circuits subtending face

coding in the two sexes, two different swLORETA source

reconstructions were performed, separately for men and women,

on 170 amplitude measured in the time window 135–185 ms,

which are displayed in Fig. 4. The inverse solution showed that the

processing of adult faces in women was associated with a

significant activity in the left fusiform gyrus (possibly correspond-

ing to FFA), left MOG, right cuneus (BA18), left posterior

cingulate cortex, and anterior brain regions (BA10/11), as listed in

Table 1. In men processing of adult face was associated with

activation in the right fusiform gyrus, the left MOG, right posterior

cingulate cortex and anterior brain areas (BA10/11).

Discussion

Overall, electrophysiological and source localization data

support previous literature about the existence of specific neural

populations in the fusiform area (FG)[1] [2] and the middle

occipital area devoted to face processing, as reflected by the

amplitude of occipito/temporal N170 component of ERPs.

Moreover, they seem to suggest a less marked lateralization in

the activity of face-devoted brain regions in women than men.

This finding, supported by the presence of a stronger left FG

generator in women and right FG generator in men, results in a

asymmetrical N170 surface amplitude in men, and a bilateral

Figure 4. SwLORETA inverse solution performed on brain activity recorded during the 135–175 ms time window in response to
adult faces in the two sexes.
doi:10.1371/journal.pone.0011242.g004
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distribution in women (tending toward the left asymmetry).

Moreover, over the left hemisphere N170 amplitude did not vary

as a function of face age in men but only in women. And indeed

N170 was of greater amplitude to toddlers’ than adults’ faces in

both hemispheres of the female brain. This age coding effect might

be due to a series of factor including a bias toward baby schema,

for which toddlers’ faces are judged as cuter and more attractive

than adult faces [29], and have greater attention capturing effects,

as well as to more perceptual face-specific mechanisms related to

the fact that toddler’s faces are more alike (perceptually similar)

than adult faces. The sex difference in hemispheric asymmetry

finding agrees with Glocker and coworkers’s [30] evidence of a

clear left FFA activation in women during processing of infant

faces. On the other hand, they do not directly agree with a recent

investigation [7] suggesting a relation between handedness and

FFA lateralization, since our female participants, showing a

bilateral response of face responsive areas, were indeed right-

handed.

Overall, our results are in line with many studies that show

differences between men and women in the degree of lateralization

of cognitive and affective processes. Substantial data support

greater hemispheric lateralization in men than women for

linguistic tasks [31] and for spatial tasks [32]. Gender differences

have also been found in the lateralization of visual-spatial

processes such as object construction and mental rotation tasks

[33], in which males are typically right hemisphere (RH) dominant

and females bilaterally distributed. More relevant to the present

experiment are the data provided by Bourne [34], who examined

the lateralization of processing positive facial emotion in a group of

276 right-handed individuals. Subjects were asked to observe a

series of chimeric faces with contrasting expressions and to decide

which face they thought looked happier. The results showed that

males were more strongly lateralized than women, showing a

stronger perceptual asymmetry in favour of the left visual field

(RH). There are also a number of studies that have found different

degrees of lateralization in the cerebral response of men and

women to emotional stimuli: men tend to demonstrate an

asymmetric functioning, and women a bilateral functioning

[35–38]. Notwithstanding the existing supporting literature

(including sex differences in lateralized amygdala activity during

happy and fearful face perception, e.g. [39]), is certainly not a

shared knowledge in cognitive neuroscience that face processing is

bilateral in the female brain and right-sided in the male brain, and

such an assumption is not made anywhere in cognitive

neuroscience manuals or clinical essays on prosopagnosia. For

this reason, we feel that the present findings may make a great

contribution toward the overall understanding of how faces are

processed in the female and male brain in humans.

Conclusions
The present data reveal a lesser degree of lateralization of brain

functions related to face coding in women than men, both in terms

of face-related N170 amplitude, and N170 object/face and adult/

toddler discriminative response. In this light, our data may also

provide an explanation of the inconsistencies in the available

literature concerning the asymmetric activity of left and right

occipito-temporal cortices devoted to face perception during

processing of face identity, structure, familiarity or affective

content.
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