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Abstract

Parkinson’s disease (PD) is a common neurodegenerative movement disorder characterized by
extensive degeneration of dopaminergic neurons in the nigrostriatal system. Neurochemical and
neuropathological analyses clearly indicate that oxidative stress, mitochondrial dysfunction,
neuroinflammation and impairment of the ubiquitin-proteasome system (UPS) are major
mechanisms of dopaminergic degeneration. Evidence from experimental models and postmortem
PD brain tissues demonstrates that apoptotic cell death is the common final pathway responsible for
selective and irreversible loss of nigral dopaminergic neurons. Epidemiological studies imply both
environmental neurotoxicants and genetic predisposition are risk factors for PD, though the cellular
mechanisms underlying selective dopaminergic degeneration remain unclear. Recent progress in
signal transduction research is beginning to unravel the complex mechanisms governing
dopaminergic degeneration. During 12t International Neurotoxicology meeting, discussion at one
symposium focused on several key signaling pathways of dopaminergic degeneration. This review
summarizes two novel signaling pathways of nigral dopaminergic degeneration that have been
elucidated using neurotoxicity models of PD. Dr. Anumantha Kanthasamy described a cell death
pathway involving the novel protein kinase C delta isoform (PKC3) in oxidative stress-induced
apoptotic cell death in experimental models of PD. Dr. Ajay Rana presented his recent work on the
role of mixed lineage kinase-3 (MLK3) in neuroinflammatory processes in neurotoxic cell death.
Collectively, PKC6 and MLKS3 signaling pathways provide new understanding of neurodegenerative
processes in PD, and further exploration of these pathways may translate into effective
neuroprotective drugs for the treatment of PD.
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1.0 Role of PKC® Signaling in Neurotoxicity Models of Parkinson’s Disease

(A.G.K)

Parkinson’s disease (PD) is a devastating neurodegenerative disorder affecting several million
people worldwide. It inflicts a tremendous social and economic burden on modern society
where the incidence of the disease increases with age. Currently, the mean age of onset is
around 55 years. In all cases, the clinical features which characterize PD, including resting
tremor, bradykinesia, and postural instability (Fahn and Sulzer, 2004), are progressive. Distinct
among the pathological features of PD is the significant loss of dopaminergic neurons in the
substantia nigra leading to a dramatic depletion of dopamine in the striatum. The current PD
treatment approach employing levodopa, an intermediate molecule in the genesis of dopamine,
is ranked among the most remarkable success stories in medical history. However, the drug
confers only symptomatic relief of what remains an inexorably progressive and ultimately fatal
neurodegenerative disorder As a result, the need for novel neuroprotective agents designed to
interfere with the basic pathogenic mechanism of cell death in PD are clearly needed.

1.1 Environmental risk factors and Parkinson’s disease

The specific etiology of PD is still elusive, although results from extensive studies reveal that
both accumulated environmental toxicant exposure and genetic mutations contribute to the
onset of PD (Thomas, 2009)(Gerlach and Riederer, 1999). While sporadic cases of PD are
largely attributed to genetic causes (approximately 90 percent), environmental toxin exposure
triggering neuronal apoptosis is considered a dominant risk factor in the development of this
disease. Most compelling among this evidence was the discovery of a synthetic heroin analog,
1,2,3,6-methyl -phenyl-tetrahydropyridine (MPTP), that was noted to produce a syndrome
clinically and pathologically resembling PD in a group of narcotics addicts (Langston et al.,
1983). The neurotoxicology of MPTP has subsequently been well characterized; MPP™, the
active metabolite of MPTP, enters dopaminergic neurons via a dopamine transporter and
inhibits the complex | of the mitochondrial respiratory chain, thereby selectively causing
toxicity to dopaminergic neurons (Nicklas et al., 1985). In addition to MPTP, a variety of
additional exogenous or endogenous toxic agents have been recognized to cause PD-like
syndromes including dopamine and its metabolites, certain metals, and several agricultural
chemicals (Kanthasamy et al., 2005). Many epidemiological, case-control and postmortem
studies provide evidence for the involvement of heavy metals in PD pathogenesis (Aschner et
al., 2009; Uversky et al., 2001). Of these metals, manganese (Mn) gains more attention than
others because of its role in the human neurological condition known as manganism, which is
characterized by clinical signs and morphological lesions similar to those seen in PD. Despite
the similarities between manganism and PD, some distinct clinical and pathological differences
are evident between the diseases. The cellular mechanisms underlying the neurotoxicology of
manganese are still unclear although accumulating evidence indicates that neuronal apoptosis
resulting from oxidative stress and mitochondrial dysfunction may play an important role. With
regard to agricultural chemicals and PD etiology, dieldrin, an organochlorine pesticide, has
been associated with PD based on postmortem and epidemiological studies (Kanthasamy et
al., 2005; Richardson et al., 2006). Postmortem analysis revealed that dieldrin was present in
PD brains, but not in control brains (Fleming et al., 1994). Moreover, a case-control study also
demonstrated that dieldrin was a risk factor in PD (Semchuk et al., 1991).
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1.2 Involvement of apoptosis in Parkinson’s disease

Apoptosis or programmed cell death is a genetically regulated death process of cells involving
caspase activation and a lack of cell swelling (Williams and Smith, 1993). Apoptosis is
recognized as a key fundamental and indispensable process in any normal cell function.
Aberrant regulation of apoptosis is a common feature in many diseases including
neurodegenerative diseases and cancer and is now widely accepted as a crucial cause of
dopaminergic neuronal death in PD. This is based on extensive postmortem analysis of PD
brains as well as experimental models (Anglade et al., 1997; Jellinger and Stadelmann, 2000;
Kaul et al., 2003; Mochizuki et al., 1996; Tatton and Kish, 1997; Yuan and Yankner, 2000).
Induction of apoptosis by both environmental insults and PD genetic predisposition suggests
that biochemical events involved in the cell death process are highly conserved despite the
differences in the nature of neurotoxic insults.

Impairment of mitochondrial function by neurotoxicants is known to result in the selective
degeneration of dopaminergic neurons (Kanthasamy et al., 1994; Pallanck and Greenamyre,
2006; Schapira, 2008; Winkhofer and Haass, 2009). We and others have shown that
neurotoxins such as MPP* (Kaul et al., 2003), dieldrin (Kitazawa et al., 2004), manganese
(Latchoumycandane et al., 2005), rotenone(Sherer et al., 2003; Testa et al., 2005), and paraquat
(McCormack et al., 2005) activate major events of the apoptotic pathway, including
cytochrome C release, caspase-3 activation, and DNA fragmentation. Thus, apoptosis is the
primary cell death process of dopaminergic neurons and therefore, understanding the molecular
mechanisms of apoptosis continues to be an important area of investigation in neurotoxicology.

1.3 Protein kinase C delta (PKCd8) and neuronal apoptosis

The detailed understanding of the molecular and cellular mechanisms in neuronal apoptosis
offer more promising points of entry into the therapeutics of PD. Already, many signaling
pathways have been identified in the neurodegenerative processes of dopaminergic neurons.
During the past several years, our laboratory has focused on identifying key players involved
in dopaminergic neuronal apoptosis and we found that protein kinase C delta (PKC3) is an
oxidative stress-sensitive kinase, which functions as a key mediator in apoptotic cell death in
PD (Anantharam et al., 2002; Kanthasamy et al., 2003; Kaul et al., 2005; Kaul et al., 2003;
Latchoumycandane et al., 2005; Yang et al., 2004). We also have developed translational PD
therapeutic strategies targeting the proapoptotic PKC3 cell death signaling pathway
(Kanthasamy et al., 2006; Zhang et al., 2007a). At least 12 isoforms have been identified and
further divided into three groups: conventional PKCs (a, BI, Bll, v), novel PKCs (3, &, 1, 0),
and atypical PKCs (¢, 1, 1), each based on its lipid requirement and dependency on Ca2* for
activation. PKC3 was first discovered by Gschwendt et al. (Gschwendt et al., 1986), and
belongs to the protein kinase C serine/threonine kinase family. This family of kinase plays a
role in the regulation of multiple cellular responses, including proliferation, cell cycle
progression, differentiation, survival, and apoptosis (Dempsey et al., 2000; Kanthasamy et al.,
2003). PKC3, a Ca2*-independent isoform, is ubiquitously expressed in most tissues including
brain, spleen, ovary, lung and uterus (Leibersperger et al., 1991). A survey of expression of
PKC isoforms in the rat brain indicates that PKC5 is highly expressed in the thalamus, septal
nuclei, and hippocampal CA1 pyramidal cell layer (Naik et al., 2000). Recently, we conducted
double immunostaining analysis and confocal microscopy to evaluate the expression of
PKC3 in nigral dopaminergic neurons (Zhang et al., 2007b). Our results revealed that PKC5
is highly expressed in mouse nigral tissues, and more importantly, PKCs co-localizes with
tyrosine hydroxylase (TH) in the substantia nigra. Also, we showed that PKCs negatively
regulates TH activity and dopamine synthesis, demonstrating an anatomical and functional
relationship of the kinase in the nigrostriatal pathway (Zhang et al., 2007b).
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The domain structure of PKCS is presented in Fig. 1. Consistent with other PKC isoforms,
PKC3 consists of a regulatory domain (N-terminus) and a catalytic domain (C-terminus). Like
other conventional and novel PKC isoforms, PKC3 is primarily activated by a lipid-mediated
mechanism involving its translocation from cytosol to membrane. Two other pathways of
PKCs activation also have been elucidated: phosphorylation and proteolytic activation (Brodie
and Blumberg, 2003;Kanthasamy et al., 2003;Kikkawa et al., 2002). Reportedly,
phosphorylation of Thr-505, Ser-643, and Ser-662 in the activation loop can increase its kinase
activity (Toker, 1998). In addition to the phosphorylation of Thr/Ser sites, tyrosine
phosphorylation at tyrosine residues Tyr-52, Tyr-155, Tyr-187, Tyr-311, Tyr-332, and Tyr-565
has also been implicated in modulating activity (Gschwendt, 1999) in various cell types.
Various types of stimulation reportedly induce the tyrosine phosphorylation of PKC3 (Kikkawa
etal., 2002). For example, treatment with the known oxidative stress-inducing agent hydrogen
peroxide (H,0,) reportedly caused Tyr-311 and Tyr-332 phosphorylation of PKCS (Konishi
etal., 2001). We have found that under certain stimulation, e.g., H,O, the phosphorylation of
Tyr-311 on PKC3 is particularly important for the proteolytic activation of PKCS in
dopaminergic neurons (Kaul et al., 2005). Because multiple tyrosine residues on PKC4 can be
phosphorylated by upstream kinase, the effect of tyrosine phosphorylation may be different,
depending on both the position of the phosphorylated tyrosine and the specific cellular context.
We and others have identified an additional proteolytic activation mechanism of PKC53 that
results in catalytic and regulatory fragments due to proteolysis. The cleavage of PKC3 is
mediated by caspase-3, resulting in 41-kDa catalytically active and 38-kDa regulatory
fragments. Compared to membrane translocation and serine/tyrosine phosphorylation,
proteolytic cleavage of PKCS causes a persistent activation of the kinase. Importantly, PKC3
proteolytic activation mediates apoptotic cell death.

1.4 PKCb proteolytic activation in neurotoxicity models of dopaminergic degeneration

The proteolytic activation of PKC6 has been implicated in apoptosis in many cell types (Choi
et al., 2006; D’Costa and Denning, 2005; Ryer et al., 2005). Our recent studies have
characterized a critical role for the caspase-3-dependent proteolytic activation of PKCS in
oxidative stress-induced dopaminergic cell death in cell culture models of PD. In rat
mesencephalic dopaminergic neuronal N27 cell models, a dose-dependent and time-dependent
increase in the proteolytic activation of PKCS was identified following exposure to
dopaminergic neurotoxins such as inorganic manganese (Latchoumycandane et al., 2005), the
organic manganese found in the gasoline additive methylcyclopentadienyl manganese
tricarbonyl (MMT) (Anantharam et al., 2002), the agriculture chemical dieldrin (Kitazawa et
al., 2003), MPP* (Kaul et al., 2003; Yang et al., 2004), the proteasome inhibitor MG-132 (Sun
et al., 2008), or the oxidative stress inducing agent H,0, (Kaul et al., 2005). We also found
that the active PKC3 isoform was not translocated to the cell membrane during neurotoxic
insults, suggesting that the lipid-mediated activation mechanism is not involved in this process.
Figure 2 shows PKC3 cleavage in N27 cells increased after manganese, dieldrin, or MG-132
treatment. Furthermore, using both pharmacological inhibitors (PKCd specific inhibitor
rottlerin; and caspase-3 inhibitors z-DEVD-fmk or z-DIPD-fmk) and genetic tools (PKCd
SiRNA or a PKC3 cleavage-resistant mutant), we demonstrated that the caspase-3 dependent
proteolytic activation of PKC$ plays an important role in neurotoxicant-induced apoptotic
death (Kanthasamy et al., 2006; Sun et al., 2008; Yang et al., 2004). As shown in Figure 3, the
caspase-3 inhibitor z-DEVD-fmk and the PKC5 cleavage site peptide inhibitor z-DIPD-fmk
effectively blocked the Parkinsonian toxicant MPP* (300uM) and the prooxidant H,O, (100
uM) induced PKC6 cleavage. We demonstrated that the PKC3 cleavage site-specific peptide
inhibitor z-DIPD-fmk was more potent than the general caspase-3 inhibitor z-DEVD-fmk in
protecting dopaminergic neurons against apoptotic cell death, suggesting the possibility of a
novel neuroprotective strategy targeting PKC3 proteolytic activation. We have noted that the
proteolytically cleaved PKC5 catalytic fragment translocates into the nucleus. In the nucleus,
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PKC3 can induce phosphorylation of lamin B (Cross et al., 2000). Several other proteins also
interact with PKC3, including DNA-dependent protein kinase (DNA-PK) (Bharti et al.,
1998) and p73 (Ren et al., 2002). Additionally, a positive feedback amplification loop between
PKC5 and caspases-3 has been discovered by our laboratory. We found that the proteolytic
activation of PKC3 regulates upstream caspase-3 activity, thus suggesting that PKCd may
function as both a mediator and signal amplifier during the neurotoxin-induced apoptotic
pathway.

2.0 Mixed Lineage kinase-3 Signaling: Relevance to Neuroinflammatory
Processes in Neurotoxic Cell Death (AR)

2.1 Mixed Lineage Kinases (MLKs) and neuronal apoptosis

For the last several years our laboratory has focused on the dissection of the detailed cell
signaling network mediated via a relatively novel and new family of kinases called Mixed
Lineage Kinases (MLK). MLK are unique in that all family members contain signature
sequences of Ser/Thr and Tyr kinases within their catalytic domains and thus they are called
hybrid or mixed kinases. We have shown that MLK3, a member of MLK family, acts as
MAPKKK and specifically activates the jun-N-terminal kinase (JNK) (Figure 4A) (Rana et
al., 1996). In the INK pathway, the MAP3K members, like mixed lineage kinases (MLKSs),
phosphorylate MAP2K members SEK1/MKK4 and MKK7 (Rana et al., 1996; Gallo et al.,
2002). The activated MAP2K subsequently phosphorylate JNK at the tyrosine and threonine
residues leading to phosphorylation and activation of transcription factors such as c-Jun, ELK-1
and ATF-2. The role of MLK in neuronal cell death pathways was unknown until recently
when a specific inhibitor of MLK family, CEP-1347, and its analogue CEP-11004 were
identified (Maroney et al., 2001). Subsequently, it was shown that a CEP compound appeared
to prevent dopaminergic neuronal cell death in an MPTP model of Parakinson’s disease (PD)
(Saporito et al., 1999; Teismann et al., 2003). Whether the mediated dopaminergic neuronal
loss observed in this model of PD resulted from JNK activation or from an unknown pathway
is still not established. However, it has been reported in studies of several cell culture models
that the activation of INK promotes cell death (Davis, 2000; Kyriakis etal., 2001) and therefore
it is expected that activation of the MLK-JNK pathway also results in neuronal cell death. The
CEP compounds capable of inhibiting MLK activation are not specific to a particular isoform
and therefore in vivo studies with these inhibitors do not implicate specific MLK members in
dopaminergic cell loss. The involvement of a specific MLK isoform can be identified only by
generating genetic mouse models, where specific MLK members can be ablated. Interestingly,
MLK3-and MLK1+MLK2-compound knockout mice have been generated recently (Brancho
et al., 2005; Bisson et al., 2008). However, their role in dopaminergic neuronal loss has not
been investigated. Currently investigation is underway in our lab to identify the specific MLK
isoform capable of mediating dopaminergic neuronal loss in MPTP mouse models of PD.

2.2 Neuro inflammation and MLKs-mediated cell death

Neuroinflammation has been reported to cause dopaminergic neuronal cell death in PD patients
(Hald et al., 2005). Elevated levels of neuroinflammatory cytokines such as TNF-a, have been
detected in animal model of PD and human postmortem brain samples from PD (Dufek et al.,
2009). While specific agonists for each MLK member previously were not known, we recently
identified TNF-a and ceramide as specific agonists of MLK3 (Figure 4B) (Sathyanarayana et
al., 2002). In this study, we showed that MLK3 and its downstream target, INK, were activated
potently by TNF-o and ceramides (Sathyanarayana et al., 2002). The TNF-a is a
proinflammatory cytokine implicated in the cell death pathway (Tansey et al., 2008). While it
is possible that these proinflammatory pathways impinge on MLK3-JNK activation and
promote dopaminergic neuronal cell death, elevated levels of circulatory ceramides have also
been reported in PD patients (Arboledaetal., 2009). Similar to proinflammatory cytokine TNF-
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a, ceramides are also pleiotropic in nature having a range of physiological effects including
the inducement of cell death (Villena et al., 2008). The premise that TNF-o and ceramides,
both agonists of MLK3, might promote dopaminergic cell death via MLKS3, is currently being
examined in our lab via MLK3 knockout mice. Additionally, it is possible that TNF-a itself is
regulated by the MLK3-JNK pathway because the TNF-a promoter contains AP-1 binding
sites, which are ultimately regulated by JNK activation.

2. 3 Regulation of MLK by upstream kinases and its implication in neuronal cell death

Dopaminergic neuronal cell death is a complex process where various upstream signaling
pathways have been shown to either promote or prevent cell death (DeLegge et al., 2008). It
has been reported that activation of AKT, a cell survival kinase, prevents dopaminergic
neuronal cell death, while GSK3, an AKT upstream kinase, negatively regulates AKT and
thereby promotes dopaminergic neuronal cell death (Nair et al., 2008). More specifically, we
have shown that AKT phosphorylates MLK3 on a specific residue, Ser674, and down regulates
MLKS3 kinase activity and associated cell death (Figure 5A) (Barthwal et al., 2003; Mishra et
al., 2007). Interestingly, ceramide, which attenuates AKT kinase activity (Mora et al., 2002),
is also an activator of MLK3 and therefore an elevated level of ceramide, as seen in PD patients
might downregulate the cell survival pathway by inhibiting AKT and concurrently activating
the cell death pathway mediated via MLK3 or other MLK. This also could explain how
ceramide might cause cell death in dopaminergic neurons.

Glycogen synthase kinase-3p(GSK-3p) has been identified primarily as a metabolic enzyme,
regulating glycogen synthesis. However, GSK3p has been implicated recently in a neuronal
cell death pathway (Sereno et al., 2009) and reported to phosphorylate Tau-protein and promote
tangle formation (Baum et al., 1996), a hallmark of Alzheimer disease. In a neuronal cell death
model system, we have seen that nerve growth factor (NGF) deprivation causes neuronal cell
death via activation of GSK3p and MLK3 (Figure 5B) (Mishra et al., 2007). Further,
investigation revealed that MLK3 was phosphorylated at two residues Ser789 and Ser793 by
GSK3p (Mishra et al., 2007). This phosphorylation of MLK3 by GSK3p leads to its activation
and concurrent activation of the MLK3-downstream kinase, JINK (Mishra et al., 2007). When,
these two sites on MLK3 were mutated to non-phosphorable Ala, the activation of MLK3 by
GSK3p was blocked, and neuronal cell death upon NGF withdrawal also prevented (Mishra
etal., 2007). It is reported that PD patients lack many growth factors (Mogi et al., 1999) and
therefore it is worthy to envision that lack of growth factors in PD patients might lead to
activation of a GSK3p-MLK3-JNK pathway that ultimately can promote dopaminergic
neuronal cell death. Our hypothesis was further confirmed recently when it was shown that
GSK3p inhibition indeed promotes the dopaminergic neuronal cell survival inan MPTP mouse
model of PD (Wang et al., 2007).

In conclusion, our results suggest that MLK3 could serve as a primary MLK member that
regulates dopaminergic neuronal cell death via JNK activation in response to neuro-
inflammatory triggers like TNF-a. Upstream regulators of MLK3, AKT and GSK3p, also might
play central roles in regulating the cell death of dopaminergic neurons via MLK3 in PD patients.
We believe that future investigation of MLK3 or GSK3p may prove beneficial in halting
dopaminergic neuronal loss during PD pathogenesis.

3.0 Summary

In this review, we describe the proapoptotic function of two kinases, PKCs and MLK3, in
neurotoxic models of Parkinson’s disease (PD). Figures 6A and 6B summarize the overall
pathway involving the caspase-3-dependent proteolytic activation of PKC3 and MLK3-JNK
in PD models. Based on these results, PKC8 and MLK3 may become valid pharmacological
targets for the development of a neuroprotective strategy against oxidative stress-induced
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dopaminergic degeneration in PD. Further exploration of PKCS and MLK3 signaling will also
provide novel insights into the pathogenesis of PD.
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Figure 1.

Schematic representation of the domain structure of PKC3. Caspase-3 cleavage site, nuclear
localization signal, and the phosphorylation sites including serine (S), threonine (T), and
tyrosine (Y) residues are depicted.
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PKCS cleavage in neurotoxicity cell culture models of PD. N27 dopaminergic neuronal cells
were treated with environmental neurotoxicants manganese, dieldrin, or the classic proteasome
inhibitor MG-132. After treatment, cells were collected and subjected to Western blot analysis
of PKC3. Native PKC3 (~74KDa) and cleaved fragments (~42KDa) are shown in each panel.
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Effect of caspase inhibitors on oxidative stress induced PKC3 cleavage in cell culture models
of PD. N27 dopaminergic cells were treated with prooxidant H,O, or the Parkinsonian toxicant
MPP* in the presence or absence of either 50 uM Z-DIPD-FMK or 50 uM z-DEVD-FMK.
After treatment, cells were collected and subjected to Western blot analysis of PKCS.
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Figure 4.

MLK3 Activation: (A) MLK3 is a potent activator of INK: Mammalian cells were transfected
either with JNK alone or along with MLK3 expression vectors. The ectotopically expressed
JNK was immunoprecipitated and kinase assay was performed using GST-Jun as the substrate.
(B) MLK3 is activated by TNFa and ceramide: Mammalian cells were transfected with MLK3
expression plasmid and 36 hours post-transfection, cells were starved in 0.2% serum containing
medium for 12 hours. The starved cells were either treated with ceramide (10 uM) for 45
minutes or with TNFa (10 nM) for 30 minutes. MLK3 kinase activity was measured using
GST-SEK1 protein as the substrate.
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Figure 5.

Regulation of MLK3 activation by other kinases: (A) AKT negatively regulates MLK3 kinase
activity: Mammalian cells were transfected with either MLK3 alone or along with active AKT
(myr-AKT) expression vectors. The ectopically expressed MLK3 was immunoprecipitated and
the Kinase activity was measured using GST-MKK?7 protein as the substrate (B)GSK3p3
activates MLK3 kinase activity: The mammalian cells were transfected with either MLK3
alone or along with GSK3p expression plasmids. The MLK3 kinase activity was measured as
described in Figure 2.
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Figure 6.

(A)Schematic model showing the role of PKC$ in neurotoxin-induced neuronal apoptosis.
Exposure to neurotoxins, such as MPP*, dieldrin, manganese and H,O5, induces early events
of apoptosis including generation of reactive oxygen species (ROS), mitochondrial
dysfunction, and release of cytochrome C into cytosol. The released cytosolic cytochrome C
activates caspase-9, which subsequently activates caspase-3. Activated caspase-3 mediates
proteolytic cleavage of PKCs to produce an active PKCs fragment. Proteolytic activation of
PKC5 eventually contributes to cell death. The proteolytic activation of PKCg can also regulate
upstream the mitochondrial dependent caspase cascade by a positive feedback loop. (B).
Schematic model for cell death and cell survival signaling pathway regulated by MLK3: Under
growth factor sufficient conditions, P13 kinase-AKT pathway remains active that leads to
inhibition of GSK3p. AKT also phosphorylates MLK3 at Ser674 site and attenuates MLK3
kinase activity. The inhibition of MLK3 kinase activity prevents the activation of INK, finally
leading to cell survival. On the contrary, the proinflammatory cytokines, TNFa activates MLK3
probably via ceramide generation or by some unknown mechanism. The activation of MLK3
by its agonists leads to activation of JNK and finally leading to cell death.

Neurotoxicology. Author manuscript; available in PMC 2011 September 1.



