
Estimating the personal cure rate of cancer patients using
population-based grouped cancer survival data

Binbing Yu, Ram C. Tiwari*, and Eric J. Feuer
Laboratory of Epidemiology, Demography and Biometry National Institute on Aging, Bethesda,
MD 20892

Office of Biostatistics, Center for Drug Evaluation and Research Food and Drug Adminstration,
Silver Spring, MD 20993

Statistical Research and Applications Branch National Cancer Institute, Bethesda, MD 20892

Abstract
Cancer patients are subject to multiple competing risks of death and may die from causes other
than the cancer diagnosed. The probability of not dying from the cancer diagnosed, which is one
of the patients’ main concerns, is sometimes called the “personal cure” rate. Two approaches of
modeling competing-risk survival data, namely the cause-specific hazards approach and the
mixture model approach, have been used to model competing-risk survival data. In this article, we
first show the connection and differences between crude cause-specific survival in the presence of
other causes and net survival in the absence of other causes. The mixture survival model is
extended to population-based grouped survival data to estimate the personal cure rate. Using the
colorectal cancer survival data from the Surveillance, Epidemiology and End Results (SEER)
Program, we estimate the probabilities of dying from colorectal cancer, heart disease, and other
causes by age at diagnosis, race and American Joint Committee on Cancer (AJCC) stage.
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1 Introduction
Net survival, i.e., survival in the absence of other causes, is a measure of excess mortality
due to cancer. This is a hypothetical measure of survival if all causes of death other than
cancer of interest were to be eliminated. Net survival is a desirable measure to evaluate the
progress of cancer treatment and control efforts since the interpretation as excess mortality
due to cancer is not a ected by changes in mortality due to other diseases.1 However, net
survival does not represent the actual survival patterns observed in a cohort of cancer
patients. Comorbidity for cancer patients may limit treatment options and increase the risk
of death from other causes. Usually comorbidity from competing causes increases with
advancing age and is greater for patients in poor health. Thus, net survival may not be an
ideal measure for assessing the impact of a cancer diagnosis in the presence of multiple
competing risks. From another perspective, crude cause-specific probabilities of death
provide measures of cause-specific mortality in the presence of causes of death in addition
to cancer and reflect mortality patterns actually observed among patients.2 Thus, they are
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appropriate measures when the focus is on inference and comparison of cause-specific
failures under a variety of conditions. Such probabilities can be used to weigh the risks and
benefits of various treatment options, particularly for patients diagnosed at older ages when
comorbidity is high.

There has been considerable progress against cancer due to improvements in treatment, and
the dissemination of early diagnosis and screening. Thus, successfully treated cancer
patients may die from a cause other than the diagnosed cancer, which is called “personal
cure.” The corresponding proportion of dying from causes other than the diagnosed cancer is
defined as the personal cure rate. Gordon3 originally applied the mixture model to estimate
the personal cure rate using breast cancer data from a clinical trial. To assess mortality from
cancer at the population level, we extend the mixture model for competing-risk survival to
population-based cancer survival data in order to calculate crude probabilities of dying from
cancer and other competing risks. The rest of the paper is organized as follows: In Section 2,
we first describe survival data with competing risks and review the mixture model for
continuous survival data. Next, we extend the mixture model to grouped survival data,
describe the estimation method and discuss the connection between net survival and crude
survival. In Section 3, we apply the mixture model to colorectal cancer survival data to
calculate the probabilities of dying from three competing causes of death. We discuss the
potential use and limitations of the mixture model in the Discussion section.

2 The mixture model for grouped survival data with competing risks
We consider a patient subject to K mutually exclusive competing risks of death and assume
that the primary outcome is a random pair (D, T), where D takes a value from the set {1,
2, ..., K} indicating cause of death and T is a non-negative random variable representing time
to death. Let z denote a vector of covariates. The cause-specific hazard rate, defined as the
probability of dying from cause k alone in [t, t + dt) in the presence of all acting risks, given
T ≥ t,4 is given by

Let  and . The survival function for T is

David and Moescheberger5 consider the observed death time T as the minimum of K latent
death times, i.e., T = min(T1,···, TK). When the competing risks T1, . . . , TK, are independent,
Sk(t|z) can be interpreted as the net survival function from cause k in the absence of other
causes and hk(t|z) is the net hazard.6 Net survival can be estimated by the Kaplan-Meier
method or the actuarial method by treating the other causes of deaths as censored.

The crude cumulative probability or cumulative incidence function (CIF) of dying from
cause k in the presence of other causes is

(1)
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The functions  is also called sub-distribution function for cause k, k = 1, ..., K. Let
πk(z) = P(D = k|z) be the probability of dying from cause k and Qk(t|z) = P(T > t|D = k, z)
be the conditional crude survival function. Then .

2.1 Review of mixture model for competing risk data
The mixture model7 specifies the death probabilities πk(z) and the crude survival P(T > t|D
= k, z), k = 1, ..., K. It does not require the independence assumption among competing risks.
The cause of death D follows a multinomial distribution with probabilities P1(z), ..., PK(z)
with

(2)

where μk is a scalar constant and γk is a vector of regression coefficients. Because

, we set μK = 0 and γK = 0 for identifiability purpose. We also assume cause D =
1 is death due to cancer of interest. The personal cure rate is then calculated as 1 − P1(z).

The functions Qk(t|z) = P(T > t|D = k, z), k = 1, ..., K are called crude cause-specific
survival functions.1 Larson and Dinse7 use a proportional hazards (PH) model for Qk(t|z):

(3)

where , qk(t) is the baseline hazard function and βk is a vector of
regression coefficients. The overall survival function can also be expressed as

(4)

It can be shown that Sk(t|z) ≥ Qk(t|z) (see Appendix I) for all t unless Pj(z) = 0 for j ≠ k. The
inequality implies that, under the independent competing-risks assumption, the net survival
function in the absence of other causes is always greater than the crude cause-specific
survival function in the presence of other causes. Hence, the Kaplan-Meier and actuarial
estimates always overestimate the conditional crude cause-specific survival probability.

2.2 The mixture model for grouped survival data
Survival times from population-based cancer registries are usually grouped into annual or
monthly intervals, Ij = (tj−1, tj] for j = 1, ..., J, where t0 = 0 and tJ = τ denote the beginning
and end of follow-up, respectively. For the cohort with covariates z, let njz be the number of
people alive at the beginning of interval Ij, dkjz be the number of people who die from cause
k, k = 1, ..., K and let ljz be the number of people lost to follow-up in the interval. For
simplicity of notation, we omit the subscript z and denote the observed data as

. The total number of people who die during interval Ij

is .
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The probability of dying from cause k during the interval Ij is

(5)

Because some people are lost to follow-up during the interval, a widely used technique is to

adjust the person-years at risk as  and the resulting estimate is called the
actuarial estimate. Gail6 showed that the actuarial estimate is a good approximation of the
maximum likelihood estimate (MLE) of S(t) under the assumption that time when lost to
follow-up and time of death from competing risks are independent. The actuarial estimate
can also be justified by assuming that time when lost to follow-up is uniform in interval Ij.
Then the number of people who are censored at time tj, i.e., T > tj, is

Let θ0 = (μk, γk, k = 1, ..., K) be the parameters in the logistic model (2) for the cause of
death and let θk be the parameters for the crude survival functions Qk(t), k = 1, ..., K. The
likelihood function for observed competing-risk survival data  is

where θ = (θ0, θ1, ..., θK). As the Newton-Raphson method requires the calculation of a
complex Hessian matrix, the Expectation-Maximization (EM) algorithm is used to find the
MLEs of θ.

The complete data are ( , dkj, ckj, k = 1, ..., K, j = 1, ..., J), where ckj is the number of people
censored at time tj who would ultimately die from cause k. Using Equation (4), the

loglikelihood for the complete data is log , where

The E-step assigns the censored observations, i.e., the people who are lost to follow-up or
who are still alive at the end of the study, into one of the K causes of death according to their
conditional probabilities P(D = k|z, t > tj). The expected number of deaths due to causes k in
interval Ij for those censored people is

(6)

The M-step involves maximizing the loglikelihood functions  and , k = 1, ..., K.
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The MLEs of the parameters in πk(z) can be obtained by multinomial logistic regression, and
the estimation of the parameters in Qk(t|z) depends on the model specifications for Qk(t|z).
The popular models include the Weibull and Gompertz models and the semi-parametric
proportional hazards model. For arbitrary interval-censored survival data, various methods
are proposed by Finkelstein10, Pan and Chappell11 and Goetghebeur and Ryan12. For
grouped survival data, we follow Prentice and Gloeckler13 and write the loglikelihood 
as

where pkj(z) = Qk(tj|z)/Qk(tj−1|z) and . Let , j =
1, ..., J. Then,

(7)

The estimates of θk = (αk1, . . . , αkJ, βk) can be obtained by SAS PROC LOGISTIC.

Several factors complicate variance estimation for the parameter estimates. First the
dimension of parameters is large for the semiparametric model. Second variance estimates
do not come from the EM algorithm as a byproduct. Several approaches to calculate the
observed information matrix in an EM context have been proposed.14,15 But, these
approaches involve tedious algebra and are analytically intractable. Another variance
estimator, which is simple to compute and also turns out to have good small sample
properties, is based on multiple imputation.12,16 First the expected numbers of deaths due
to cause k in interval Ij, ckj, j = 1, ..., J, are imputed M times using a multinomial distribution
with conditional probabilities given in (6), after the final step of the EM algorithm is
completed. Then for each imputed “complete” data set, a point estimate  and a variance

estimate vm of θ are calculated, m = 1, ..., M. Let . The variance estimate for
the MLE  is given by

(8)

This is a weighted sum of the within-imputation variance and the between-imputation
variance.

2.3 Estimating net survival from the mixture model
The direct output from the mixture model consists of death probabilities from different
causes and the conditional crude survival function. Under the assumption of independent
competing risks, the net survival Sk(t|z) can be derived from output from the mixture model.
We assume that hk(t|z) = wkj(z)h(t|z) for t ∈ Ij, where the weights wkj(z) are constants for
each interval Ij and covariate z. From (1), we have
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hence

(9)

Because

the net survival function Sk(tj|z) can be estimated by

(10)

where wkl is given by (9). The variance estimates for crude survival Qk(t|z) and net survival
Sk(tj|z) are given in Appendix II. The relationship between Sk(t|z) and ST (t|z) and 
implies that the net survival functions can be calculated as a by-product of the mixture
survival model under the independent competing risk assumption.

3 Application
The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer
Institute is an authoritative source of information on cancer incidence and survival in the
United States (http://www.seer.cancer.gov). SEER currently collects and publishes cancer
incidence and survival data from population-based cancer registries covering approximately
26 percent of the US population. SEER coverage includes 23 percent of African Americans,
40 percent of Hispanics, 42 percent of American Indians and Alaska Natives, 53 percent of
Asians, and 70 percent of Hawaiian/Pacific Islanders. The SEER Program began collecting
data on cancer cases in 1973 in the states of Connecticut, Iowa, New Mexico, Utah, and
Hawaii and the metropolitan areas of Detroit and San Francisco-Oakland. In 1974-1975, the
metropolitan area of Atlanta and the 13-county Seattle-Puget Sound area were added. These
original 9 regions are referred to as the SEER 9 registries, covering 10% of the US
population.

Colorectal cancer is the third most common cancer and the third leading cause of cancer-
related mortality in the United States. Over the past decade, colorectal cancer incidence and
mortality rates have modestly decreased or remained level. The most recent estimates from
the American Cancer Society show that there are 106,100 new cases of colon cancer, 40,870
new cases of rectal cancer and 49,920 deaths from colorectal cancer for the year 2009. If
diagnosed early and treated successfully, colorectal cancer can be cured. In fact, many

Yu et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.seer.cancer.gov


colorectal cancer patients live long enough to die ultimately from other causes, most
commonly from heart disease.

Because of the long history of the SEER 9 registries, we use the colorectal cancer survival
data for illustration. We consider three competing risks (K = 3), namely, colorectal cancer
death (D = 1), heart disease death (D = 2) and death due to other causes (D = 3). Here, we
use the mixture model to estimate probabilities of dying from different causes given a
patient's age at diagnosis, race and the American Joint Committee on Cancer (AJCC) stage.
There are remarkable differences between racial and ethnic groups in both incidence and
mortality. The mortality rate from colorectal cancer for African Americans is higher than
that for whites (American Cancer Society, 2008). To confirm this conclusion, we also test
the difference in probabilities of dying from multiple causes between whites and African
Americans.

The SEER data we consider consist of 199,715 colorectal cancer cases diagnosed from 1975
to 2002. The end of followup is December, 2003 and the maximum followup time is 28
years. The survival data are then stratified by single age (50, 51,...,99, 100+), race (white,
black) and AJCC stage (I, II, III, IV). The average age at diagnosis is 64, and 92% are
whites and 8% are African Americans. The percentages of cancer stages I-IV are 20%, 33%,
25% and 22%, respectively.

In the first analysis, we fit separate mixture models for each combination of race and AJCC
stage in order to estimate the probabilities of dying from different causes. Age at diagnosis
is used as a covariate in equations (2) and (7). To account for the possible quadratic effect of
age, the square of age is also included as a covariate. Figure 1 plots the observed and
modeled probabilities of dying from colorectal cancer with respect to age at diagnosis. The
observed probabilities are calculated as the proportion dying from colorectal cancer for each

single age group . The modeled probabilities are the estimates  in
Equation (2). For example, less than 40% of the patients diagnosed with Stage I colorectal
cancer actually die from colorectal cancer. We see that the modeled probabilities fit the
observed probabilities reasonably well. The probabilities of colorectal cancer death increase
with AJCC stage. This makes sense as a diagnosis of more advanced colorectal cancer
implies higher probability of death. Overall, the probability of colorectal cancer death
decreases in older patients except for very old ages. Figure 1 also shows that the
probabilities of dying from colorectal cancer are much lower for whites than blacks in the
same cancer stage.

Figure 2 plots the nonparametric and modeled cumulative probabilities of death due to
colorectal cancer within 5 years of cancer diagnosis by age at diagnosis. The nonparametric
estimate17 is calculated as

where  is the actuarial survival. The modeled probabilities are

the estimates of . We see that the 5-year probabilities of colorectal cancer death do
not change much with age at diagnosis for stage I, and the corresponding probabilities
increase slightly with age at diagnosis for Stage III and IV. This shows that patients with
more severe diagnosis are more likely to die from cancer.
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One may be interested in the actual survival pattern after diagnosis. As an example, we show
the nonparametric and modeled conditional crude cause-specific survival estimates in the
presence of competing risks for patients diagnosed at age 70 in Figure 3. We see that white
patients have slightly higher crude survival rates than blacks. Figure 3 also shows that for
stage IV cancer the conditional cause-specific survival rates are all less than 5% after 5 years
of diagnosis. This implies that for patients diagnosed with stage IV cancer at age 70, 95% of
cancer deaths would occur within 5 years after diagnosis.

The unconditional cumulative probability of death due to cancer versus other causes is
useful to describe the experience of individual patients. For example, Figure 4 shows the
cumulative probabilities of death due to three causes for white patients diagnosed with stage
I cancer at age 70. The personal cure rate is about 90%. The cumulative colorectal cancer
death probability levels off after about 10 years from diagnosis, but the probability of death
due to other causes still increases. So if a patient does not die from colorectal cancer within
10 years, it is very likely that he will die from another cause.

The analysis above can be used to describe the survival patterns experienced by cancer
patients. In contrast, a statistical model presents a great advantage when some form of
inference is required. As we see from Figures 1 and 2, differences exist in survival patterns
between racial and ethnic groups. In the second analysis, we perform a formal test to
examine the effect of race on probabilities of dying from different causes for each cancer
stage. The covariate z of interest is the indicator of being black. In logistic model (2), the
parameters exp(γ1) and exp(γ2) represent the odds ratios of being blacks on the probabilities
of dying from cancer and heart disease, respectively. For example, exp(γ1) > 1 means that
blacks have higher probability of dying from colorectal cancer than whites. The estimates of
odds ratio and the 95% confidence intervals (CI) are shown in Table 1. For stages I and II,
blacks have a significantly higher risk of dying from colorectal cancer than whites. For
Stage III, whites and blacks have similar cause-specific probabilities. For Stage IV, blacks
have a lower probability of dying from cancer, but a higher probability of dying from heart
disease.

By using a logistic model for probabilities of dying from different causes, the mixture model
implicitly assumes that hazards from different causes are constant after the end of the
follow-up. Usually, hazards due to causes other than cancer will increase remarkably as
people get older, while the hazard due to cancer death may remain similar with respect to
age. Misspecification of the logistic model might yield biased estimates. It is also necessary
to have a sufficiently long follow-up time to observe most deaths and their corresponding
causes, so that death probabilities can be modeled reliably.

As shown in Figures 1 and 2, the mixture model provides a reasonably good fit to the
observed data. However, one can argue that most of the patterns and probabilities can be
easily obtained by smoothing the raw data. For example, a multinomial logistic model with
splines can be used to estimate πk, the probabilities of dying from different causes. Here, we
are trying to model the probabilities πk and crude survival functions Qk(t) simultaneously.
This provides a complete picture of survival patterns after cancer diagnosis.

4 Discussion
In this article, we apply the mixture model to grouped survival data with competing risks
from population-based cancer registries. This model can be used to estimate probabilities of
death due to different competing causes. The personal cure rate is helpful to describe the
survival experience after cancer diagnosis. This model can also be applied to data from
clinical trials. For example, one can compare the probabilities of different types of failures
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to evaluate the risk and benefit of two treatment options. Physicians can determine the
appropriate treatments for cancer patients based on their comorbidities and prognosis.

An alternative approach to competing-risk data is to model the net survival functions5,13.
To ensure identifiability, the competing risks are assumed to be independent. The cancer
patients, especially in their old ages, have higher comorbidity problems than the general
cancer-free population. The mixture model assumes that the process of loss to follow-up is
independent of the competing risks of death, but it does not require independence among the
K competing risks. Another advantage of using the mixture model is that the net survival
function can be derived as a by-product.
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Appendix I. Proof of Sk(t|z)≥Qk(t|z)
Based on equation (3), we have . Because 
and from (1),

Thus

Appendix II. Variances for Qk(t|z) and Sk(t|z)
The variances of Qk(t|z) and Sk(t|z) can be derived from the covariance matrix of θ in (8)
using the delta method. Let θk = (αk1, ..., αkJ, βk) be the parameters in θk(t|z) and V(θk) be
the covariance matrix of θk. Because

the variance of Qk(tj|z) can be calculated as

where γkj = (log pk1(z), ..., log pkj(z), z log Qk(tj|z)).

Let . Then . Assuming the parameters (θk, μk, γk),
k = 1, ..., K, are functionally independent, we have
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(11)

where the partial derivatives of  are:

The variance of ST(tj|z) can be calculated as:

where V(θ) is the variance of .

The variance of Sk(tj|z) is given by , where

Based on Equation (10), . We have

where  is given in (11) and

Note that  for i ≠ k.
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Figure 1.
Observed and modeled probabilities of dying from colorectal cancer by age at diagnosis *
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Figure 2.
Nonparametric and modeled cumulative probabilities of death due to colorectal cancer
within 5 years of diagnosis *
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Figure 3.
Conditional crude survival estimates Q1(t) of colorectal cancer death in the presence of
competing risks for patients diagnosed at age 70 *
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Figure 4.
Cumulative cause-specific probabilities of death for white patients diagnosed at age 70 with
Stage I colorectal cancer
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