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Abstract
Because camptothecins are effective against previously resistant tumors and are the only class of
topoisomerase I (Top1) inhibitors approved for cancer treatment, we developed the
indenoisoquinolines. Like camptothecins, the indenoisoquinolines selectively trap Top1-DNA
cleavage complexes and have been co-crystallized with the Top1-DNA cleavage complexes.
Indenoisoquinolines show antitumor activity in animal models. They have several advantages over
the camptothecins: 1) They are synthetic and chemically stable (unlike camptothecins); 2) The
Top1 cleavage sites trapped by the indenoisoquinolines have different genomic locations than
camptothecins, implying differential targeting of cancer cell genomes; 3) The Top1 cleavage
complexes trapped by indenoisoquinolines are more stable than for camptothecins, indicative of
prolonged drug action; and 4) They are less or not substrates for the multidrug resistance efflux
pumps (ABCG2 and MDR-1). Among the more than 400 indenoisoquinolines synthesized and
evaluated, three have been retained as leads for clinical development by the NCI: NSC 706744,
NSC 725776 (Indimitecan) and NSC 724998 (Indotecan). The trapping of Top1 cleavage
complexes by indenoisoquinolines in cells results in the rapid and sustained phosphorylation of
histone H2AX (referred to as γ-H2AX). We discuss the use of γ–H2AX as a pharmacodynamic
biomarker for the clinical development of the indenoisoquinolines.
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Rationale for non-camptothecin Top1 inhibitors and historical development
of the indenoisoquinolines

Camptothecins are presently the only class of Top1 inhibitor approved for cancer treatment.
Topotecan is prescribed for the treatment of ovarian and lung cancers and irinotecan for the
treatment of colorectal cancers. Both drugs are water-soluble derivatives of camptothecin
and act solely and selectively by inhibiting Top1 (1,2).

Because of the potent anticancer activity of topotecan and irinotecan, Top1 is empirically
validated as an anticancer target. The rationale for developing non-camptothecin Top1
inhibitors stems from two considerations. First, it is empirically established that drugs with a
common molecular target can have very different therapeutic activities. For instance,
colchicines and vinca alkaloids both act by blocking tubulin polymerization. However, only
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the Vinca alkaloids are used as anticancer agents whereas colchicine is used for the
treatment of gout. Even more striking is the differential clinical activities of topotecan vs.
irinotecan in spite of their common chemical scaffold. Another consideration for developing
non-camptothecin Top1 inhibitors is that camptothecins have pharmacological and clinical
limitations that restrict the dose of active drug that can reach the tumor while sparing normal
tissues. That limitation was initially overseen in mice models (3) because mouse bone
marrow progenitors are markedly resistant to camptothecins compared to humans (4).
Interestingly, that difference is minimal for the indenoisoquinolines, suggesting that animal
models should be more reliable predictors of tumor response and dose-limiting toxicity1.

In 1978, we described the synthesis of the first of our indenoisoquinolines (NSC 314622)
(5). This compound was found to be moderately cytotoxic in cancer cell cultures with a
median growth inhibition 50% concentration of 20 µM in the NCI in vitro screen.
Approximately 20 years after its initial discovery, interest in NSC 314622 spiked with the
discovery that a COMPARE analysis (6) of its cytotoxicity profile (7) paralleled that of
camptothecin, which led to a detailed investigation of the effect of NSC 314622 against
Top1 (7). The results showed clearly that micromolar concentrations of NSC 314622
induced Top1-mediated DNA cleavage, and that the cleavage site specificity was different
from camptothecin (7). Comparison of the properties of NSC 314622 with those of the
camptothecins revealed a number of differences that are advantageous for the
indenoisoquinolines in general. First, in contrast to the camptothecins, which are inactivated
by lactone hydrolysis at physiological pH (Fig. 1A), the indenoisoquinolines are chemically
stable (Fig. 1B). Second, the enzyme-DNA cleavage complexes stabilized by
indenoisoquinolines are more persistent than those induced by camptothecins (7–10). Long
camptothecin infusion times are necessary to compensate for the reversibility of the
camptothecin cleavage complexes during chemotherapy in order to achieve maximal
activity. Third, the indenoisoquinolines induce unique patterns of DNA cleavage sites
relative to the camptothecins, indicating that they target the human genome differently and
therefore may potentially exhibit a different spectrum of anticancer activity from the
camptothecins (7–10). And Fourth, the indenoisoquinolines are not or less substrates for the
ABCG2 multidrug efflux pump that confers resistance to irinotecan and topotecan (10).

There were therefore good reasons to pursue the development of novel non-camptothecin
Top1 inhibitors based on the use of NSC 314622 as a lead compound. However, the
potential clinical utility of the lead compound NSC 314622 itself was limited by its
moderate activity, both as a cytotoxic agent in cancer cell cultures and as a Top1 poison.
Following the discovery of NSC 314622 as Top1 inhibitor, approximately 400 derivatives
have been synthesized and evaluated for Top1 inhibition using recombinant enzyme and
purified DNA substrates and cellular assays in the NCI-60 cell line panel (7–34). Out of
these hundreds of derivatives, the most promising compounds were developed based on the
following criteria: 1) potent induction of Top1 cleavage complexes at low or submicromolar
concentrations; 2) lack of significant DNA intercalation; 3) DNA cleavage pattern different
from camptothecins; 4) potent growth inhibitory activity across the 60 cell lines of the NCI
anticancer screen; 5) Top1-dependent antiproliferative activity in cells with genetic Top1
deficiencies (9,35) and in cells with Top1 mutations that confer camptothecin resistance (9);
6) Lack of cross-resistance in cells overexpressing the ABCG2 (MXR/BCRP) plasma
membrane drug efflux transporter (10), which confers resistance to topotecan and irinotecan
(36,37).

Several additional aspects of a second lead compound NSC 706744 (MJ-III-65) (Fig. 1B)
are of interest (9,12): 1) MJ-III-65 does not unwind DNA in the absence of Top1, indicating

1Parchment, R.E and Tomaszewski, J.: personal communication.
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that it is not a DNA intercalator in the absence of enzyme; 2) MJ-III-65 remains active
against the camptothecin-resistant Asn722Ser and Arg364His mutant Top1 and human
leukemia cells bearing the Asn722Ser mutation (38,39); 3) MJ-III-65 inhibits Top1-
mediated DNA relaxation, thus demonstrating inhibition of Top1 catalytic activity; 4) the
Top1-associated DNA nicks induced by MJ-III-65 are reversed by salt treatment, which is
consistent with reversible trapping of the Top1 cleavage complexes; 5) MJ-III-65 induces
protein-linked single-strand breaks in human breast carcinoma MCF7 cells, thus
demonstrating intracellular activity in a cellular system; 6) the Top1 cleavage complexes
induced by MJ-III-65 are more persistent upon drug removal than those induced by
camptothecin, demonstrating favorable pharmacodynamic properties; and 7) MJ-III-65
produced antitumor activity in animal models (12). However, the poor solubility of MJ-
III-65 impaired its further development.

Currently two indenoisoquinolines have been selected for clinical development by the NCI:
NSC 725776 and NSC 724998 (10). Our selection criteria were based on potent activity
against Top1 in vitro and in cells, potent antiproliferative activity against a range of cancer
cell lines from the NCI screen, Top1-dependent antiproliferative activity (demonstrating
selective targeting of Top1 in cells), and antitumor activity in mouse models. The two
indenoisoquinolines NSC 725776 and NSC 724998 are endowed of three additional
favorable characteristics: 1) Top1 cleavage produced at nanomolar concentrations in cancer
cells; 2) persistence of Top1 cleavage complexes after drug removal for longer time than
camptothecin; 3) activity in multidrug-resistant cells overexpressing the drug efflux
transporter ABCG2 and MDR-1; 4) concentration-dependent γ-H2AX foci formation at
pharmacologically relevant doses for up to 24 hours (10).

A series of bisindenoisoquinolines have also been synthesized (18,28,29). One of them, the
dimeric indenoisoquinoline NSC 727357 (Fig. 1C), shows potent antiproliferative activity in
the NCI-60 cell line panel, promising hollow fiber activity (score = 32) and activity against
xenografts. Submicromolar concentrations of the bisindenoisoquinoline NSC 727357 induce
Top1 cleavage complexes at specific sites in biochemical assays. At higher concentrations
an inhibition of Top1 catalytic activity and DNA intercalation are observed. NSC 727357
also induces a limited number of topoisomerase II (Top2)-DNA cleavage complexes. In
contrast to the effect of other Top1 inhibitors, cells treated with the bisindenoisoquinoline
NSC 727357 show an arrest of cell cycle progression in G1 with no significant inhibition of
DNA synthesis following a short exposure to the drug. Moreover, unlike camptothecin and
the indenoisoquinoline MJ-III-65 (NSC 706744), the cytotoxicity of bisindenoisoquinoline
NSC 727357 is only partially dependent on Top1 and p53, indicating that this drug has
additional targets besides Top1 and Top2.

Interfacial inhibition: a common molecular mechanism of action of Top1
inhibitors

All Top1 inhibitors (camptothecins, indenoisoquinolines and indolocarbazoles) act as
“interfacial inhibitors” (Fig. 2) (1,24,40,41). Under normal conditions, cleavage complexes
are the catalytic intermediates that enable DNA relaxation by Top1 (Fig. 2A–C). Most of
Top1 is non-covalently associated with chromatin (Fig. 2A). The cleavage complexes (Fig.
2B) form only transiently, and the Top1-mediated religation step is highly favored over the
cleavage step (1). That equilibrium can be shifted in the presence of a Top1 inhibitor as the
drug selectively intercalates between the base pairs that flank the nick made by Top1 (Fig.
2C–E). We first proposed this mechanism of action based on our finding that the Top1
cleavage sites trapped by camptothecins exhibited a strong bias for thymine at position −1
(see scheme in Fig. 1C) and guanine at position +1 (42). Direct evidence for this model was
later provided by co-crystal structures; first of topotecan bound in a ternary complex with
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Top1 and its DNA substrate (43), and later of the natural camptothecin alkaloid (19), an
indolocarbazole derivative (19), and two indenoisoquinoline derivatives (14,19,24) (Fig.
2D–E).

Two main components are responsible for the drug binding interactions and for the highly
selective fit of Top1 inhibitors within Top1 cleavage complexes: 1) stacking π–π
interactions with the DNA, and 2) hydrogen bonds with Top1 amino acid residues. The
coplanar ring system of Top1 inhibitors (see Fig. 1) is approximately the size of a base pair.
Thus it can form extensive π–π stacking interactions with the base pairs (positions −1 and
+1) flanking the DNA cleavage site produced by Top1 (see Fig. 2C–E). Hydrogen bond
interactions are also critical for drug binding. The key hydrogen bonds are shown in Figure
2F and 2G for camptothecin and the indenoisoquinoline MJ-238, respectively. In the case of
camptothecin, three hydrogen bonds are formed between camptothecin residues 1, 17 and 20
and amino acid residues Arg364, Asn722 and Asp533, respectively (14,19,24) (Fig. 2F).
Mutation of any one of these three Top1 amino acid residues is sufficient to confer high
resistance to camptothecins (38,39,44–47). On the other hand, the binding geometries,
binding site selectivities, and structure-activity relationships of the indenoisoquinolines and
camptothecins can be predicted by ab initio quantum mechanics calculations involving only
the Top1 inhibitors and the neighboring DNA base pairs in the absence of protein structure,
emphasizing the importance of π–π stacking interactions (48–50). Noticeably, single
mutations do not prevent the binding of camptothecin to the Top1-DNA complex (51),
which demonstrates the dynamic nature of the drug-DNA-Top1 interactions and the
importance of all those interactions together for selective drug binding. Also noticeable is
the recent discovery that camptothecin-producing plants (such as Camptotheca acuminata)
have a TOP1 gene bearing the same mutation Asn722Ser (52) that had been found in human
leukemia cells selected for resistance to camptothecin (38).

The drug polycyclic ring system and the hydrogen bond network are different for the
indenoisoquinolines and camptothecins (see Fig. 1 and Fig. 2). Those differences probably
account for: 1) the trapping of Top1 cleavage complexes at different genomic sequences (8–
10,12), 2) the slower reversibility of the indenoisoquinoline-Top1 cleavage complexes
(9,10,12), as the indenoisoquinolines are probably better “retained” at the Top1-DNA
interface than camptothecins, and 3) the ability of the indenoisoquinolines to remain active
against Top1 mutations that otherwise confer resistance to camptothecins (9,12).

Histone γ-H2AX as a pharmacodynamic biomarker for the
indenoisoquinolines

As Top1 inhibitors bind reversibly to Top1 cleavage complexes (43), the drugs do not
directly damage DNA. However, upon collision with a replication fork or the transcription
machinery those reversible drug-DNA-Top1 cleavage complexes are converted into
irreversible Top1 covalent complexes and subsequently DNA damage (double-strand
breaks), which if not repaired lead to cell death (1). Thus, replication-fork collision is the
primary cytotoxic mechanism of Top1 poisons in dividing cells. One of the best
characterized molecular responses to replication double-strand breaks is the phosphorylation
of the H2AX histone variant (53). Histone H2AX constitutes 5–20% of the cellular pool of
histone H2A and is randomly distributed throughout nucleosomes (54). The phosphorylated
form of H2AX, termed γ-H2AX, is observed within minutes after the formation of
camptothecin-induced replication double-strand breaks (55,56). γ-H2AX can be detected by
immunofluorescence (57) or immunostaining (58), as it accumulates and forms a nuclear
focus around each double-strand break. γ-H2AX is an extremely sensitive marker for
double-strand breaks that are not only produced by DNA-damaging agents (59), but also by
genomic instability (58) and apoptosis (60).
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We recently found γ-H2AX formation in various cell lines treated with NSC 725776 and
NSC 724998 (10). γ-H2AX foci formed within one hour upon NSC 725776 and NSC
724998 treatment at concentrations as low as 0.1 µM, which are well within the
pharmacological concentration range. Figure 3 shows the rapid induction of γ-H2AX by the
indenoisoquinolines within one hour of drug treatment. It also shows the changes in γ-
H2AX signal at different times following drug removal. Noticeably, γ-H2AX staining,
which starts as well-defined DNA damage foci (Fig. 3C) tends to be converted into pan-
nuclear staining (Fig. 3D), which might be indicative of irreversible DNA damage preceding
apoptosis. In either case, γ-H2AX will be scored as positive and indicative of drug activity.
Thus, γ-H2AX may be a useful clinical marker for monitoring the efficacy of NSC 725776
and NSC 724998 in tumor therapies.

Conclusions
Ten years after the identification of the first indenoisoquinoline as a Top1 inhibitor, two
derivatives NSC 724776 and 725998 are poised for clinical trials. Based on the differential
genomic targeting of Top1 cleavage complexes, the differences in chemical structure and
chemical stability of the indenoisoquinolines compared to camptothecins, and the low cross-
resistance to camptothecins based on drug efflux and Top1 point mutations, it is likely that
the indenoisoquinolines will exhibit unique clinical properties that will set them apart from
the camptothecins. Because indenoisoquinoline derivatives can be synthesized relatively
easily and detailed knowledge of the Top1-DNA-indenoisoquinoline interaction is now
available, it is plausible that, if needed, additional optimization (61–64) will lead to novel
drugs selectively targeted to Top1 with significant activity against cancers (65).

Abbreviations

CPT camptothecin

Top1 DNA topoisomerase I
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Figure 1.
Chemical structures of camptothecin and selected indenoisoquinolines.
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Figure 2.
(A) Topoisomerase I (Top1) is an abundant nuclear enzyme. It is mostly associated non-
covalently with chromatin. (B) Top1 relaxes DNA by making single-strand breaks that are
generated by the covalent linkage of Top1 to the 3'-end of DNA. (C) Camptothecin or
indenoisoquinolines bind reversibly to the Top1-DNA cleavage complex and slow down
DNA religation. (D) Ternary complex including Top1 (yellow), DNA (dark blue ribbons),
and indenoisoquinolines or camptothecins (green and red in the middle). (E) Same structure
except Top1 is in ribbon representation. (F) Hydrogen bond network between camptothecin
and Top1 amino acid residues. (G). Hydrogen bond network between the indenoisoquinoline
derivative MJ-238 and Top1. Note that mutation of asparagine 722 to serine (N722S), which
confers resistance to camptothecin and only partially to indenoisoquinolines, is also present
in camptothecin-producing plants.
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Figure 3.
γ-H2AX induction by NSC 725776 and NSC 724998 in human colon cancer HT29 cells. A)
Rapid induction of γ-H2AX foci after 1 h treatment with 1 µM of CPT, NSC 725776 or
NSC 724998. B) Persistent γ-H2AX signal induced by indenoisoquinolines. After 1 h drug
treatments, HT29 cells were further incubated in drug-free medium for 24 h. C)
Representative image of a single cell with typical γ-H2AX damage foci. D) Representative
image of a single cell with diffuse pan-nuclear staining, which typically develops several
hours after drug exposure. Fixed cells were stained with mouse anti-γ-H2AX antibody and
goat anti-mouse antibody conjugated with AlexaFluor 488 (green). Nuclei were stained with
PI (red).
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