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Abstract
Objective—Myelination of the human brain results in roughly quadratic trajectories of myelin
content and integrity, reaching a maximum in mid-life and then declining in older age. This
trajectory is most evident in vulnerable later myelinating association regions such as frontal lobes
and may be the biological substrate for similar trajectories of cognitive processing speed. Speed of
movement, such as maximal finger tapping speed (FTS), requires high-frequency action potential
(AP) bursts and is associated with myelin integrity. We tested the hypothesis that the age-related
trajectory of FTS is related to brain myelin integrity.

Methods—A sensitive in vivo MRI biomarker of myelin integrity (calculated transverse
relaxation rates (R2)) of frontal lobe white matter (FLwm) was measured in a sample of very
healthy males (N = 72) between 23 and 80 years of age. To assess specificity, R2 of a contrasting
early-myelinating region (splenium of the corpus callosum) was also measured.

Results—FLwm R2 and FTS measures were significantly correlated (r = .45, p < .0001) with no
association noted in the early-myelinating region (splenium). Both FLwm R2 and FTS had
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significantly quadratic lifespan trajectories that were virtually indistinguishable and both reached a
peak at 39 years of age and declined with an accelerating trajectory thereafter.

Conclusions—The results suggest that in this very healthy male sample, maximum motor speed
requiring high-frequency AP burst may depend on brain myelin integrity. To the extent that the
FLwm changes assessed by R2 contribute to an age-related reduction in AP burst frequency, it is
possible that other brain functions dependent on AP bursts may also be affected. Non-invasive
measures of myelin integrity together with testing of basic measures of processing speed may aid
in developing and targeting anti-aging treatments to mitigate age-related functional declines.
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1. Introduction
The protracted myelination of the human brain results in roughly quadratic (inverted U)
trajectories of myelin content and integrity reaching a maximum in mid-life and then
declining in older age (Bartzokis et al., 2001, 2003; Benes et al., 1994; Ge et al., 2002;
Jernigan and Gamst, 2005; Kemper, 1994; Walhovd et al., 2005). Axon myelination results
in saltatory conduction of action potentials (AP) that increases (>10-fold) signal
transmission speed (Waxman, 1977) and makes it possible to integrate information across
the spatially distributed neural networks that support cognitive and motor functions
(Bartzokis et al., 2001; Fuster, 1999; Lutz et al., 2005; Mesulam, 2000; Srinivasan, 1999).
Myelination also markedly decreases the refractory time (time needed for repolarization
before a new AP can be supported by the axon) by as much as 34-fold (Felts et al., 1997;
Sinha et al., 2006). Thus myelin and maintenance of its integrity allows axons to support
high-frequency bursts of signals and is necessary for a variety of normal brain processes
ranging from high motor speeds, to cortical oscillations and long-term potentiation (LTP) of
synaptic transmission (Axmacher et al., 2006; Bartzokis, 2004a; Buzsaki and Draguhn,
2004; Canolty et al., 2006; Kreiman et al., 2006).

Salthouse and others (Hedden et al., 2005; Salthouse, 2000; Schaie et al., 2004) have argued
that the age-related decline in cognitive processing speed resources underlies age-related
declines in most cognitive functions including memory encoding which depends on high-
frequency bursts (up to 200 Hz) to produce LTP of synaptic transmission [(Buhl and
Buzsaki, 2005; Yun et al., 2002); for review see (Axmacher et al., 2006)]. In fact, cognitive,
sensory, and motor measures of processing speed are all highly related to brain aging and
show quadratic-like trajectories over the lifespan, reaching peaks in adulthood (Era, 1988;
Hedden and Gabrieli, 2004; Hoyer et al., 2004; Salthouse, 2000; Schaie et al., 2004). The
underlying biological substrate of this relationship is not well understood (Hedden and
Gabrieli, 2004; Schaie et al., 2004). Peters and others have argued that brain aging may be
primarily related to the process of myelin breakdown (Bartzokis et al., 2004, 2006; Braak
and Braak, 1996; Marner et al., 2003; Peters et al., 1996, 2001; Peters and Sethares, 2004,
2004; Sloane et al., 2003). To test the hypothesis that processing speed measures are related
to myelin integrity (Bartzokis, 2004a, b) we examined one of the simplest and best
understood tests of CNS processing speed: maximal finger tapping speed (FTS).

Like many cognitive tasks the FTS task involves a distributed neural network and high-
frequency bursts of APs (Lutz et al., 2005). Single cell recordings in monkey brain have
demonstrated that firing rates of motor neurons positively correlate with increasing velocity,
force, and acceleration necessary to produce faster finger movements (Ashe and
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Georgopoulos, 1994; Humphrey, 1972) as well as other fast movements such as visual
saccades where similar relationships of movement speed and AP frequency (upwards of 300
Hz) are observed (Berthoz et al., 1986; Krauzlis, 2003; Missal et al., 2002). The tight
coupling of FTS with AP firing frequency makes the tapping task dependent on intact
myelin to reduce axonal refractory time in order for high AP frequencies to be supported by
the neural networks (Felts et al., 1997; Sinha et al., 2006). Thus both its distributed nature
and dependence on high neuronal firing rates make FTS dependent on the developmental
process of myelination (Garvey et al., 2003; Yeudall et al., 1987) and the maintenance of
myelin integrity with aging (Bartzokis, 2004a; Bartzokis et al., 2006).

The structural integrity of myelin sheaths can be indirectly measured in vivo with magnetic
resonance imaging (MRI) using transverse relaxation rates (R2), relaxometry measures that
are markedly sensitive to small changes in the proportion of tissue water (Oldendorf and
Oldendorf, 1988). R2 is related to the transverse relaxation time (T2) through the simple
formula R2 = 1/T2 × 1000. Myelination decreases water content (increasing R2) while
myelin breakdown and loss increases water content (decreasing R2). R2 measures have been
used to assess myelin integrity in development/myelination phase (birth to mid-life) when
R2 increases (Bartzokis et al., 2003; Miot-Noirault et al., 1997) as well as in aging and a
variety of myelin-damaging conditions when R2 decreases (Bartzokis et al., 2003; House et
al., 2006; Neema et al., 2007; Takao et al., 1999; Vermathen et al., 2007). Severity of myelin
damage and associated R2 changes are on a continuum that ranges from focal lesions
(Neema et al., 2007; Takao et al., 1999; Vermathen et al., 2007) visible to the unaided eye
(referred to as T2 “hyperintensities” on radiology reports) to diffuse changes that occur in
“normal appearing white matter” detectable only with quantitative R2 measures (Bartzokis et
al., 2003; House et al., 2006; Neema et al., 2007; Vermathen et al., 2007). In disease
processes such as multiple sclerosis or phenolketonuria myelin destruction is qualitatively
observable on MRI images but more subtle changes are also detectable quantitatively in
“normal appearing white matter” (Neema et al., 2007; Vermathen et al., 2007). Similarly,
age-related R2 changes in normal appearing white matter have been quantitatively
demonstrated in healthy aging as well as more pronounced changes associated with genes
that increase risk of developing Alzheimer’s disease (AD), pre-AD conditions such as mild
cognitive impairment, and AD itself (Bartzokis et al., 2003, 2007; House et al., 2006).

Ultrastructural electron microscopy studies demonstrate that age-related myelin breakdown
results in microvacuolations consisting of splits of myelin sheath layers that create
microscopic fluid-filled spaces that increase MRI “visible” water and thus decrease R2
(Bartzokis et al., 2004; Peters et al., 1996). These microvacuolations are ultrastructurally
very similar to reversible myelinopathies produced by certain toxins (Jackson et al., 1994;
Peters et al., 1996; Peyster et al., 1995; Weiss et al., 1994). Animal studies have confirmed
that this type of myelin breakdown can be detected with MRI in circumscribed susceptible
white matter regions and that the histopathologic changes produced by toxins as well as the
recovery process can be thus tracked by MRI with the unaided eye [(Jackson et al., 1994;
Peyster et al., 1995; Qiao et al., 2000; Weiss et al., 1994); reviewed in (Cohen et al., 2000)].
Although R2 has not been directly correlated with myelin breakdown due to normal aging
(as opposed to the reversible toxin-induced myelin breakdown described above), in humans
and primates healthy aging is not associated with neuronal loss [(Gomez-Isla et al., 1997);
reviewed in (Peters, 2002; Peters et al., 1998)] while the process of age-related myelin
breakdown and loss has been thoroughly demonstrated (Kemper, 1994; Marner et al., 2003;
Peters et al., 1996, 2001; Peters and Sethares, 2003, 2004; Sloane et al., 2003; Tang et al.,
1997). Herein the terms myelin “integrity” and “breakdown” will be used to refer to R2
measures (Bartzokis et al., 2006).
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Age-related myelin breakdown is a generalized process (Bartzokis et al., 2004; Marner et al.,
2003; Peters et al., 1996, 2001; Peters and Sethares, 2003, 2004; Sloane et al., 2003) that is
most pronounced in more vulnerable later myelinating regions such as frontal lobe white
matter (FLwm) that contain higher proportions of smaller thinly myelinated axons
(Bartzokis, 2004a; Grieve et al., 2007; Marner et al., 2003; Salat et al., 2005; Sullivan et al.,
2008). It is technically difficult to directly assess myelin breakdown of the specific myelin
segment(s) limiting the maximal frequency of APs a circuit can support. We therefore chose
FLwm to serve as an in vivo biomarker for myelin integrity because its vulner-ability makes
this region a good surrogate for damage prone regions of the FTS circuitry (Jancke et al.,
1998; Lutz et al., 2005). The choice was based on the fact that both post mortem as well as
our prior imaging data show FLwm is maximally sensitive to differences in myelin integrity
due to aging (Bartzokis et al., 2004; Kemper, 1994; Marner et al., 2003) and that highly
reliable and reproducible R2 measures can be obtained from this region (Bartzokis et al.,
2003).

We tested the hypothesis that the lifelong quadratic trajectory of myelination and subsequent
myelin breakdown is associated with FTS performance across the lifespan. We focused on
men because men show consistently higher FTS performance, and we hypothesized that the
highest possible tapping speed that requires the highest action potential frequencies would
be most sensitive to differences in myelin integrity (Homann et al., 2003; Kauranen and
Vanharanta, 1996; Reed et al., 2004).

2. Methods
2.1. Subjects

Healthy adult male volunteers that participated in the study were recruited from the
community and hospital staff. Potential subjects were excluded if they had a history of
neurological disorder, psychiatric illness (including drug or alcohol abuse), or head injury
resulting in loss of consciousness for more than 10 min. The subjects were physically very
healthy and were excluded if they were obese (defined as body mass index of (BMI) >30 kg/
m2), had a history of diabetes or cardiovascular disease or taking medications for such. Only
three of the subjects were taking medication for one of the following chronic medical
conditions: hypertension, elevated cholesterol, or asthma. The final sample (N = 72) ranged
in age from 23 to 80 years (mean = 56.1, S.D. = 17.1) and their racial distribution was 51
(71%) Caucasian, 13 (18%) Asian, and 8 (11%) African-American. All subjects were
functioning independently and had no evidence of neurocognitive impairment on clinical
interview and examination with the study principal investigator (GB). In addition, the 44 out
of the 72 subjects who were over 55 years of age were administered the Mini-Mental State
Examination by the PI and their scores all fell in the normal range (between 27 and 30; mean
= 28.4, S.D. = 0.9). All subjects received written and oral information about the study and
signed written informed consents approved by the local institutional review board prior to
study participation.

2.2. Fine motor speed
An electronic version of the Finger Tapping device (Western Psychological Services) was
used and performance was assessed on the same day the MRI scan was performed. The task
requires the subjects to press a button as fast as they can, using their index finger. Subjects
alternate between dominant and nondominant hands, and an electronic counter registers the
numbers of taps across 10-s trials. Ten trials were administered for each hand. However, 2
of the subjects received only 5 trials; therefore, the average number of taps across the first 5
trials is the dependent variable of interest.
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2.3. MRI protocol
All subjects were scanned using the same 1.5 T MR instrument, all scans used the same
imaging protocol, and scan timing was irrespective of demographic (e.g., age, education)
variables. Details of the protocol have been published previously (Bartzokis et al., 2004) and
are only summarized here. Two pilot sequences were obtained to specify the location and
spatial orientation of the head and the position of the axial image acquisition grid. The axial
image acquisition sequence acquired interleaved contiguous slices using a Carr Purcell
Meiboom Gill dual spin-echo sequence TR = 2500, TE = 20, 90, 3 mm slice thickness, 256
× 192 view matrix, and 25 cm field of view.

2.4. Image analysis
T2 was calculated for each voxel by an automated algorithm from the two signal intensities
(TE = 20 and 90) of the robust dual spin-echo sequence that used 90° refocusing pulses to
produce gray-scale encoded T2 maps of the brain (Bartzokis et al., 1994) which were not
normalized. The T2 measures were extracted using a Macintosh configured image analysis
workstation. A single rater, who was blind to clinical information, performed all
measurements. The image analysis software permitted the rater to delineate the region-of-
interest (ROI) using a mouse.

For both ROIs two contiguous slices were chosen for analysis. For analysis of the FLwm a
circular ROI sample of supraorbital white matter was placed manually by the rater in the
frontal lobe white matter on the second and third contiguous slices above the last image
containing orbitofrontal cortex (Bartzokis et al., 2003). For the early-myelinating regions the
lower half of the splenium of the corpus callosum (Swm) was chosen. The second and third
lowest slices on which the fibers of the splenium connected in the midline were chosen in
order to sample primarily the lower half of the splenium that contains predominantly early-
myelinating primary sensory (visual) fibers (Lamantia and Rakic, 1990; Pandya and Seltzer,
1986). For this structure, the rater manually positioned a rectangular ROI template centered
along the midline of each region (Fig. 1).

Once the choice of slices and position of the ROI were completed, the rater excluded gray
matter regions of the central sulcus, T2 hyperintensities, or other hyperintense structures
such as periventricular halos [for further details please see (Bartzokis et al., 2003; Bartzokis
et al., 2004)]. The ROIs thus contained normal appearing white matter free of T2
hyperintensities. The ROIs were then transferred onto the corresponding T2 maps. All voxels
that had a T2 value above the right side inflection point of the histogram of the ROI were
removed in order to assure that partial volume with CSF structures was eliminated
(Bartzokis et al., 1994).

T2 data for each ROI were obtained from contiguous pairs of slices. The relaxation rate (R2)
was calculated as the reciprocal of T2 × 1000. The average R2 of the two slices from both
hemispheres were the final measures used in the subsequent analyses. Reliability of the R2
measures was previously assessed using the intraclass correlation coefficient and was very
good (frontal lobe white matter: Rxx = 0.91, F = 21.3, d.f. = 1, 12, p < .0001; splenium of the
corpus callosum white matter: Rxx = 0.95, F = 20.5, d.f. = 1, 11, p < .00001) (Bartzokis et
al., 2003, 2004).

2.5. Data/statistical analyses
Our interest was in comparing aging trajectories for tapping and FLwm R2. The sample was
comprised of 72 healthy males with valid tapping data (one outlier was excluded—his right
finger tapping was 3S.D. above the mean, but left was about .8S.D. above the mean).
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The R and L hand tapping averages each had Chronbach’s alpha of .96, and correlated with
each other r = .78. To eliminate effects of handedness and hand used, tapping scores were
standardized separately for left and right hand. Preliminary analyses using a mixed effects
regression model confirmed that handedness did not need to be included in the repeated
measures model after this standardization, and indicated that a quadratic model for age was
required. Education was unrelated to tapping and was not considered further. The mixed
effects regression model for tapping included fixed effects for age and age-squared, with left
and right hand performance included separately as repeated measures with an unstructured
covariance matrix. The regression model for FLwm R2 included linear and quadratic fixed
effects for age. To make the regressions of tapping and R2 on age comparable, the R2
measure was also standardized with mean 0 and S.D. 1.

We attempted to obtain a more precise measure of maximum performance by avoiding
spurious influences on performance such as unfamiliarity with the task in initial trials or
finger fatigue in later trials. We therefore also analyzed the relationship by taking only the
average of the highest two tapping scores (out of 5) from each hand as the maximum tapping
performance for that hand.

3. Results
The estimated regression parameters from the mixed effects regression were used to graph
the functions across the age range 23-80 and represent an average of right and left hand
tapping. Significant quadratic relationships with age were observed for FLwm R2 (t = 2.42,
d.f. = 69, p = .018) and for FTS (t = 2.46, d.f. = 69, p = .016). The Swm did not exhibit a
significant linear (r = -0.14, d.f. = 70, p = .25) or quadratic (t = 0.32, d.f. = 69, p = .75)
association with age. The results are displayed in Fig. 2. The curves for FTS and FLwm R2
as a function of age are almost overlapping with maximums reached at 38.9 and 38.7 years
of age, respectively.

In this sample, the FTS and FLwm R2 were significantly correlated r = 0.43, d.f. = 70, p =
0.0002 while the correlation between FTS and splenium of corpus callosum white matter R2
was non-significant (p > .76) (Fig. 3). However, the FTS and FLwm R2 relationship was no
longer statistically significant after adjusting for the quadratic effects of age using partial
correlation analysis (r = 0.19, d.f. = 68, p = 0.12). The correlation coefficients for FLwm R2
and finger tapping was compared with that of Swm R2 and finger tapping using correlated
coefficients and the difference was statistically significant (t = 3.02, p = .004) (Fig. 3).

Since we hypothesized that maximum performance requiring maximum action potential
frequency would be most sensitive to the myelin health FLwm R2 biomarker we performed
secondary analyses aimed at assessing this relationship with tapping measures that may
more specifically reflect maximum possible FTS performance. The FTS and FLwm R2
analysis was repeated using the FTS score from the highest two tapping scores (out of 5)
from each hand. Using these measures the FTS and FLwm R2 relationships improved. Thus,
using the average of the 2 highest tapping scores for right hand, the relationship was r = .
450, d.f. = 70, p < .0001 (controlling for quadratic effects of age: r = .260, d.f. = 68, p = .
030). The average of the 2 highest tapping scores for the highest performing hand (either
right or left) further improved the relationship (r = .470, d.f. = 70, p < .0001; controlling for
quadratic effects of age: r = .263, d.f. = 68, p = .028).

Repeating the analyses described above after excluding the three subjects with treatment for
chronic medical conditions did not meaningfully alter the results, with all relationships
between the average and maximum tapping scores and R2 remaining similarly robust and
statistically significant.
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4. Discussion
This is the first study to demonstrate that a functional performance measure (FTS) follows a
quadratic lifespan trajectory that is virtually indistinguishable from the trajectory of a
sensitive in vivo myelin integrity biomarker (Fig. 2) (Bartzokis et al., 2004). Furthermore,
the data show a highly significant correlation between the functional (FTS) and biomarker
(FLwm R2) measures that is specific to vulnerable late-myelinating FLwm and is not
observed in the early-myelinating Swm contrast region (Fig. 3) that contains primarily large
and more heavily myelinated axons of the visual system. The relationship between FTS and
FLwm R2 was no longer statistically significant after controlling for the quadratic effects of
age. This may be due to several factors including inadequate power and choice of region of
interest (FLwm) that was based on its potential as a most sensitive biomarker of overall
myelin health and not on its relationship to the motor system. Secondary analyses using a
stricter measure of maximal FTS performance (average of two top trials out of five) further
improved the relationship between FTS and FLwm R2.

These observations are consistent with the hypothesis that in brain, maximum speeds are
associated with higher frequency AP bursts (Ashe and Georgopoulos, 1994; Humphrey,
1972) that depend on the low refractory times made possible by myelin [(Felts et al., 1997;
Sinha et al., 2006); reviewed in (Nashmi and Fehlings, 2001)], and that maximum
performance therefore depends on myelin integrity of the neural networks involved in the
task (Bartzokis, 2004a, b). We propose that beginning in middle age the process of age-
related myelin breakdown slowly erodes the ability of myelin to support the very highest
frequency AP bursts. At the time of functional testing, maximum performance speed will be
determined by the peak AP frequency that can be supported by the entire network involved
in the particular task assessed. The myelin segment(s) whose compromised integrity reduces
its ability to support the higher frequencies supported by the other segments of the network
will become “rate limiting” and determine the peak achievable AP frequency (Rasminsky
and Sears, 1972).

Studies of myelin changes associated with aging are compatible with the hypothesis that
myelin breakdown and repair is known to continually occur over the many myelin segments
spanning neural networks (Bartzokis et al., 2004, 2006; Palop et al., 2006; Peters et al.,
2001; Sloane et al., 2003). In older age, as the process of age-related myelin breakdown
overtakes the repair process (Bartzokis et al., 2006; Peters et al., 2001; Sloane et al., 2003),
the average performance of the networks will gradually and progressively decline at an
accelerating rate (Bartzokis et al., 2003). On functional tests (such as FTS), this generalized
age-related decline in myelin integrity should manifest as a similar gradual curvilin-ear
degradation of maximal speed of performance observed in the aging population (Fig. 2). The
striking, nearly identical quadratic trajectory across the lifespan for both measures of myelin
integrity and fine motor speed further supports the postulation that myelin health is likely
the biological process underlying this function. The myelin breakdown process should also
reduce all other brain functions where performance speed is dependent on higher AP
frequencies in similar quadratic-like trajectories over the lifespan. Indeed, although
quadratic lifespan trajectories of neurocognitive measures (including episodic memory) have
been repeatedly demonstrated (Hedden et al., 2005; Salthouse, 2000; Schaie et al., 2004),
with the exception of myelin content and integrity (see Section 1), quadratic age-related
changes in other aspects of brain biology that peak in mid-life have rarely been reported.

When only older age samples are examined a gradual decline would be observed. Such
gradual age-related declines in performance are in fact observed in motor as well as sensory
and cognitive functions (Era, 1988; Hedden and Gabrieli, 2004; Hoyer et al., 2004;
Salthouse, 2000; Schaie et al., 2004), including fine motor speed such as finger tapping (Era,
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1988; Fromm-Auch and Yeudall, 1983; Ruff and Parker, 1993; Yeudall et al., 1987). These
generalized age-related declines in all these various functional domains support the notion
that in brain, performance speed in general may be dependent on frequency of APs;
however, the myelin breakdown may also interfere with the “pattern” of action potential
activity (Rasminsky and Sears, 1972; Shrager, 1993) and thus also degrade fidelity of
information transmission and processing. In this very healthy population alternative
explanations are possible but are less likely. Peripheral causes are less likely since in healthy
individuals, motor senescence is not related to synaptic delay or reduction in peripheral
nerve conduction times (Koles and Rasminsky, 1972; Smith and Rosenheimer, 1984). Other
age-related changes at key locations such as the nodes of Ranvier could impact refractory
times and contribute to the age-related reduction in brain processing speed and FTS,
however, myelin breakdown appears to precede such changes (Hinman et al., 2006).

Several limitations need to be considered before further interpretation of these data. First,
the selection of healthy individuals may underestimate age-related decline in R2 and FTS if
such declines are associated with motor and cognitive symptoms, debility, or mortality that
caused potential subjects to be excluded (Bartzokis et al., 2004; Era, 1988; House et al.,
2006; Ylikoski et al., 1999). Second, in cross-sectional studies, interpretation of age-related
differences as “changes” or “cause and effect” must be made with caution (Kraemer et al.,
2000; Schaie, 2005), and confirmatory prospective studies are needed (Schaie et al., 2004).
Finally, measurement of specific neural networks connecting the different regions involved
in specific cognitive tasks may reveal even more robust structure-function correlations
(Thompson et al., 2005).

The relationship of these findings to human neuropsychiatric conditions and possible
therapeutic interventions is worth considering in light of the findings in this healthy sample.
Speed/time-dependent tests of motor, sensory, and cognitive functions are all good markers
of brain aging (Era, 1988; Hedden et al., 2005; Hoyer et al., 2004; Salthouse, 2000, 2005;
Schaie et al., 2004; Vanneste et al., 2001; Ylikoski et al., 1999) as is myelin breakdown
(Bartzokis et al., 2004, 2006; Braak and Braak, 1996; Marner et al., 2003; Peters et al., 1996,
2001; Sloane et al., 2003). Other processes that are dependent on speed of transmission,
precise timing, and high-frequency of APs such as high-frequency oscillations between
regions [(Gonzalez et al., 2006; Kreiman et al., 2006; Lang and Rosenbluth, 2003); for
review see (Buzsaki and Draguhn, 2004)] and LTP of synaptic transmission that underlies
memory encoding [(Buhl and Buzsaki, 2005; Yun et al., 2002); for review see (Axmacher et
al., 2006)] will also likely be degraded by age-related myelin breakdown (Bartzokis, 2004b;
Bartzokis et al., 2007). Age-related decline in processing speed underlies age-related
declines in most cognitive functions (Hedden et al., 2005; Salthouse, 2000; Schaie et al.,
2004). The data can thus be interpreted to support the hypothesis that by eroding maximal
performance of most neural networks, myelin breakdown may underlie the trajectories of
age-related decline of motor as well as cognitive functioning that eventually lead to
pervasive motor slowing observed in old age as well as the cognitive declines that define
MCI and AD (Bartzokis, 2004b; Bartzokis et al., 2007).

Since in healthy individuals brain myelin breakdown begins to occur in middle age, there is
a decades-long period during which therapeutic interventions could alter the course of brain
aging and possibly of degenerative brain disorders such as AD whose paramount risk factor
is age (Bartzokis et al., 2001, 2004). Non-invasive, serial evaluations of myelin integrity
could be used to monitor the effects of new treatments as well as currently available
treatments that may impact the process of myelin breakdown as early as mid-life. Such
treatments could potentially be useful in slowing brain aging and may have a wide spectrum
of efficacy in delaying the emergence of degenerative brain disorders (Bartzokis, 2007;
Bartzokis et al., 2006).
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Fig. 1.
White matter regions of interest (ROIs).
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Fig. 2.
(A-D) Age trajectories for finger tapping speed (FTS) and white matter transverse relaxation
rate (R2) in frontal lobe (FLwm) and Splenium (Swm). Figures depict the relationships of
finger tapping speed (FTS) performance (A), transverse relaxation rate in the frontal lobe
white matter (FLwm R2) (B), and transverse relaxation rate in splenium of corpus callosum
comparison region (Swm R2) (C) with age. (D) Depicts the trajectories of FTS, FLwm R2
and Swm R2 across the age range of 23-80 based on mixed effects regression models.
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Fig. 3.
Correlations between finger tapping speed (FTS) and white matter transverse relaxation rate
(R2) in frontal lobe (FLwm) and splenium (Swm) regions.
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