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Molecular dynamics (MD) simulations provide essential informa-
tion about the thermodynamics and dynamics of proteins. To
construct the free-energy surface from equilibrium trajectories, it
is necessary to group the individual snapshots in a meaningful
way. The inherent structures (IS) are shown to provide an appro-
priate discretization of the trajectory and to avoid problems that
can arise in clustering algorithms that have been employed
previously. The IS-based approach is illustrated with a 30-ns room
temperature “native” state MD simulation of a 10-residue peptide
in a β-hairpin conformation. The transitions between the IS are
used to construct a configuration space network from which a
one-dimensional free-energy profile is obtained with the mincut
method. The results demonstrate that the IS approach is useful
and that even for this simple system, there exists a nontrivial
organization of the native state into several valleys separated
by barriers as high as 3 kcal∕mol. Further, by introducing a
coarse-grained network, it is demonstrated that there are multiple
pathways connecting the valleys. This scenario is hidden when the
snapshots of the trajectory are used directly with rmsd clustering
to compute the free-energy profile. Application of the IS approach
to the native state of the PDZ2 signaling domain indicates its utility
for the study of biologically relevant systems.

complex networks ∣ conformational dynamics ∣ energy landscapes ∣
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Protein function depends critically on the synergy between
structure and dynamics. The dynamics often involves the

interconversion of conformational states on a complex multi-
dimensional free-energy surface. It is very difficult to study such
conformational transitions experimentally at an atomic level of
detail, although techniques such as single-molecule FRET (1),
x-ray crystallography (2), and NMR (3) supply useful, but limited,
information. Consequently, molecular dynamics simulations are
playing an increasing role in determining the free-energy surface,
as a supplement to the experimental studies. The energy surface
is made up of many deep valleys connected by saddles (4), sug-
gesting that protein dynamics can be divided into intravalley and
intervalley motions (5). The former represent the oscillations
around local minima, while the latter involve barrier crossings
from one minimum to another (6). Most descriptions of the sur-
face have been rather qualitative because computations to sample
the underlying surface for such multidimensional systems have
not been possible. Recently, particularly for peptides and even
a few small proteins (7–9), molecular dynamics (MD) simulations
that extend into the microsecond range are providing the infor-
mation required for a more quantitative analysis (10). Because of
the large number of degrees of freedom involved, analysis of
the results based on graph theory have been found to be useful
(11, 12). The essential idea is to map the calculated trajectory on
a conformation space network (CSN), whose nodes represent the
different conformations visited during the simulation and whose
links correspond to direct transitions between the nodes (13).
This approach has been successfully applied to obtain an under-
standing of peptide folding and biomolecular structural transi-
tions (11, 12, 14–17), as well as to interpret electron transfer

experiments (18) and time-resolved IR measurements (19, 20).
Alternative methods for determining the presence of metastable
states and transition pathways combine many short trajectories to
determine the kinetic connectivity (21, 22).

It has long been realized that in liquids at room temperature,
thermal fluctuation can hide the underlying architecture of the
energy surface. To deal with this problem, Stillinger and Weber
(23) introduced the concept of “inherent structures (IS),” defined
as the local minima on the potential energy surface. They are
determined by calculating an MD trajectory at a given tempera-
ture and quenching the system by gentle energy minimization. All
conformations that under this mapping go to the same IS define
the basin (of attraction) of the IS. Such a partitioning has been
used to study the thermodynamics of liquids, and for supercooled
liquids to obtain insight into the dynamics (24–26). Early studies
of proteins based on the IS concept (6, 27) demonstrated the mul-
timinimum nature of the potential surface but were limited by the
short trajectories that were accessible. Thermodynamic aspects of
coarse-grained models of protein folding have been analyzed
more recently (28–31) following the original prescription of Stil-
linger and Weber (23, 24); see also ref. 32.

In this paper, we show how the IS can be used to facilitate the
analysis of MD trajectories that sample the conformation space
under equilibrium conditions. The decomposition of the confor-
mation space in terms of the IS provides a natural and simple
description of a dynamical system when the timescales of the
motions in a minimum and between minima are well separated.
Once the IS have been determined, the IS make the mapping of
the energy landscape onto a CSN essentially unique and avoid
the uncertainties introduced by a purely geometrical clustering
of the trajectory to define the network nodes (11, 12). Although
the choice of the rmsd cutoffs for clustering, for example, is less
important for the large conformational changes that occur in
the transition between the unfolded and folded states of proteins
(11, 33), for cases where the conformation is more restricted, as
it is in the folded (native) state, the IS appear ideal for clustering
the snapshots and determining the free-energy surface and asso-
ciated CSN.

We study a model system, a 10-residue peptide in a β-hairpin
conformation that is simple enough so that a full description of
the dynamics with the IS approach can be achieved, while the
system has a large enough number of degrees of freedom to
be interesting. A 30-ns MD simulation at 300 K of the peptide
in its folded (“native”) state provides a full sampling of the con-
formation space accessible at equilibrium. Mapping the potential
energy onto the free-energy surface by means of the IS-based
CSN and mincut free-energy profiles (34) demonstrates the
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correspondence between conformational changes, energy bar-
riers, and transition kinetics. Comparison with the standard
CSN analysis based on clustering of the 300 K MD trajectory
shows certain limitations of the latter. An illustrative application
of the IS analysis to a PDZ2 domain demonstrates the utility of
the method for studying the native state dynamics of biologically
relevant systems.

Results and Discussion
The Conformation Space Network and Free-Energy Profile. Inherent
structures and their transitions.The application of the mapping into
IS of the 30-ns long (1.5 × 107 snapshots) MD trajectory of the
GS10 peptide results in 1,561 IS, as described in Methods (see
Fig. S1). The set of IS defines an ensemble of microstates that
can be used to characterize the dynamics of the peptide. Two
short segments of the time series of the IS are shown in Fig. 1A.
It is evident that different long-lived regions (called valleys) are
sampled. The time series of the conformations at room tempera-
ture does not show this organization (gray lines in Fig. 1A). The
valleys, which are described in more detail in terms of the free-
energy profile (see below), include many IS basins and are char-
acterized by different values of the potential energy. In Fig. 1A
Left, a transition between two valleys (βVA and βVB in Fig. 1C) is
shown at t ≈ 22 ps. When the system is sampling one valley,
it rapidly interconverts among a small number of minima with

similar energies but slightly different conformations (e.g., all-
atom rmsd between 0.3 and 0.6 Å) while, rarely, there is a transi-
tion to another valley. Fig. 1A Right shows a series of transitions
between several valleys over the time scale of 600 ps. The fast
transitions within a valley and the slow transitions between
different ones recall the classification used in the field of super-
cooled liquids between type β- and α-transitions, respectively (see
figure 3 of ref. 35 for more details).

Given the microstates defined by the IS, we construct a CSN
shown in Fig. 1B. Visual inspection of the network indicates
the presence of a modular organization, i.e., the presence of dif-
ferent groups of nodes with many links between them and fewer
links to other nodes. The weights of the nodes and links have a
clear physical meaning representing, respectively, the populations
of the basins of attraction of the IS (i.e., proportional to their free
energy) and the transition probabilities [i.e., proportional to an
effective activation energy, since there could bemultiple potential
energy barriers between a pair of nodes (36)]. For the detailed
analysis of the network, we use the procedure described in Meth-
ods to calculate a one-dimensional cut-based free-energy profile
(CFEP) (34). In Fig. 1C the CFEP of the GS10 peptide is shown.
This profile represents the free-energy surface projected on the
partition function-based reaction coordinate Z (see Methods),
relative to a given reference microstate, in this case the most
populated node (arbitrarily called βA). CFEPs have proven to

Fig. 1. (A) IS trajectory. Two sample windows of the IS energies of the GS10 peptide in kcal/mol and the room temperature potential energy (in arbitrary units
for comparison) time series are shown in red and gray, respectively. In the left part a transition between the βVA and βVB valley is depicted, whereas in the right
part a series of transitions between multiple valleys is shown. (B) CSN of the GS10 peptide. Nodes and links represent IS and MD transitions, respectively; the
color code corresponds to that in D, except that white nodes are characterized by Z > 0.97. The size of the nodes and links is proportional to their populations.
For clarity, only nodes that have been visited more than 200 times are shown; there are a total of 571 nodes. (C) IS CFEP of the GS10 peptide relative to the
most populated microstate, βA. The four most populated valleys are shown in dashed lines, and the corresponding lowest energy microstate structures are
schematically sketched; only the atoms involved in the relevant hydrogen bonding and SER orientations are displayed. (D) Reaction pathways between the
most important IS of the system displayed as a CCSN. IS populations and average number of transitions are shown both by the numbers and by the size of the
nodes and the thickness of the links, respectively (see text for comments).
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be a better approach as compared with traditional free-energy
profiles (where the landscape is projected onto one or more arbi-
trarily chosen order parameters (33, 37). The CFEPs provide a
correct estimate of the height of the free-energy barriers, as well
as their positions on the landscape (34, 38, 39). The cut-based
free-energy profile of GS10 has a complex structure with a series
of barriers and valleys. This is perhaps a somewhat surprising re-
sult for such a small peptide restricted to a well-defined β-hairpin
structure. There are four regions that are characterized by broad
valleys (dashed lines in the figure). The four valleys are labeled
βVA , β

V
A0 , βVB , and βVB0 , and the most populated IS in each of them

is βA (EIS ¼ −59.5 kcal∕mol), βB (EIS ¼ −59.3 kcal∕mol), βA0

(EIS ¼ −57.9 kcal∕mol), and βB0 (EIS ¼ −57.7 kcal∕mol). In addi-
tion, the first small valley of the profile located at Z ≈ 0.22 is la-
beled βVA2 according to the βA2 microstate (EIS ¼ −59.0 kcal∕mol).

Structural analysis. For this system, it is possible to structurally
characterize the differences between the valleys in a straightfor-
ward manner. The transition from βA to βA0 is characterized by
the rotation of the CBX group about the corresponding ψ dihe-
dral angle, which disrupts the hydrogen bond between NH9 and
O2 and forms a hydrogen bond between the O2 and the NH10

group of CBX; see the schematic peptide structures shown in
Fig. 1C above the CFEP. The same atomic rearrangement
characterizes the transition between βB and βB0 . The transition
between βA and βB corresponds to the rotation of the serine
OH group about the dihedral angles N-C6

α-Cβ-O (χ1) and
C6
α-Cβ-O-H (χ2). This transition is responsible for the highest

barrier (≈3 kcal∕mol) in the CFEP at position Z ≈ 0.67; it arises
primarily from the χ1 dihedral angle barrier (see Fig. S2). The
rearrangement between βA and βA2 corresponds to a 120° rota-
tion of the serine OH group about the χ2 dihedral angle. Exami-
nation of the high-energy microstates that are accessed within the
various valleys (see Fig. 1A) shows that they correspond to a
variety of backbone distortions; see Fig. S3.

Coarse-grained network.A coarse CSN (CCSN) was built from the
original trajectory projected on the microstates by keeping only
the five IS: βA, βA2, βA0 , βB, βB0 ; all others were deleted. This was
done to have a simple way to capture real transitions between the
valleys and eliminate the multiple passes through the transition
state. The reaction pathways between the five microstates
described above are shown in Fig. 1D. It is clear that there are
multiple, not equally probable, pathways between the five IS,
instead of a sequential pathway along the Z coordinate. This com-
plexity is not evident from the CFEP by itself. The reaction to go

from βB0 to βA can take place by more than one possible route.
The most significant pathway proceeds from βB0 to βB, then to
βA2, and finally to βA. Also, while the direct transition from βB
to βA is possible, it is 3 times less probable than passing through
βA2, which acts as an intermediate that rapidly interconverts with
βA; see also Fig. S2. This is not the case for the transition from βA0

to βA where the pathway involving any intermediates is 4.5 times
less favorable than a direct transition. Finally, we note that the
transition between βB0 and βA0 is faster when the transition is
direct, rather than via the intermediate βB. These results demon-
strate that even in the folded GS10 β-hairpin peptide, the free-
energy landscape is complex and involves multiple pathways.

First Passage Times Analysis. First passage time (FPT) distributions
are useful for obtaining a detailed understanding of the dynamics
(40). The FPT distribution obtained from the time series of
the GS10 peptide is shown in Fig. 2. This plot represents the
distribution of the relaxation times to the most populated IS,
namely, microstate βA. The distribution is broad, spanning six
decades in time from femtoseconds to tens of nanoseconds.
The curve shows two “bumps”: one at times of the order of
500 fs and the other one on the 100 ps time scale. From the plot
the origin of this behavior is not clear. For this reason, focused
versions of the FPT distribution have been calculated as indicated
in Methods; i.e., they include the relaxation from only a given
subset of microstates.

AFPTdistribution is built considering only the IS that are in the
CFEPat values ofZ lower than 0.2 (see Fig. 1C), the value at which
the first free-energy barrier (to βA2) appears. This distribution is
well represented by a power law with an exponential cutoff (light
blue lines in Fig. 2; the fit is shown as a dashed line). Such behavior
is typical of relaxations within a single well for which the charac-
teristic time to reach the bottom (βA state) is undefined. The
exponential cutoff arises from the fact that there is a typical resi-
dence time (on the order of 0.1 ps) after which the system jumps to
other regions of the landscape. The CFEP, which predicts nearly
barrierless transitions to βA, is in agreement with this analysis.

The inclusion of the microstates up to Z < 0.3 (i.e., including
βA2) for the calculation of the FPT distribution introduces the
first bump. This bump represents the fast exponential decay gen-
erated by the partial reorientation of the hydroxyl group of the
SER side chain, typical of the microstates found in the βA2 region
(blue curves). The time scales of these transitions overlap with the
barrierless transitions generating the power-law behavior. How-
ever, the two types of transitions are microscopically different
because the latter correspond to deformations of the backbone
(without changing the β-sheet hydrogen bond pattern), while
the former involves the reorientation of the hydroxyl group.

Fig. 2. IS FPT distributions to βA focused analysis (see main text). The red,
light blue, blue, and gray lines represent the full FPT, focused FPT with
Z < 0.2, Z < 0.3, and Z > 0.67, respectively (see text). Dashed lines show
different functional fits. The two exponential fits have a characteristic time
of 0.6 ps (dashed blue line) and 165 ps (dashed gray line). The fits have been
slightly displaced for clarity. The fitting function for the full FPT distribution is
fðtÞ ¼ c0t−αe−t∕t0 þ c1e−t∕t1 þ c2e−t∕t2 , where c0, c1, c2, α, t0, t1, and t2 have a
value of 704; 4,035; 88; 0.6; 33; 0.6; and 180, respectively.

Fig. 3. Results of structure-based clustering of room temperature trajectory.
(A) rmsd CFEP for the 1.0-Å and 0.8-Å cutoffs are shown as blue and light
blue lines, respectively. The CFEP obtained by using the three most relevant
degrees of freedom of the system (see text) is shown in gray. (B) FPT
distributions to the most populated rmsd cluster. Blue and light blue lines
represent the 1.0-Å and 0.8-Å cutoffs realizations, respectively.
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The second bump is also described by an exponential func-
tion. It develops when the contributions from the microstates
corresponding to values of Z greater than 0.3 are included and
it converges once valley βVB is added. The exponential behavior
is even clearer in a distribution that includes only the snapshots
beyond the barrier at Z ≈ 0.67 (gray lines), i.e., transitions from
the βVB and βVB0 to βVA .

Finally, the full FPT distribution is fitted by the sum of the two
exponentials and the power-law term (red lines in Fig. 2). Thus,
each term of the fitting function, which is presented with the
fitted parameters in the Fig. 2 caption, has a physical explanation
corresponding to specific atomic rearrangements.

Standard Structure-Based Clusterings. To compare the present
analysis with the standard approach, the 30-ns trajectory of
GS10 was clustered using the leader clustering algorithm, inclu-
ding all snapshots without minimization and clustering them
based on two all-atom rmsd cutoff values (0.8 Å and 1.0 Å). These
cutoff values are small compared to those usually used (12, 41), in
accord with the fact that the overall rmsd range is small. A smaller
cutoff (e.g., 0.5 Å) cannot be used because the number of clusters
increases essentially linearly with the simulation time over the
range studied (see Fig. S4), and an astronomical number of rarely
visited clusters would result.

The CFEPs corresponding to the two cutoffs are shown in
Fig. 3A. These results are very different from that obtained with
the IS analysis (see Fig. 1C). They have essentially none of the
structure with well-defined barriers found in the latter, which
provide a meaningful description of the free-energy surface of
the system. In Fig. 3B, the FPT distributions to the most
populated microstate of the two rmsd clusterings are shown.
These distributions are also very different from that obtained
based on the IS (see Fig. 2). The curves are similar to a simple
power law with a cutoff, and there is no sign of any dynamical
transition involving a barrier.

One way to recover the correct partition into valleys without
introducing the IS is to use the relevant degrees of freedom to
define the microstates. Given the structural analysis of the CFEP
described above, they are the three dihedral angles χ1, χ2, and ψ .
The resulting CFEP (see gray curve in Fig. 3A) is a good approxi-
mation to that in Fig. 1C; i.e., it shows the relevant barriers with
the correct heights. This result is a confirmation of the IS
methodology, which does not require prior knowledge of the
“relevant degrees of freedom.” An alternative way of selecting
these coordinates could be based on principal components.

Application of the IS Framework to the PDZ2 Domain. To illustrate
the utility of the IS approach for describing the free-energy
surface of a protein, we have applied it to a 1.6 ns MD trajectory
(for a total of 8 × 104 snapshots) of the PDZ2 domain in its native
state [Protein Data Base (PDB) ID code 3PDZ; see SI Text for
the simulation details]. This short trajectory is not long enough to

provide equilibrium sampling of the native state free-energy sur-
face, but it suffices for the present purpose.

Since the number of degrees of freedom is very large (96 re-
sidues for a total of 1,422 atoms) and the sampling is limited,
we use a reduced set of atoms; i.e., the backbone heavy atoms
and Cβ (BB-CB). As for the GS10 peptide, the IS microstates
are defined by the application of the leader clustering algorithm
to the minimized trajectory with a small cutoff (0.2 Å). A total of
3,029 IS are found. Fig. 4A shows a sample window of the IS
visited as a function of time and Fig. 4B presents the CFEP of
the PDZ2 domain obtained with the IS. The profile shows a com-
plex multiminimum free-energy surface; four major ones are
labeled in the figure. The two most populated microstates
belonging to the α and γ valleys are structurally compared
(BB-CB rmsd difference of 0.72 Å; see Fig. S5). The residues
primarily involved in the conformational change are in the loop
regions. Fig. 4B also shows the structureless CFEP obtained from
the trajectory without minimization with a BB-CB rmsd cutoff
of 0.6 Å.

Conclusions
An understanding of how a protein functions at an atomic level
of detail requires a knowledge of the free-energy surface. It is
now recognized that equilibrium room temperature molecular
dynamics simulations, combined with networks-based ap-
proaches, can be used for that purpose. In this type of analysis,
the configurations visited during the trajectory have to be discre-
tized to obtain statistically meaningful results. The standard
approach, which has been used with considerable success, is to
cluster the configurations in terms of an rmsd cutoff, whose
definition is often arbitrary. In the present paper we show that
an alternative approach based on the use of IS provides a natural,
physically meaningful discretization. For two examples, a 10-re-
sidue peptide in a β-hairpin geometry and a PDZ2 domain, it is
demonstrated that the use of the IS makes possible a detailed
description of the free-energy surface, which is not obtainable
when the rmsd criterion is applied directly to the trajectory.
Importantly, the approach based on the IS does not require
any a priori knowledge of the relevant degrees of freedom.

A difference in the application of the IS analysis to peptides
and proteins, as compared with the original work of Stillinger
and Weber 23, is that we introduce an rmsd criterion for cluster-
ing the IS, rather than using the energies per se. A reason for
doing so is that the precise minimization required for the latter
approach is very difficult to achieve for peptides and proteins.
Moreover, the rmsd criterion, which permits the use of much
smaller cutoff values than can be applied to the unminimized tra-
jectory, is a robust way of focusing on the aspects of the structural
changes of primary interest, e.g., the backbone plus Cβ atoms of
the PDZ2 domain.

For the β-hairpin peptide, the one-dimensional CFEPobtained
using the IS as microstates show the presence of several valleys
separated by energy barriers as high as 3 kcal∕mol; by contrast,
the free-energy profile obtained from the standard room tem-
perature analysis is a single structureless valley. Correspondingly,
the distribution of the relaxation times to the most populated
microstate is a multiexponential function. Analysis of the confor-
mational changes by a simplified (coarse-grained) version of the
conformation space network indicated the presence of multiple
pathways. Thus, the present approach applied to the, perhaps
surprisingly, complex dynamics of this simple system makes
possible the determination of the relation among the different
relaxation times, the barriers along the free-energy profile, and
the peptide conformational changes.

The major conclusion of this paper is that energy minimization
of the configurations visited along an equilibrium trajectory is an
effective discretization method that does not require introduction
of a knowledge of the essential degrees of freedom to obtain

Fig. 4. (A) Time series of IS; (B) CFEP of the PDZ2 domain. The IS and unmi-
nimized based profiles are shown in red and blue, respectively. The IS CFEP
indicates that the protein visited four major valleys (labeled α, β, γ, and δ)
during the simulation.
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high-resolution representations of the underlying free-energy sur-
face. This is of particular importance when the conformational
changes are small, as they often are in the native state, in contrast
to the much larger structural changes involved in protein folding.
Moreover, there arean increasingnumberof experimental data for
systemswhere small conformational changes in the native state are
essential to function. They include the catalytic cycle of dihydrofo-
late reductase (3),where thermsdbetween the fiveactive states is in
the range 0.5 to 2.0 Å, and the structural transition occurring in
PDZ2 domains on ligand binding, where the rmsd is on the order
of 2.0 Å (42). The present approach should then be of widespread
interest for understanding the free-energy surface and its role in
protein function. An experimental test of the results for the
GS10 peptide should be possible in the near future by the use of
time-resolved multidimensional infrared spectroscopy (43–45).

Methods
In this section, we outline briefly the method used, including details about
aspects that are previously undescribed; more standard methodologies are
described in SI Text.

Simulation Setup. The system investigated is a 10-residue peptide (called
GS10) with the sequence AAAGSAAA and N-acetylated (ACE) and
C-amidated (CBX) blocking groups. The GS motif ensures increased stability
of the β-hairpin structure because the G and S residues favor a turn (37). MD
simulations, using the Langevin algorithm with a friction coefficient equal to
50 ps−1, were calculated with the CHARMM program (46, 47), the polar
hydrogen energy function (PARAM19) was used, and the effective solvation
free energy was approximated with the SASA implicit solvation model (48).
SHAKE was employed so that an integration step of 2 fs could be used.

A simulation of 30 ns at 300 K was performed and snapshots were saved
every time step for a total of 1.5 × 107 conformations. The trajectory was
started from a minimized β-hairpin structure. The trajectory is long enough
to provide approximate equilibrium sampling of the conformation space
accessible to the system. During the simulation the all-atom rmsd remains
less than 3.5 Å, indicating that no unfolding events occurred. Thus, the pre-
sent study focuses on the atomic rearrangements of the β-hairpin structure,
rather than on folding/unfolding processes. For details, see SI Text.

Inherent Structures. IS are potential energy minima on the free-energy sur-
face and are obtained by minimizing each snapshot of the trajectory (23).
All configurations that under this mapping end up in the same minimum
determine the basin (of attraction) of the IS. The minimization in the present
study was performed by the steepest descent method followed by applica-
tion of the adopted basis Newton-Raphson algorithm (46). The former is used
to quench the system to the closest potential energy minimum, while the
latter is required for approximate convergence of the minimization. Interest-
ingly, structurally different IS (i.e., conformations belonging to different
regions of the energy surface) were found to have very similar energies in
some cases; e.g., snapshots characterized by energy differences within
10−4 kcal∕mol have an average all-atom rmsd of 1.84 Å, which is a value close
to the overall average rmsd pairwise difference of 1.92 Å. The low-
lying minima (such as βA, βB, etc.) are both energetically and structurally
different, whereas the higher-energy ones can have similar energies but
different structures. Since this value of the energy difference threshold is
near the limiting value that can be achieved with the present potential
because of the nature of the solvation model (see Fig. S6), we defined the

set of IS as the clusters obtained by the application of the leader clustering
algorithm (49, 50) to the time series of the minimized snapshots with a very
small cutoff of 0.15 Å. This procedure is robust; i.e., it is not sensitive to the
value of the cutoff, provided that it is small enough; e.g., clustering with
values of the cutoff as small as 0.05 give quantitatively similar results for
the free-energy profile (see Fig. S7). To verify the rmsd analysis, we have used
the same energy function, but without the solvation correction, which made
possible the use of converged minimization to determine the IS. Identical
results for the CFEP are obtained with a 10−5 kcal∕mol energy cutoff and
with rmsd cutoffs of 0.15 and 0.015 Å (see Fig. S8).

Conformation Space Networks. The IS provide a natural discretization of the
trajectory snapshots into a set of microstates. Each microstate (IS) represents
a node of the CSN (11, 14), and a link is present if a direct transition between
two microstates has been observed during the time series in a time step of a
given size St (36). For details, see SI Text.

Mincut-Based Free-Energy Profile. In a mincut-based free-energy profile,
which shows the free energy as a function of the cumulative partition func-
tion (34, 38), microstates are ranked according to their kinetic proximity with
respect to a referencemicrostate (R). In this work, themean first passage time
(m) version of the algorithm was employed (38); details are given in SI Text.

Coarse CSN. The essential element of the CCSN is to keep only a single micro-
state near the bottom of each valley (e.g., the lowest energy microstate) and
to determine the transitions between this selected set of states. In this way
one excludes, in particular, the many IS in the neighborhood of the top of the
barrier (see Fig. S9) where multiple crossings occur. Thus, introduction of the
CCSN is a simple procedure for determining the meaningful transitions
between pairs of valleys. If there are intermediates that play a role, they will
be missed in the present CCSN, if they are not explicitly included (e.g., micro-
state βA2; see Results). Alternatively, the iterative mincut method for deter-
mining SEKN could be used (12, 51). A test for the correct description of the
intervalley transitions by the CCSN is provided by the agreement between the
first passage time distributions from aMarkovmodel of the CCSN and theMD
simulation; see Fig. S10.

First Passage Time Distributions. The distribution of FPTs to a given target
microstate (R) is calculated as the probability distribution of the time intervals
to reach R for the first time along the time series. Hence, for every time t the
time difference T ¼ ðtR − tÞ contributes to the distribution, where tR is the
first occurrence of microstate R along the time series with respect to time
t. Given this procedure and the time series, the FPT depends on the
definition of R only. FPT distributions are relevant for probing the dynamical
behavior of a system. For example, exponential FPT distributions indicate the
presence of a single rate-limiting barrier to reach R, whereas power-law dis-
tributions indicate barrierless relaxations (or multiple pathways with a range
of barriers). To investigate the contribution to the FPT distribution of a given
set of microstates with a desired property (e.g., a subset of snapshots with
specific values of the cumulative partition function Z) only the snapshots
fulfilling the property are included in the calculation; this is referred as a
focused FPT analysis.
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