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Abstract
Mitochondria have become a primary focus in our search not only for the mechanism(s) of neuronal
death but also for neuroprotective drugs and therapies that can delay or prevent Alzheimer’s disease
and other chronic neurodegenerative conditions. This is because mitochrondria play a central role in
regulating viability and death of neurons, and mitochondrial dysfunction has been shown to
contribute to neuronal death seen in neurodegenerative diseases. In this article, we review the
evidence for the role of mitochondria in cell death and neurodegeneration and provide evidence that
estrogens have multiple effects on mitochondria that enhance or preserve mitochondrial function
during pathologic circumstances such as excitotoxicity, oxidative stress, and others. As such,
estrogens and novel non-hormonal analogs have come to figure prominently in our efforts to protect
neurons against both acute brain injury and chronic neurodegeneration.
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1. Mitochondrial and cell death mechanisms
Mitochondrial oxidative phosphorylation is essential for neurons to meet their high ATP
demand, and neuronal viability is imperiled when this ATP production is even transiently
diminished. In addition to a bioenergetic crisis, mitochondrial impairment also produces a
concomitant increase in production of reactive oxygen species [1]. Mitochondrial failure is the
key event in the pathogenic cascade leading to ischemia-induced cell death from both necrosis
and apoptosis [1,2]. Under conditions of oxidative stress and excessive cytoplasmic Ca2+

loading, mitochondria undergo a loss of the impermeability of the inner mitochondrial
membrane that completely collapses the mitochondrial membrane potential (ΔΨm), a process
called permeability transition. Such irreversible collapse of ΔΨm is accompanied by
mitochondrial swelling and release of cytochrome c into the cytoplasm, where it activates
certain caspases and induces apoptotic cell death [2,3].

Normally, antioxidant defense systems reduce radical-induced damage by scavenging free
radicals. However, accelerated mitochondrial radical production can overwhelm these
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defenses, inducing peroxidation of membrane lipids and impeding oxidative phosphorylation
via inactivation of Fe–S clusters within the electron transport system. The resulting acute loss
of ATP causes the transmembrane ion-dependent ATPases to fail, thereby inducing necrosis
from osmotic collapse [4,5]. In addition, less severe mitochondrial dysfunction initiates
apoptosis in response to a variety of stressors. The excitotoxic process, for example, entails
excessive stimulation of excitatory receptors, including NMDA and other voltage and
metabotropic receptors, by exposure to elevated levels of dicarboxylate neurotransmitters, like
glutamate, as well as several xentobiotics, like kainic acid. Excessive elevation of Ca2+ during
glutamate excitotoxicity undermines mitochondrial integrity and accelerates free radical
production, ultimately leading to cell death [6,7]. As a result, mitochondria are seen as key
modulators of neuronal viability during excitotoxicity [4,5].

2. Mitochondria and Chronic Neurodegenerative Diseases
Chronic diseases with bioenergetic and oxidative etiologies that implicate mitochondrial
dysfunction include Alzheimer’s disease (AD) and Parkinson’s disease (PD), as well as
amyotrophic lateral sclerosis (ALS), Huntington’s disease and Freidreich’s ataxia, among
many others [8]. Although the etiology of Alzheimer’s disease is multifactoral [9], a consistent
finding is hypometabolism of glucose in those brain regions affected by the disease [10] that
can be detected very early in the disease [11,12]. Although hypometabolism could simply
reflect neuronal loss in the effected regions, mitochondrial dysfunction can be more directly
implicated in AD. Amyloid-β (Aβ ) causes an oxidative and bioenergetic crises [13–15], and
in turn enhances the production of Aβ [16]. In addition, other aspects of normal mitochondrial
physiology, such as intracellular distribution, could participate in AD progression secondary
to the mitochondrial failure. For example, peri-nuclear mitochondria are more actively
replicating than those elsewhere in the neuron, and are then distributed to the energetically
demanding synapses. Impairment of normal axonal transport of mitochondria is likely due to
the breakdown of microtubules from the hyperphosphorylation of the microtubule-associated
protein, tau [17,18].

Mitochondria from AD subjects are hypofunctional [19], produce excessive reactive oxygen
species [20,21], and show a defect in respiratory complex IV (C-IV) [22,23]. When inserted
into transformed cells depleted of their endogenous mtDNA, mtDNA from AD patients
produces a phenotype in the resulting cytoplasmic hybrids (cybrids) of increased oxidative
stress, propensity towards apoptosis and C-IV impairment [24,25], suggesting that some of the
cellular pathology in AD reflects mitochondrial defects. While mitochondrial impairment can
be a consequence as well as a primary cause of the disease [26], mitochondrial dysfunction is
clearly involved in progressive neuronal death in AD and as such represents a viable therapeutic
target.

3. Estrogens and Neuroproptection
The neuroprotective effects of estrogens have been widely described against a variety of
toxicities including serum deprivation [27,28], Aβ toxicity [29,30] and oxidative stress [31–
34], among others, in hippocampal, amygdala, cortical and mesencephalic neurons [35–37].
Similarly, in rodent animal models, estrogens have been shown to attenuate neuronal loss
following induction of cerebral ischemia [38–41], following kainic acid administration [42],
and in a contusion physical injury model [43].

Retrospective epidemiological studies in post-menopausal women indicate that hormone/
estrogen replacement therapy is associated with a reduction in the risk of Alzheimer’s disease
as well as a delay its the progression[44–47]. In addition, several clinical studies have reported
improvement of cognitive functions in female AD patients receiving estrogen replacement
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therapy [48–54]. The positive and protective role of estrogens in female AD patients may be
in part due to the effects on mitochondrial function and/or stability.

Neuroprotection can be achieved by non-genomic mechanisms independent of interactions
with the classical estrogen receptors (ERs). In many of the studies cited above using diverse
cell types and cytotoxic insults, naturally occurring 17β-estradiol (17β-E2) and its
diastereomer, 17α-estradiol (17α-E2), which is almost inactive as a hormone, have been found
to be equally neuroprotective. Similarly, studies with a variety of novel estrogen analogues
have confirmed that the structure-activity relationship for neuroprotection with this class of
compounds differs significantly from the structural requirements for ER-dependent gene
transcription [55–59]. For example, the complete enantiomer of 17β-E2 (ent-17β-E2) has
identical physiochemical properties as 17β-E2 except for interactions with other stereospecific
molecules such as ERs. Ent-17β-E2 is reported to interact only weakly with uterine-derived
ERs [60,61] and lacks estrogenic effects on reproductive tissues in rodents [62,63]. In fact,
some reports indicate that ent-17β-E2 exerts slight anti-uterotrophic activity and can
antagonize the uterotrophic effects of 17β-E2 [63,64]. We have reported that ent-17β-E2 exerts
neuroprotective effects both in vitro and in vivo in the absence of stimulation of other estrogen-
responsive tissues [57]. Novel estrogen analogues such as ZYC3, 2-(1-adamantyl)-3-
hydroxyestra-1,3,5(10)-trien-17-one, do not bind to estrogen receptors [59], yet possess both
neuroprotective and vasoactive effects in an in vivo model of ischemic stroke, which offers the
possibility of clinical application for stroke without the estrogen receptor mediated side effects
of estrogens [65].

We defined the essential requirement for neuroprotection to be the A ring of estrogens [56]
and have been able to enhance neuroprotective activity via chemical modification of the
estrogen scaffold [59]. For example, increasing the stability of the A-ring phenolic radical
yields an increased neuroprotective potency [59]. Other approaches to augment potency
includes placement of constituents on the 2 and/or 4 position of the phenolic A ring of estradiol
or estrone, unstaturation of the B or C rings of the planar steroid, synthesizing diastiomers or
enantiomers of estrogens, and combinations of these approaches [59].

4. Estrogens and Mitochondrial Function
Therapeutic agents that are able to stabilize mitochondrial function during ischemia are
expected to be effective neuroprotectants, preventing apoptosis by maintaining functionally
intact mitochondria. A major challenge then in understanding the neuroprotective effects of
estrogens and their potential for application in acute brain damage and more chronic
neurodegenerative disease is determining their mitochondrial mechanism(s) of action, and the
four possibilities discussed below are under active investigation.

4.1. Historic Observations
Several studies have shown that estrogens and related compounds may exert direct or indirect
effects on mitochondrial function. It has been reported that 17β-E2 inhibits mitochondrial
F0F1-ATPase by binding to one of its subunits, the oligomycin sensitivity conferring protein
[66,67]. A testable model for cytoprotective activity is that such inhibition impedes the reverse
reactions of the ATPase during ischemia, using ATP to generate a membrane potential, thereby
preserving cytosolic ATP arising from glycolysis. Other investigators have found that estradiol
augments sequestration of cytosolic Ca2+ by mitochondria in the presence of glutamate which,
given the diffusion limited kinetics of the Ca2+ uniporter, is prima facie evidence of
mitochondrial stabilization [68]. Moderating Ca2+-induced permeability transition during
excitoxicity, and in so doing maintaining OXPHOS, would clearly be beneficial. In another
study, 17β-E2 has been shown to stabilize mitochondrial function and thereby protect neural
cells against the pro-apoptotic action of mutant presenilin-1 [69]. Anti-apoptotic action may
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also involve receptor mediated transactivation such as the upregulation of Bcl-2, known to
occur upon estradiol exposure.

To further illuminate the protective effects of estrogens and other polycyclic phenols on
mitochondrial integrity, we examined a number of markers of mitochondrial activity in SK-
N-SH neuroblastoma cells exposed to 3-nitroproprionic acid (3-NPA). The latter inhibits
oxidative phosphorylation by blocking electron entry into electron transport at the level of
succinate dehydrogenase (respiratory Complex II), and so serves to model not only acute
impaired energy production, seen during cerebral ischemia [38,70,71], but also more modest
energy impairment associated with chronic neurodegenerative disease [72]. We reported that
17β-E2 prevents depletion of ATP, preserves ΔΨm, and inhibits production of reactive oxygen
species [1] caused by 3-NPA [73]. Further, we made similar observations of the mitochondrial
effects of estrogens when H2O2 was used to impair mitochondrial function [74].

Estrogens have been shown to protect neurons against various other mitochondrial toxins such
as MPTP, an inhibitor of respiratory complex I [75–79]. Estrogens increase the expression of
longevity-associated genes, including those encoding the antioxidant enzymes superoxide
dismutase and glutathione peroxidase. As a result, mitochondria from females produce fewer
reactive oxygen species [1] than those from males, an effect that may contribute to increased
female longevity [80–82].

4.2. Nuclear Transcriptional Effects
Estrogens regulate both nuclear and mitochondrial protein expression, although this
mechanism does not pertain to estrogen analogs that do not interact with ERs. For example,
estrogens increase expression of glucose transporter subunits thereby promoting glucose
transport into neurons [83,84], and also increase expression of glycolytic enzymes including
hexokinase, phosphofructokinase, phosphoglycerate kinase [85], and components of pyruvate
dehydrogenase complex [86]. Moreover, estrogens also regulate enzymes involved in TCA
cycle, such as aconitase 2 and malate dehydrogenase [86]. Estrogens enhance glycolytic
activity that is coupled with an increase in glutamate turnover, evidenced by the increased
expression of glutamate dehydrogenase and glutamate oxaloacetate transaminase-2 [86]. The
latter impacts the generation of neurotoxic free ammonium and reduces excitotoxic free
glutamate [87]. Consistent with their actions on glycolytic metabolism, estrogens also enhance
the expression of F1 subunits of ATP synthase [86]. In toto these findings indicate that
estrogens promote glucose utilization via regulation of nuclear encoded genes.

In addition, estrogens also directly regulate the expression of mitochondrial stress responsive
factors encoded by nuclear DNA. The Bcl-2 family of proteins is important regulators of the
mitochondrial pathway of apoptosis, determining whether the mitochondria initiate the cell
death program by releasing proapoptotic factors such as cytochrome c. The family of Bcl-2
proteins consists of anti- and pro-apoptotic members and their interactions play a key role in
regulating apoptosis in cells [88]. Estrogens increase anti-apoptotic proteins, Bcl-2 and Bcl-
xL, which prevent permeability transition [68]. In primary neuronal cultures, estrogens
upregulate expression of antiapoptotic Bcl-w and downregulate expression of proapoptotic bim
in an ER-dependent manner [89].

Estrogens also enhance free radical defenses by increasing the expression and activity of
glutaredoxin, gamma-glutamylcysteine synthetase, and MnSOD, all encoded by nuclear genes
[88,90–93]. In addition, an increase in peroxiredoxin-V was also found upon estrogen treatment
[86]. The action of estrogens on glutaredoxin, gamma-glutamylcysteine synthetase, and
MnSOD expression and activation are inhibited by the ER antagonist, ICI182780, suggesting
an ER-dependent mechanism.
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Recently, it has been demonstrated that estradiol stimulates transcription of nuclear respiratory
factor-1 (NRF-1) via binding of E2-ectivated ER to the estrogen response element [94]. In turn,
NRF-1 binds to its response elements and increases the transcription of mitochondrial
transcription factor A (Tfam) and mitochondrial transcription factor B types 1 and 2 (TFBs),
which are imported into mitochondria where mitochondrial DNA (mtDNA) replication and
transcription are increased.

4.3. Mitochondrial Transcriptional Effects
Akin to bacterial DNA, mtDNA is an intronless, circular molecule of about 16.6 kb that lacks
histones and it encodes thirty-seven genes. Of the thousands of proteins in the mitochondrial
proteome, mtDNA encodes thirteen proteins are the essential component of the enzyme
complexes of the oxidative phosphorylation system. In mammals, the mitochondrial genome
is maternally inherited and unlike the nuclear genome in non-dividing, terminally differentiated
cells, mtDNA is continuously replicated during mitochondrial reproduction [95]. The strands
of the DNA duplex can be distinguished as heavy (H) and light (L) strand based upon the G
+T base composition which results in different buoyant densities of each stand. Most
information is encoded on the H strand, with genes for two tRNAs, 14tRNAs, and 12 proteins.
The L strand codes the other eight tRNAs and a single protein.

Many of the electron transport chain components encoded by mitochondrial genome are
regulated by estrogens. Van Itallie and Dannies [96] found a 16-fold increase of cytochrome
c oxidase subunit II mRNA upon 17β-E2 treatment in rat pituitary tumor cells. An estrogen-
induced increase of cytochrome c oxidase subunit III transcript was also observed [97]. The
estrogen-regulated mitochondrial encoded transcripts have been extended to all three subunits
of the complex IV and subunits 6 and 8 of ATP synthase [98,99]. More recently, Nilsen et al.
[86] identified 4 of the 7 subunits of complex I encoded by mitochondrial genome were
regulated by 17β-E2. Given the single promoter for each strand of mtDNA and the broad range
of estrogen-regulated mitochondrial transcripts, the action of estrogens on mitochondrial
transcription seems universal, not specific to any single gene.

Although it is not clear how estrogens regulate mitochondrial gene expression, studies have
shown that enhancement of mitochondrial transcripts by estrogens can be blocked by ER
antagonist, ICI182780, suggesting an ER-dependent mechanism [100,101]. This notion is
further supported by the newly-identified mitochondrial localization of ERs, especially ERβ
[100,102], and up-regulation of mitochondrial complex IV by the ERβ selective ligand,
diarylpropionitrile (DPN), has been demonstrated [103]. The crystal structure of ERβ has been
well described and it shares a highly conserved architecture with other nuclear receptors such
as ERα. Although ERα and ERβ have nearly identical DNA-binding domain, increasing
evidence indicates that they regulate the expression of a distinct set of genes [104,105]. This
distinction could be partly due to different compartmentalization of ERα and ERβ or
recruitment of different coactivators and adaptor proteins. Most studies have been focused on
the nuclear transcription regulation. However, extranuclear localization of both ER α and
ERβ has been indicated [106–108]. In fact, increasing evidence has demonstrated that ERβ is
mainly localized extranuclearly [100,102,106,108–110]. Consistently, most of the genes
modified in ERβ knock-out mice are mitochondrial structural proteins related to oxidative
phosphorylation [105]. More direct evidence has been shown with ERβ knockdown in a murine
hippocampal cell line through RNA interference. This study demonstrated a phenotype change
in the mitochondrial functions, which included a substantial reduction in cellular vulnerability
to oxidative insults due to a more stable ΔΨm [109].
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4.4. Signaling
Estrogens can also regulate mitochondrial function indirectly through various signaling
pathways. Accumulating evidence has shown that neuroprotective effects of 17β-estradiol
involve transient activation of intracellular signaling pathways via G proteins [111,112],
extracellularly regulated kinases (phosphoinositol 3-kinase and protein kinase B/AKT, ERK
and p38 MAP kinases) [113–115], phosphorylation of the cAMP response element-binding
protein [116–119], and alterations in intracellular calcium levels [120–123]. Changes in the
activity of these enzymes can regulate the phosphorylation of numerous intermediary signaling
proteins such as Rsk, p38 and JNK, and nuclear transcriptional factors, cyclic AMP response
element binding protein (CREB) and cfos/cjun, which may ultimately mediate cell survival
changes (for review see [37]).

However, persistent activation of multiple kinases sends a death signal. It has been observed
that both glutamate and okadaic acid (OA) [124,125] persistently activate JNK, p38 MAPK
and ERK1/2 pathways. Activation of the different MAPK pathways occurs simultaneously,
and there is crosstalk between ERK1/2 and p38 that is mediated by various protein
phosphatases [126,127]. Moreover, it has been demonstrated that PKC phosphorylates both
ERK1/2 and p38 MAPK [128–130] providing a link between PKC and MAPK signaling. In
the presence of functioning protein phosphatases, estrogens, via maintenance of protein
phosphatase activity [131,132], or specific inhibitors of ERK1/2 or PKC [133] prevent
glutamate death signaling. However, in the face of broad protein phosphatase inhibition by
OA, profound activation of multiple death-inducing kinases cannot be overcome with either
estrogens or specific kinase inhibitors. 17β-Estradiol has been shown to block the persistent
activation of both ERK and PKC in a variety of insults including ischemia and ethanol withdraw
induced cytotoxicity [113,115,134–137].

The influence of these signaling effects of estrogens on mitochondrial function is only now
being clarified. Phosphorylation events on the outer membrane of the mitochondria are well
defined. Bcl-2 can be modulated by dimerization with proapoptotic family members (i.e. Bax,
BAD, Bid) and by phosphorylation. The dynamic phosphorylation and dephosphorylation of
Bcl-2 causes conformational changes within the protein and has been suggested to serve as a
survival sensor during stressful or cytotoxic conditions [138]. Bcl-2 phosphorylation by a
variety of kinases, such as PKC, ERK, Akt, PI-3 K, and others, is a cell survival signal; while
dephosphorylation by PP2A and/or PP1 is associated with cell death [139]. BAD, a BH3-
proapoptotic Bcl-2 family member, acts at a key nodal point in the mitochondrial apoptotic
pathway in that unphosphorylated BAD binds and inactivates antiapoptotic Bcl-2 homologues.
This elicits release of cytochrome c from mitochondria and consequent caspase activation
cascades. PP1, PP2A, and calcineurin have been shown to dephosphorylate and activate BAD
[140] and BAX [141–143]. In addition, upon dephosphorylation by PP1 and/or PP2A, BAX
is thought to insert into the outer mitochondrial membrane which disrupts membrane stability
and release cytochrome c.

It is also becoming clear that there is mitochondrial trafficking of an increasing number of
nuclear receptors and transcription factors including but not limited to ER α, ERβ,
glucocorticoid receptor, PPAR γ2, AP1, CREB, NF-κB, p53, TFAM, TFB1M, and TFB2M
(for review see [144]) that have direct transcriptional effects on mitochondrial encoded
proteins. For example, CREB has been shown to be present in the matrix or inner membrane
of the mitochondria [145]. In addition, upon phosphorylation of external CREB by PKA,
pCREB is transported into the mitochondria by TOM proteins and induces the synthesis of
mitochondrial encoded subunits of oxidative phosphorylation [146]. Since estrogens have
shown to mediate the phosphorylation of various signaling molecules including CREB, it is
possible that estrogens may be modulating mitochondrial function and/or transcription via the
singling molecules discussed in this section. Our studies indicate ERβ, along with Tom20 and/
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or Hsp90 are localized to the mitochondria [147]. Receptor preference may depend on ligand
induced conformational change in the receptor, and studies show that estrogen increases
mitochondria localization of ERβ [100]. The dynamic state of ERβ with and without ligand
may facilitate its trafficking based on hydrophobic interactions, which could be mitigated by
oxidative stress.

4.5. Direct Antioxidant Effects
Estrogens have long been recognized as antioxidants in a variety of in vivo and in vitro models.
This is important as many neurodegenerative disorders and brain injuries involve oxidative
stress, in part because of the abundance of polyunsaturated fatty acids in neuronal membranes
which increases susceptibility to peroxidative damage. Estrogens have only weak radical
scavenging activity [148–150], but are able to inhibit oxidative stress markers such as lipid
peroxidation [59,151–154], protein oxidation [155], and DNA damage [31,156–158]. In cell-
free systems, estrogens inhibit iron-induced lipid peroxidation [159], LDL oxidation,
cholesterol oxidation, and conjugated diene formation [160–169]. Given the modest activity
of estrogens as mass action radical scavengers, these potent antioxidant activities are likely
due to a novel redox cycling mechanism (see below). We [28] and others [55,58] have shown
that estrogens, with higher capacity to donate a hydrogen radical from the phenolic hydroxyl
group on the steroid A ring, are more potent neuroprotectants, underscoring the oxidative
etiology of neuronal death.

Recently, we have identified additional structural modifications that improve neuroprotective
potency while eliminating or reducing estrogen receptor binding [59]. For example,
neuroprotection is enhanced by as much as 200-fold through addition of ba ulky hydrophobic
moiety at the C2 or C4 position of the phenolic A ring. In the same screening, we were also
able to establish a correlation between neuroprotective potency and inhibition of iron-induced
lipid peroxidation [59]. The lipophilicity of estrogens leads to their accumulation in the
hydrophobic plasma membranes and affects membrane fluid [170–173]. With a logP of 4.008,
E2 is localized to the lipid environment of membranes, placing them at the site of key
peroxidation events thereby forestalling oxidative damage. By preserving membrane integrity,
which is key for OXPHOS, these molecules preserve mitochondrial function, and so moderate
the injurious bioenergetic and oxidative sequales of mitochondrial failure. The lipid membrane
is also the site of various signal transduction processes including PI3K/Akt signaling and
phosphotidylserine flipping in apoptosis.

Oxidative stress is also a key player in normal physiological conditions. The redox state of the
cell is a primary determinant for cell survival, and influences parameters such as the ratio of
reduced and oxidized glutathione, oxidative state of proteins, and differentiation status.
Previous work on neuroprotection has shown a synergistic interaction between E2 and
glutathione (GSH) [28,174], as well as between the E2 phenoxy radical (E2O•) with other
antioxidants such as α-tocopherol in vitro [175]. Estradiol has also been reported to elicit
significant increases in GSH levels in HT-22, primary hippocampal, and primary neocortial
cells [176]. Quinol derivitives of estradiol capable of redox cycling have also been shown to
be neuroprotective [177].

Estrogen’s role in maintaining the redox (homeostasis) state of cell has implications on many
cellular processes. However, estrogens may also interact with proteins with sulfhydryl-
containing (redox sensitive) cysteine groups. Oxidative modifications to key proteins, such as
NMDA receptors [178,179], ATPase[[180,181], ryanodine receptors [181], , Keap1 [182],
GAPDH [183] and tau [184] is a response to cell stress and in some cases alters signaling
pathways. Many signaling pathways are redox sensitive and include AP-1, CREB, Erk, HIF-1,
NFκB, JNK1/SAPK, PKB, PKC, ARE (Keap) [185], to name a few (for review, see [186]).
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Interestingly, estrogens are known to affect many of these same pathways, including MAPK
[137], NFκB [187], CREB [188], PKC [189], ARE [190], and PKB/Akt [191].

Thiol redox state has wide implications throughout the cell, including the mitochondria [192,
193]. Gender difference were noted above, and isolated mitochondria from female rats
produced less peroxides and mitochondrial DNA damage compared to males and
ovariectomized animals no doubt because the former contained higher levels of reduced GSH,
plus greater activities of Mn-superoxide dismutase (MnSOD), and GSH peroxidase [194].
Diethylstilbestrol [195] and E2 [196] have been shown to increase manganese SOD activity,
and E2 rreplacement in the ovariectomized rats restored mitochondrial function to levels
comparable to intact female animals [186]. Aside from these classic antioxidant enzymes, E2
has also been shown to induce protein thiol/disulfide oxidoreductases, which include protein
disulfide isomerase (PDI), thioredoxin, and glutaredoxin [78,197], and thereby indirectly affect
thiol-dependent regeneration systems. In rat bone marrow, ovariectomy causes a decrease in
total and reduced glutathione, and declines in activities of GSH reductase and thioredoxin
reductase, which were normalized by E2 administration [198].

5. Conclusions
Estrogens have both direct and indirect beneficial effects on mitochondria that serve to preserve
function under pathogenic circumstances. Development of non-hormonal analogs allows
separation of cytoprotection via transactivation from pharmacological activities. As such,
estrogens and the novel analogs are playing a central role in our effort to protect neurons against
acute brain injury and chronic neurodegeneration. While the mechanism(s) of the beneficial
effects of estrogens are likely multifaceted, the cytoprotective data reviewed here encourage
the notion that targeting mitochondrial instability should be considered as a strategy to delay
or prevent Alzheimer’s disease and other chronic neurodegenerative conditions.
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Table 1

Estrogen Interaction with Mitochondria

Direct Indirect

Stabilization of the ΔΨm Increased nuclear mediated transcription

Inhibition of F0F1 – ATPase Increased mitochondrial mediated transcription

Augment mitochondrial Sequestration of Ca+2 Activation of intracellular signaling proteins
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