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Abstract

A discrete set of points and their convex combinations can serve as a sparse representation of the
Pareto surface in multiple objective convex optimization. We develop a method to evaluate the
quality of such a representation, and show by example that in multiple objective radiotherapy
planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five
dimensions grows at most linearly with the number of objectives. The method described is also
applicable to the representation of convex sets.
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1 Introduction

In radiation therapy planning, there is always a tradeoff between achieving the desired dose to
the target region and overdosing nearby healthy structures in the patient [5,11]. This gives rise
to a multi-criteria optimization problem: instead of finding one plan by solving a single
optimization problem, a multi-criteria treatment planning system finds a set of Pareto optimal
treatment plans, and the physician then selects the plan to use by smoothly navigating amongst
these [9]. Considering computation time and storage, we would like to find a small number of
treatment plans which closely approximate the true Pareto surface of plans. With this as the
motivation, we consider the following mathematical setting, which is directly applicable to
multi-criteria intensity modulated radiation therapy (IMRT) treatment planning [3,7]. In brief,
the IMRT treatment planning problem optimizes the beamlet intensity of hundreds of
individual beamlets coming into the patient from given directions in order to deliver a
prescribed uniform dose to the target region while sparing the nearby healthy organs. The
mapping from beamlet intensities to dose, discretized as volume cubes (voxels) in the patient,
is linear and known.

The method presented here is applicable to general convex multi-objective optimization, but
in this work we focus on IMRT planning, which appears to be one of the only areas in which
high dimensional Pareto surfaces are used for decision making.
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2 Problem statement

Our main goal is to calculate the error of a discrete representation of a Pareto surface. By Pareto
surface, we mean the set of all Pareto optimal (see below for definition) solutions in objective
function space. Consider the following general multi-critieria optimization problem (MOP):

minimize {Fj (x)} , Jj=l...n
x e Cy, (1)

F; is the jth objective function (assumed throughout to be convex), x is a vector of decision
variables, and C, is a convex constraint set in the decision variable space. Formulation 1 is
shorthand for “find all Pareto optimal solutions with F; as the objective functions”. For a
solution x we let F(x) denote the vector of objective functions of that solution. A solution x is

Pareto optimal if there is no other feasible solution ; where F (X) < F (x)with at least one strict
inequality (in this paper, vector inequalities are always meant component-wise). Typically the
set of all Pareto optimal solutions is not available in closed form. Therefore, one seeks a discrete
set of points on the Pareto surface (PS) which approximates the surface well. (By Pareto surface,
we mean the surface in objective function space, that is, the space with one coordinate axis for
each objective function F;. One could also speak of the surface of Pareto optimal points in the
underlying decision variable space.) In our setting, we allow convex combinations of the
discrete points representing the Pareto surface, thus, if in 2D the Pareto surface is a straight
line, the two end points constitute an exact representation of the surface. This differs from the
work of Sayin [12] which does no allow for convex combinations of the discrete points
representing the surface, but otherwise has similar goals.

Let F(Cy) denote the mapping of the feasible points into the objective function space, i.e.:

F(Cy)={yelIR"|AxeC, with F(x)=y}. ©)

This set is not necessarily convex, but the following outward extension of F(C,), which we
call Cg, is:

CF:{)‘GIR"|3~)C€C~" with  F(x) <y} .

The proof of the convexity of Cg is given in A.1. See Figure 1 for depictions of F(C) and
Ck. For the remainder of this work we use the set Cr due to its convexity. Note that the lower
boundary of Cg is exactly the Pareto surface (See Figure 1). Notation used appears in Table 1.

We next define a distance measure which is appropriate for measuring the difference between
a discrete representation of the Pareto surface and the true Pareto surface. To begin, letd(z —
y) be the distance from point z to point y, both of which lie in I R”. We define d as:

d(z > y) = max; ((\‘j - :j)+)
’ ! (4)

where (a)* = max(a, 0). Note this is a one sided maximum norm that takes a non-zero value
only if some component of z is less than the same component of y. We extend this definition
to the distance from a point z to a convex hull of a set of points, CH(v), as follows:
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d(z —» CH(v)) := min ., d(z > y). ®)

At this point we turn to evaluating a discrete representation of the Pareto surface. Let v1,
v™ be m points in the set Cg, and let CH(v) denote their convex hull. In general the points V!
can be anywhere within the set Cg but in this work they will be on the Pareto surface. Given
this discrete representation v, the error e is defined as

e(v) =max__ d(z - CH(»)). ©)

This is the optimization problem we wish to solve, which gives a quality measure for a discrete
representation v. However, this is a difficult optimization problem since it is the maximization
of a convex function over a convex set (MCCS). (The proof that d is convex in z follows from
the Theorem 5.1 in [2] once d(z — CH(v)) is written as the optimal solution to a linear program,
formulation 7 below). Therefore, it is possible that there are local optima that are not global.
On the other hand, it is easy to show that optimal solutions to the MCCS problem exist on the
boundary of the convex set, e.g. [1]. If the convex set is polyhedral (e.g. linear programming)
one might consider enumerating the vertices in an exhaustive search. However, for our case
this is not feasible due to the dimension of the problem and hence the large number of vertices.
Furthermore, many IMRT problems are modeled as nonlinear convex optimizations. General
techniques for the MCCS problem exist [1], but here we develop a new method tailored to the
specific form of the problem at hand. The idea is that the distance measure to maximize is a
piecewise linear convex function (proved in [2]), and hence we can enumerate the gradients
of the function d(z — CH(v)) and search in each of the gradient directions individually (proof
of the validity of this strategy is in A.2). Next we turn to enumerating the gradients for a fixed
discrete Pareto representation given by v.

We begin by writing the distance d in formulation (6), for a fixed z and a fixed set of points
v on the Pareto surface, as the solution to a linear program:

minimize d
m

st. d> igl/li\'} -z, Jj=l...n
m
> A=1
i=1
d>0
A4;>0, i=1...m (7)

m .
Note that Zizlfli\" denotes a convex combination of the members of Cg, and as such is also
a member of Cg. The dual values (also termed Lagrange multipliers or marginal values) of the

m

constraints & = Zizlﬂi"'j ~ Zj (the dual values are optimal values of pj in formulation 8 below)
are equal to how the minimum of d (i.e. the distance) changes with a change in zj. More
specifically, pj is, by linear programming duality theory, the partial derivative of the distance
from z to Cg with respect to zj, thus together giving the gradient of the distance with respect
to z. Note that increasing z, i.e. bringing z closer to the Pareto surface, causes the distance to
the Pareto surface to go down, and hence the relationship between the dual variables p and the
gradient g of the distance with respect to z is off by the sign, i.e. g = —p. There isalso a geometric
visualization of the gradient (and hence the dual variables p) which is described in Figure 2
and the caption. The gradient points in the direction of maximal increase of the distance
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function, and thus the gradient of the distance function in the region of a face is perpindicular
to that face (iso-distance lines are parallel to the face). For high dimensional faces which are
not fully dimensional (e.g. lines in 3D, instead of fully dimensional triangles) the geometric
interpretation is more difficult, which is why we choose to calculate the gradients by appealing
to duality theory rather than geometry.

The dual problem associated with the primal problem given in formulation (7) is:

.. ’
maximize -p z+q

’ .
st. —pV+g <0, i=l...m
n

xpjsl
=1
pj=20, j=l...n (8)

The solutions p to this problem are the dual variables associated with the constraints
m

dz Z-zl/‘f"'j — Zj in the primal. We would like to enumerate all possible dual solutions p for
all possible values of z. Since z is continuous we cannot do this simply by varying z and solving
formulation (8). Instead we appeal to linear programming theory, which states that the optimal
solution to a linear program lies on a vertex of the feasible set (which is a polytope for linear
programs). Since there are finitely many vertices of a polytope, if the dimensions are small

enough it is feasible to enumerate them. In our case n, the number of indicator functions (i.e.
objectives) is usually under 6 and m, the number of solutions representing the Pareto surface,
can also be kept small (on the order of 50) and still achieve a close approximation, as we will

see.

The dual problem has n + 1 variables (p is a vector of length n and q is a scalar), thus from LP
theory we know that vertex solutions have n + 1 tight constraints (a tight constraint is a
constraint satisfied at equality). The LP theory of complementary slackness states that when
you pair a constraint with its dual variable, or vice versa, for example the primal variable d >

n
0 is paired with the dual constraint ZHPJ‘ <1 at least one of the inequalities is tight. For all
of the primal/dual pairings, see Table 2. Since we are only interested in gradients associated
with non-zero distance values, we can consider only cases where d > 0. This tells us that we

n

can enforce j:lple. Then we need to have n more of the n + m dual inequalities be tight

n+m \_(ntm)!
(so that we have a total of n + 1 tight constraints), and thereare\ ,, |~ ,,;z1 possibilities
for this. To get these, we solve the resulting set of equalities for each choice, and then retain
only those solutions where p > 0.

Atthis point, with all of the gradients (i.e. the negative of the dual solutions, g = —p) enumerated,
we can solve formulation 6 by solving

. ’
maximize 8 <z
st. zeCp 9)

for all enumerated gradients g, and then, for each optimal solution z, computing the distance
via formulation 7. Note that formulation 9 is equivalent to solving the following for all
enumerated gradients g:
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.. 4
maximize gz
st. xeCy
F(x)<z (10)

by the definition of the set Cg. Also note that g <0, otherwise the problem is unbounded by
letting the correct component of z go to infinity.

In order to solve the problem at hand — calculate the error of a given discrete Pareto surface
representation — it is now sufficient to run all of the gradients through formulation 10. Note
however that formulation 10 is the full IMRT problem, and hence is expensive, and there are
a large number of gradients to check. Therefore, we next derive an upper bound formulation
to avoid having to run all of them. Appealing again to LP duality theory, we know that if we
could solve the primal (7) and dual (8) formulations simultaneously (with z as a variable,
constrained by z € C, along with the other variables d, A, p, and ), while equating the two
objectives, we would have an optimal solution to our problem. However, with z as a variable,
this becomes a set of simultaneous nonlinear equations, since z multiplies p in the dual
objective, and is therefore not straightforward to solve. But, if we fix a gradient by fixing p,
we remove the nonlinearity. Let g k=1 ... L, be a set of gradients we have already run through
formulation 10, and let zX be the corresponding Pareto surface points. By construction of these
points, we know that g’z < gk*zk for all feasible z and forallk = 1 ... L (since gk maximizes
g’z for all feasible z). Therefore we can add these as valid constraints to the primal/dual
constraint set, and we get the following optimization problem which yields an upper bound for
the distance achievable for a given gradient g = —p:

maximize d
m

sit. d> ;l/li\‘; -zj, Jj=l...n
= m
> A;=1
i=1
d>0
A4i=20, i=l...m
(l:g’:+q
g,\'i+q <0, i=l...m
’ ’
Fz<d'F k=1...L (11)

Decision variables are d, 4, z, and . Fixed quantities are vi, g, gk, and z. Note this is an upper
bound on the maximum distance to the convex hull because we are replacing the difficult
constraint z € Cg with a looser set of constraints on z, g’z < g¢’z¥. This upper bound is helpful
because if the upper bound for a particular gradient g yields a distance value which is less than
an already calculated distance value, or yields a distance within our error tolerance, we do to
need to run that gradient through formulation 10.

In order to run these ideas as an algorithm for generating a Pareto surface, it is left to decide
1) how to compute an initial set of Pareto surface points and then 2) when to add points to the
Pareto surface and how often to re-convex hull. For the initial discrete points, we compute the
n anchor points of the multi-objective problem, that is, we minimize each of the objectives
individually. Then to add additional points, we enumerate the gradients of the current discrete
point representation, and for each gradient, we run formulation 10. If a gradient yields a point
with a distance > 0.05 (objective functions are normalized from 0 to 1, so this represents a 5%
error), and we add the point to the discrete representation and re-convex hull.
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3 Examples

We analyze three IMRT cases in this study: a pancreas, a prostate, and a brain. We consider
the pure beamlet optimization problem, which is convex, and ignore the issue of deliverability
of plans [14]. Note however that with a pencil beam algorithm designed with beamlet based
IMRT planning in mind, the errors that enter when idealized fluence maps are sequenced are
not overly large [6]. Problem sizes for the examples used are given in Table 3.

We are interested in how the number of plans needed to represent a Pareto surface to a specified
accuracy (always 5% in this work) grows with the dimensionality of the tradeoff. For each case
we compute a series of Pareto surfaces by successively adding objective functions. We use
hard constraints to limit maximum doses to all voxels and minimum doses to the target voxels.
The following function is used as a target dose objective function:

R(d,P)=1/N Z max {0, P — dj)

ictarget (12)

where N is the number of voxels in the target, d; is the dose to voxel i, and P is the prescription
dose. Note when d; < P then voxel i positively contributes to the function R, which stands for
“ramp”. A symmetric version is used to penalize doses above a certain limit P:

R (d,P)=1/N Z max {0, d; — P)

i€region of interest (13)

The upper ramp function g is used in these studies to control dose to the unclassified tissue,
and P is always set to half of the target prescription dose.

For the pancreas case, with a prescription dose of 50.4 Gy, we begin by trading off combined

kidney mean dose, liver mean dose, stomach mean dose, and the upper ramp g (d,25)on the
unclassified tissue. We constrain the target coverage with a hard minimum dose of 45 Gy and
R(d, 50.4) <0.1. This Pareto surface requires 25 plans to guarantee an error of less than 5%.

When we add the next objective, minimize the planning target volume (PTV) underdose, we
require 44 plans. Results for this case and other cases are shown in the Table 4 and graphically
in Figure 4.

Two Pareto surface results are depicted for the brain case in Figure 3. This case requires fewer
plans for the 5D case than the Pancreas case probably due to the fact that the tradeoff is relatively
simple here: target coverage versus the sparing of every other organ [4].

For the prostate case, we examine two different formulations, both given in Table 4. Tradeoff
set 1 has the prostate coverage (planning target volume, PTV) as an objective, where as tradeoff
set 2 merely constrains it. Due to this constraint, which restricts the size of the feasible set, the
number of plans needed for the 3D and 4D Pareto surfaces is always less or equal for tradeoff
set 2, as observed in Figure 4.

4 Discussion and conclusions

The Pareto surface approach for decision making is essential if the decision maker is not able
to articulate all tradeoff possibilities and preferences before seeing the options. For high
dimensional tradeoffs this should almost always be the case since even articulating preferences
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is overly ambitious. Furthermore, even in simple 2D cases it is likely that the shape of the
tradeoff surface is important for making the final decision.

When faced with making a decision based on a Pareto surface, the decision maker would like
to know that the Pareto surface he is observing is to some extent complete. We have defined
a useful error measure for a Pareto surface using a one sided maximum norm, Equation 4. We
then provide a technique to calculate the error which consists of enumerating gradients of the
underlying distance function for a given PS representation. The most important distinction of
our work compared to other works involving convex Pareto surface computations is the
definition of the error. Our definition of error has been used instead of the more commonly
used measures of cardinality, coverage, and uniformity, for the following reasons. When the
underlying problem is convex, the convex combination of computed solutions is feasible and
cheaply available computationally and therefore for all practical purposes is immediately
available. If these convex combinations are very close to true Pareto plans (which they will be
when the error, as defined in this paper, is small) then it is sufficient to have a small set of
Pareto plans from which an approximation of the entire Pareto surface can be obtained by
convex combinations of them. Therefore, the measure of coverage (distance of the worst
represented Pareto surface point to its closest represented point) and uniformity (maximum
distance between two represented points) are not useful in this setting. In a recent similar work
[13], convex combinations of IMRT plans are not taken into account when evaluating the Pareto
surface, and this results in a large number of plans to approximate the Pareto surface. Due to
the resulting computational burden, the authors do not move beyond 3D tradeoff surfaces, and
they devise an approximation scheme to further reduce the number of plans to calculate, but
still do not take advantage of convex combinations of computed plans.

The approach we provide can be modified for representing a complete bounded convex set, as
opposed to just the Pareto boundary, by using a two-sided distance measure d(z — y) :=
max; (Iyj — zj/), which is symmetric in z and y. This would apply to a decision making scenario
where a decision maker would like to explore the region of all feasible points.

For up to 5 dimensional tradeoff surfaces, we have shown that the number of plans needed to
represent an IMRT Pareto surface is less than 50. The values shown in Figure 4 are in fact
upper bounds to the number of points required for a few reasons. Since we are using convex
functions, the distance given by formulation 7 is an upper bound to the actual distance from a
point to the Pareto surface. Also, it remains a possibility that there exists a smaller number of
points with the same or smaller error. Finding algorithms which efficiently find a set of points
which give minimum error representations is a topic for future research. Finally, the IMRT
treatment cases we have studied here do not use dose constraints (other than target minimum
and global maximum dose constraints). In an actual setting, one might include additional dose
constraints (mean dose to some organ at risk less than some value, for example) which would
further restrict the Pareto surface extent [5,8,10], which would therefore require fewer plans
for representation. To calculate the largest possible tradeoff surface, we do not include such
constraints.

The growth of number of plans required versus problem dimension appears to be linear for
each individual problem. This may be surprising: simple dimensional arguments — like the
number of points on a unit cube — point toward exponential growth. However, one reason for
the linear growth observed is the order in which the objectives are added to the problem. In
each case we have started with the most important and largest tradeoffs (known from experience
in this problem domain) and successively added more minor objectives, which offer less of a
tradeoff opportunity.
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Future work includes extending this to higher dimensional problems. Already withn =5
dimensions and m = 40 points on the surface, the number of enumerated gradients is on the
( Tk )z 1% 10°
orderof\ 7 . However, most of these are not actual gradients, i.e. most have
negative components. Negative components arise from, for example, the facet connecting the
two extreme points in Figure 2. In high dimensions most of the facets of a convex hull of a set
of points have normal vectors with some positive and some negative components. Still, even
if one can discard mixed gradients, one must enumerate them anyhow if using the technique
of this paper, and this becomes prohibitively expensive as n and m increase.

On the other hand, even 5 objective functions is already a large number of competing structures
in radiotherapy and easily covers most clinical situations. Even if the number of planning
structures is large, as it is for example in head-and-neck cases, many of the structures would
be included as constraints rather than objectives in the MCO formulation, allowing the planning
process to focus on the tradeoffs deemed most important by the physician. It has also been
shown that for multicriteria IMRT instances with a large number of tradeoffs, the effective
number of tradeoffs is usually much smaller, on the order of 3 or 4 [15], due to the correlation
between objective functions (for example, trying to reduce the dose to the chiasm in the brain
case of Figure 3 will tend to lower the dose to the left optic nerve as well). Finally, since
treatment planning is not currently done with multi-objective optimization, even a system that
computes Pareto surfaces up to 5 dimensions would be very useful.
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A Appendix

A.1 Proof that set Cris convex

C,={yelIR"|AxeC, with F(x) <y} Letyjandy,betwomembersof Cg. Need to show
that any convex combination of them is also in Cg. Choose a 1 € (0, 1). Let x; and x be two
feasible solutions associated with y1 and y», i.e. F(x1) <yj and F(x2) <y,. Thus AF(x1) + (1 —

AF(X2) <Ay1 + (1 —A)y2. Let x =ax;+ (1 — 2) x,, Which is feasible since Cy is convex. Since
F; are each convex, we have F(;‘) S AF () + (1= D) F (x2) and therefore

F (;‘) < it (1= y2 which shows that 4y + (1 — 2)y, € Ck.

A.2 Proof that gradient enumeration solves the piecewise linear MCCS

problem

Let d(z) be a piecewise linear convex function and let S be the convex feasible region for z.
Let G denote the set of all gradients of d. Let z* be the optimal solution to the problem
max;esd(z). Let g* be a subgradient of d at the optimal solution z*. Consider the problem:
maxzesg™’z. Let 7 be an optimal solution to this problem. Since g* is a subgradient of d at the

% « [ _x z N _* .
optimal solution z*, we have 4 (') +8 (~ 2 ) = ‘I(~). Also, 8 (” = ) 2 Oy the definition
of . Thus we have ‘1(:) > d(Z) and we thus prove that 7 is optimal for the original problem
maX,esd(z).
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(a) (b)

Figure 1.
In (a) the hashed area is the set F(Cy) = {y | 3 x € Cy with F(x) = y}. The bold lower envelope

is the Pareto surface. In (b) the hashed area is Cg = {y | 3 x € Cy with F(x) <y}, i.e. the outward
extension of the set F(C,), which is a convex set if Cy is convex.
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Figure 2.

The arrows indicate the gradients g of the distance function, and are equal to the negative of
the vector of dual variables p, as discussed in the text. The distance is the one-sided maximum
norm distance of a point to the convex hull of the points which define the Pareto surface thus
far, which are the dots in the figure. The gradients are associated with faces of the Pareto surface
approximation and are normal to those faces (in this example, the vertical and horizontal
gradients shown are associated with the degenerate faces, which are the anchor points). The
true (unknown) Pareto surface is displayed as well as the convex hull approximation of it. By
running each of the gradients through formulation 10, we can calculate the maximum error of
the discrete representation.
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Figure 3.

Two Pareto optimal solutions shown for the brain case. a) shows a balanced plan and b) shows
the best plan regarding the left optic nerve (which is on the right due to the flipping of the
image). The sparing of the left optic nerve causes the target dose homogeneity and the dose in
the brain stem to noticeably worsen.
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The number of plans required to represent each Pareto surface to an error tolerance of 5%.
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Table 1

Notation used throughout the text.

CH(VL, V2, ..., v™m)
diz—vy)
dz—S)

symbol meaning

X vector of decision variables

Fi(x) jth indicator function,j=1...n

F(x) vector of all n indicator functions

Cx constraint set for the decision variables

Ce convexified set of feasible indicator function vectors

v, Y,z used to denote points in indicator function space, I R”
viii=1l..m m points in indicator function space representing the Pareto surface

convex hull of the m representing points. Serves as approximation of Cg
distance (one sided maximum norm) from ztoy

distance from z to the set S
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Table 2

Primal dual pairings of primal problem (7) and its dual, (8). Pairings are on the same row.

Primal Dual
variables constraints
d 1. p.<1
2 1P

Jyi=1l..m —-pVi+q<0,i=1..m
constraints variables

m i_ L i =
dz):1.=1/11.x/j ZJ,J—l...n ppi=1..n
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Table 3

Sizes of each case in terms of voxels and beamlets.

Case # voxels used in # voxel size beamlet size
optimization beamlets | dx, dy, dz (cm) (cm)
Pancreas 18,093 633 0.27,0.29,0.25 1.0x1.0
Prostate 16,615 491 0.36, 0.36, 0.25 1.0x1.0
Brain 17,335 418 0.28,0.29, 0.25 1.0x1.0
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Multi-objective formulations and the number of plans required to represent the Pareto surfaces.

Table 4

Pancreas optimization (prescription: 50.4 Gy)

Objectives

Pareto surface

Number of plans needed

dimension on Pareto surface
Kidneys mean, stomach mean, liver mean, 4D 25
unclassified tissue ramp
+PTV ramp 5D 44

Prostate optimization (prescription: 79 Gy)

Objectives (tradeoff set 1)

Pareto surface

Number of plans needed

dimension on Pareto surface
Rectum mean, bladder mean, PTV ramp 3D 10
+ femoral heads mean 4D 25
+ unclassified tissue ramp 5D 45

Objectives (tradeoff set 2: target dose fixed

Pareto surface

Number of plans needed

by constraints) dimension on Pareto surface
Rectum mean, bladder mean 2D 3
+ femoral heads mean 3D 10
+ unclassified tissue ramp 4D 21

Brain optimization (prescription: 59.4 Gy)

Objectives

Pareto surface

Number of plans needed

dimension on Pareto surface
CTV ramp, brain stem mean, chiasm mean 3D 8
+ CTV upper ramp (for hotspots) 4D 25
+ Left optic nerve mean 5D 33
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