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Summary

We propose a hierarchical model for the probability of dose-limiting toxicity (DLT) for
combinations of doses of two therapeutic agents. We apply this model to an adaptive Bayesian
trial algorithm whose goal is to identify combinations with DLT rates close to a pre-specified
target rate. We describe methods for generating prior distributions for the parameters in our model
from a basic set of information elicited from clinical investigators. We survey the performance of
our algorithm in a series of simulations of a hypothetical trial that examines combinations of four
doses of two agents. We also compare the performance of our approach to two existing methods
and assess the sensitivity of our approach to the chosen prior distribution.
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1. Background and Significance

Phase I trials of combination cancer therapies have been published for a variety of cancer
types, including small-cell lung cancer (Rudin et al., 2004), gastric cancer (Inokuchi et al.,
2006), melanoma (Azzabi et al., 2005), ovarian cancer (Benepal et al., 2005), and renal cell
carcinoma (Amato et al., 2006). Unfortunately, all of these trials, and many others similar to
them, suffer from poor study designs that have two distinct limitations. The first limitation is
that four out of five of the cited trials escalated doses of only one of the agents, while fixing
the dose of the other agent at some pre-determined dose. However, it is very possible that
the safest dose of each agent will depend upon which dose of the other agent is used. In an
ideal design, simultaneous modification of doses for both agents will be possible. The
second limitation is that the cited trials used a variant of the so-called *3+3 design’ (Storer,
1989), which has been shown to have poor operating characteristics, including a strong
propensity to select doses below the actual MTD (Ahn, 1998; Lin and Shih, 2001). A
preferred design would incorporate a parametric model describing how doses of both agents
contribute to the probability of dose-limiting toxicity (DLT).

Research into parametric models for two-agent combinations has been ongoing for over
forty years, starting with the work of Plackett and Hewlett (1967). However, this research
was primarily theoretic and was not specifically motivated by dose-finding studies. In the
past decade, a handful of dual-agent Phase | study designs have been published. Kramar et
al. (1999) first noted the limitations of an algorithmic approach and instead employed the
maximume-likelihood version (O’Quigley and Shen, 1996) of the continual reassessment
method (CRM) of O’Quigley et al. (1990). However, as the CRM is an adaptive design for
single-agent Phase I trials, Kramar and colleagues then developed an ad-hoc formula
allowing them to combine a dose of each agent into a single imputed dose in an effort to
provide an ordering for the various dose combinations under study. A related approach was
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proposed by Conaway et al. (2004), in which the ordering restrictions were more formally
incorporated into parameter estimation and selection of the optimal combination. A very
recent CRM-based design was proposed by Yuan and Yin (2008).

Two model-based, adaptive approaches that reflect the individual contributions of both
agents also exist. Thall et al. (2003) proposed a design that identifies an entire “contour” of
combinations by modeling the probability of DLT as a function of both doses using a six-
parameter logistic regression model. One unique aspect of Thall et al. (2003) is that the
design first studies specific combinations of two agents, and at the occurrence of the first
DLT, the study is widened to examine a continuum of doses in a neighborhood of the
combination in which the first DLT occurred. An alternate two-stage design was developed
by Wang and Ivanova (2005), in which the first stage is viewed as a “start-up” for the study
when little data is available for parameter estimation. Once the first stage has developed a
sufficient toxicity profile of the combinations using algorithmic approaches, those
combinations deemed “acceptable” in the first stage are more fully examined with adaptive,
Bayesian approaches applied to their proposed parametric model. The design of Wang and
Ivanova designates one agent as primary (referred to as “dose 1) and seeks one suitable
dose of the secondary agent for every dose of the primary agent that leads to acceptable
DLT rates.

In this manuscript, we propose another approach that has distinct differences from the
designs of Thall et al. and Wang and Ivanova. First, patients will be enrolled continuously in
a single stage, with the parametric model and corresponding Bayesian methods applied
throughout the entire study. To limit the selected prior distribution’s influence early in the
study, we will implement a stopping rule based solely upon the cumulative number of DLTs
observed in the study. Second, in an approach novel to dose-finding study designs, our
design does not assume that the probability of DLT is a fixed quantity for every subject
receiving the same combination and we choose to model the effects of each agent on the
parameters describing the distribution of DLT probabilities for each combination. As a
result, our design will accommodate subject heterogeneity better than the competing designs
that assume the probability of DLT is constant for each combination. In Section 2, we
describe our hierarchical model and the resulting likelihood, and in Section 3, we describe
how to use elicited clinical information to develop appropriate prior distributions for each
model parameter. Section 4 outlines the actual design and conduct of an actual trial, and
Section 5 numerically examines the performance of our design in a variety of settings, and
includes a direct comparison to the CRM and method of Wang and lvanova. We conclude
with summarizing remarks in Section 6.

2. Proposed Hierarchical Model

We have a Phase | study designed to examine combinations of m doses of Agent A, denoted
a; <ap <...<ap, and n doses of Agent B, denoted b; < by < ... <by. Let (j, k) represent the
combination of dose aj, j =1, 2, ..., m, and dose by, k=1, 2, ..., n. Note that the value
ascribed to each a;j and by will not be the actual clinical values of the doses, but will be
“effective” dose values that will lend stability to our dose-toxicity model, an approach used
in numerous Phase | trial designs. We will describe how to determine reasonable effective
dose values in Section 3.

We let pjk denote the probability of a DLT for a subject receiving combination (j, k), and we
let p* denote the desired DLT rate of the optimal combination. Thus, the combination (j, k)
whose corresponding probability of DLT is closest to p* should be selected as the maximum
tolerated combination (MTC); we denote this combination as (j*, k™). We will assume that
each pjk has a beta distribution with parameters aj and Bjx, which is a useful probability
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model for our setting because ajk (Bjk) can be interpreted as the prior number of subjects
assigned to combination (j, k) expected to have (not have) a DLT. It is also natural to
incorporate variability into the DLT rates of each combination as dose-finding studies tend
to enroll very heterogeneous samples of subjects. As we would expect ajk (Bjx) to increase
(decrease) with both a; and by, we explicitly model ajx and Sji with the following parametric
functions of a; and by:

log{a j1.(6)}=60+01a+6>bi (1)

log{Bx(@)}=¢o — p1a; — @2by, )

in which @ = {6, 61, 6,} has a multivariate normal distribution with mean g = {ug, 11, uo},
o = {po, 91, 2} has a multivariate normal distribution with mean @ = {wg, w1, w»}, and
both @ and ¢ have variance 0293, in which &3 is a 3x3 identity matrix.

We have chosen to omit the interactive effects of doses. This decision is based, in part, from
the work of Wang and Ivanova (2005), who found that the no interaction version of their
model performed better than the interaction version, at least in the settings examined.
Furthermore, we do not seek to correctly model the entire dose-response curve for every
combination, but only those in a neighborhood of the actual MTC, and it has been
documented that underparameterized models can provide adequate local fit sufficient for
dose-finding studies (O’Quigley and Paoletti, 2003). Nonetheless, our model could be easily
generalized to include an interaction term in each of Equations (1) and (2), although
additional parameters will necessarily increase the sample size required for the study. We
have also assumed that all six regression parameters are independent and have the same
prior variance ¢2; either assumption could be relaxed by incorporating additional variance
and/or covariance parameters. However, we have found in simulations (results not shown)
that additional parameters add needless complexity to the model with little gain in algorithm
performance.

Let Njk denote the number of subjects assigned to combination (j, k), of whom Y, subjects
have experienced a DLT. If we then define Y = {Yjk:j=1,2,...,m; k=1,2, ... n}and N =
{Njk:1=1,2,...,m;k=1,2, ... n}, the posterior distribution for (0, ¢) is

[T 11/ (Y ul6, @, N i) g (@) ()

f6,0lY, N)=—5 = —
[ [T T fY ikl @, N i) g(@)hi)dbdp

where g(-) and h(-) are the respective multivariate normal priors for 8 and ¢ described
earlier. Although a closed-form expression for the posterior distribution is not available,
samples from the posterior distribution are easily obtained using Markov Chain Monte Carlo
(MCMC) methods (Robert and Casella, 1999). These samples lead to posterior distributions
for each element of # and ¢, which in turn lead to a posterior distribution for each pj. The
corresponding posterior means, pjk, will then be used to determine which combination is
deemed the current estimate of the MTC as more formally explained in Section 4.

3. Developing Priors and Effective Dose Values

In order to identify appropriate hyperparameter and effective dose values, we need the
investigator to supply ﬁjl and pyy, the respective a priori values for E{pj1} and E{p1«}, for j
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=1,2,....,mand k=1, 2, ..., n. Thus, at a minimum, we expect the investigator to have
sufficient historical information regarding the toxicity profiles of the doses of both agents
when combined with the lowest dose of the other agent. To simply computation, we set the
lowest dose of each agent to zero (a; = by = 0). As a result, log(a11) = 6 and log(f11) = ¢g
so that 6 and ¢q describe the expected numbers of DLTs for the combination using the
lowest dose of each agent, and the remaining parameters in Equations (1) and (2) will
describe how the expected numbers of DLTSs for the other combinations differ from
combination (1, 1).

We then use the fact that

Kp _an _expio} _ expiuol
K(1—pyy) B expleo} expiwo)’

leading to the solutions xq = log(Kp11) and wg = log(K[1 — p11]), where K = 1000 was
chosen as a scaling factor to keep both hyperparameters sufficiently above zero. We have
selected normal priors for our regression parameters, and have therefore allowed for the
possibility of a decreased probability of DLT with increasing doses of either agent, although
we do expect there to be low probability of such an occurrence. As a result, we have selected

the values ;1 =»=w;=w>=2 Vo2 S0 that 97.5% of the prior distributions for 6y, 65, ¢1, and
0> will lie above zero, depending upon the value of ¢2.

Given these values, we define the elicited odds ratios

ﬁj.:exp M =exp{(6)+¢1)a;}
Pu/l1-rPul ’

~ exp{(u1+wi)aj)

and

OR y=exp {M} =exp{(62+¢2)bi}
P11/[1-P11]
~ exp{(ua+w2)byi}.

As a result, our effective dose values are a;=(u; +w; )~ log(bT?_,;) and

be=(ur+w>)”! 1og(’0‘1§,k), meaning all doses are rescaled to be proportional to log-odds ratios
relative to combination (1, 1). Because the elicited probabilities of toxicity will increase with
an increase in the dose of either Agent A or Agent B, we will have a; <ay <... <apand by
<by<... <bpas desired.

All of the above computations require a value for o2, which we identify through a grid
search of candidate values. For each candidate value, a series of small simulation studies
should be performed to assess the performance of the algorithm when the prior means are
correctly specified as well as situations when the prior means are too high or too low. An
appropriate value of ¢ is one that is small enough so that the prior is sufficiently
informative when there is limited data at the beginning of a trial, but large enough so that the
prior becomes sufficiently non-informative when there is enough data later in the trial.

Biometrics. Author manuscript; available in PMC 2010 September 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Braun and Wang

Page 5

Although each trial setting will require fine-tuning of o2, we have found in our settings that
values of 62 in the interval [5, 10] are often sufficient. Note that because Equations (1) and
(2) are additive in both doses, the variance of pjx necessarily grows with a; and by. We
examined situations in which we scaled o2 by a; or by as an attempt to keep the variance
stable among all combinations. However, we found that the algorithm did no better with this
variance stabilization than it did without it. Furthermore, the non-constant variance model
has practical suitability, as it is plausible that there is more certainty about prior values of pjk
for combinations of lower dose values than for combinations of higher dose values.

4. Trial Design and Conduct

Before the trial begins enrolling subjects, the investigators should first specify: (a) the (m+ n
—1) prior probabilities of DLT for combinations containing the lowest dose of Agent A and/
or Agent B, and (b) the targeted probability of DLT, p”. From this information, the study
statistician can determine values for all hyperparameters and effective doses as described in
Section 3. At this point, subject i = 1 can be enrolled and assigned to combination (j1, k1) =
(1, 1). In order to determine the dose assignment (jj, kj) for each subjecti =2, 3, ... N, the
conduct of the trial proceeds as follows:

1. Compute a 95% confidence interval for the overall DLT rate among all
combinations using the cumulative number of observed DLTSs for subjects 1, 2, ...,

(i - 1).

2. If the lower bound of the confidence interval from step (1) is greater than p”,
terminate the trial.

3. If the lower bound of the confidence interval from step (1) is no more than p™:

a. Use the outcomes and assignments of subjects 1, 2, ..., (i— 1) to
determine the posterior distribution of each pj, with posterior mean pj, as
described in Section 2;

b. DefinethesetS={(j, k) :ji-1 —1<j<ji-1+1, ki-1 —1<k<kj_1+1}
that contains combinations that are within one dose level of the
corresponding doses in the combination assigned to the most recently
enrolled subject;

c. Identify the combination (j*, k) in S as the one with smallest dj = |} —
pl;
d. Assign subject i to (ji, ki) = (7, k").

4. If all N subjects have been enrolled and followed, repeat steps (3a)-(3c) with the
data of all N subjects to identify the MTC.

Recall that our design enrolls all subjects in a single stage, rather than in two-stages.
Although some authors feel that the first stage is needed to limit the influence of the prior
when little data has been collected, we feel that a well-designed sensitivity analysis of o2
prior to inception of the study will serve to limit the influence of the prior in the early
portion of the study. Also, step (1) in our trial is completely data-driven and allows for early
termination of the study without input from the prior distribution. We did examine a
stopping rule based upon the percentage of the posterior distributions of each pj above p”
but found this stopping rule did not lead to study termination often enough if all of the
combinations were overly toxic. The width of the confidence interval used in step (1) can
also be modified to increase or decrease the probability of early termination.
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Like most dose-finding studies, we enforce a “do not skip” rule in step (3b) of our conduct;
however, we apply this rule to escalation as well as to de-escalation. Specifically, subject i
must be assigned to a combination that is in a “close neighborhood”, as defined in step (3b),
of the combination assigned to subject (i — 1). By doing so, we hope to limit the number of
patients exposed to overly toxic combinations while still allowing the algorithm to fully
search the entire grid of possible combinations. We examined putting no limit on de-
escalation (as is done in most single-agent studies) but found that our algorithm then had
difficulty identifying the optimal combination if it existed at high-dose combinations of both
agents, as a single DLT had large influence on the posterior distributions of the pj.

Our approach allows for simultaneous dose escalations of both agents, which may appear to
be overly aggressive and increase the likelihood of exposing too many subjects to overly
toxic combinations. However, we cite the work of Wang and Ivanova (2005), as well as that
of Braun et al. (2007) in the setting of simultaneous dose/schedule finding, who found
escalation of both dimensions simultaneously does not lead to an increased observed toxicity
rate. Furthermore, allowing simultaneous escalations in both doses increases the ability of
the algorithm to fully explore all combinations in a neighborhood of the actual MTC when
the MTC is a combination of high doses for both agents. Note that escalation could be
slowed by requiring that a cohort of M patients be assigned to the same combination before
escalation can be considered. However, we have found that using M = 1 is sufficient for
limiting escalation and using values of M > 1 will treat too many subjects at sub-optimal
combinations and unnecessarily increase the overall sample size of the study when the MTC
is a combination of high doses of both agents.

5. Numerical Studies

5.1 Operating Characteristics

We examine the performance of our algorithm in six scenarios (A through F) for a
hypothetical clinical trial of N = 35 subjects, where the sample size was selected for
feasibility yet also satisfactory operating characteristics across all six scenarios. We also
examined sample sizes of N = 40 and N = 50 in small simulation studies and found little
improvement in the operating characteristics seen with N = 35. The trial is designed to
determine which of four doses of Agent A (m = 4) and which of four doses of Agent B (n =
4), when given in combination, lead to a DLT rate close to p* = 0.20. The actual DLT rates
for each combination under each scenario are displayed in the first four columns of values in
Table 1. Scenario A has an abundance of tolerable combinations at higher dose levels of one
or both agents, while Scenario B has all combinations with DLT probabilities under the
target p*. Scenario C has very few tolerable combinations and Scenario D has no tolerable
combinations. Scenarios E and F are settings in which the probability of DLT increases little
with dose increases of one agent yet increases steeply with dose increases of the other agent,
increasing the difficulty of identifying a single best choice for the MTC.

The a priori rates of DLT elicited from investigators are equal to the actual DLT rates in
Scenario A. Based upon these values, the investigators believe combination (2, 3) is optimal
as it has a DLT rate equal to that desired. Using the methods described in Section 3, we
produce the effective dose values a; = 0.000, a, = 0.058, ag = 0.094, and a4 = 0.120 for
Agent A and b, = 0.000, b, = 0.078, b3 = 0.120, and bs = 0.151 for Agent B and hyper-
parameter values o2 = 10, x = {3.69, 6.32, 6.32}, and w = {6.87, 6.32, 6.32}. The value o2 =
10 was selected from a grid search of values 1, 2, ... 12. Specifically, we performed small
simulation studies of 100 replications with each possible value of 62 in each of the six
scenarios and found that o2 = 10 lead to a prior distribution that was sufficiently informative
during the early portion of a study and also allowed the data to dominate during the latter
portion of a study across all scenarios.
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Braun and Wang

Page 7

We ran 1000 simulations of our algorithm under each scenario; the performance of our
algorithm is summarized in the final eight columns of Table 1. The first four of the eight
columns display the percentage of simulations in which each combination was identified as
the MTC at the end of the study, and the last four of the eight columns display the average
percentage of 35 subjects among all simulations that were assigned to each combination. All
simulations were done in the statistical package R. 2000 draws from the posterior
distributions of each ajx and Sjx were generated with the MCMC machinery supplied in the
JAGS (Just Another Gibbs Sampler) library. User-friendly R code is available for applying
our methods to both simulation studies and actual trials; the code can be downloaded at
www.sph.umich.edu/~tombraun/software.html.

As we discuss the results, we note that although we wish to target combinations whose DLT
probability is 0.20, selecting combinations whose DLT probabilities are within 10 points of
0.20 (which we call the “10-point window™) still indicates satisfactory performance of our
algorithm, as: (1) a sample size of 35 subjects is insufficient for discrimination between
DLT rates in the interval [0.10, 0.30], and (2) in most clinical applications, the desired DLT
rate is often a rough guess and finding combinations with DLT rates close to the target rate
selected by the investigator will still prove of interest to the investigator. A narrower
window could certainly be used. However, a level of performance with this narrower
window equivalent to that we observed with our 10-point window would directly increase
the sample size chosen for the study.

In Scenario A our algorithm selects combinations within the 10-point window as the MTC
in 89% of simulations and assigns an average of 76% of subjects to those combinations.
Furthermore, within the 10-point window, our algorithm is more likely to select
combinations and assign patients to those combinations with DLT rates within four points of
0.20. In Scenario B, we see combinations including doses 3 and 4 of either agent are
selected as the MTC and assigned to subjects more often than they were in Scenario A,
reflecting the increased safety of those combinations that would be demonstrated in the data.
Conversely in Scenario C, we see combinations including doses 1 and 2 of either agent are
selected as the MTC and assigned to subjects more often than they were in Scenario A,
reflecting the increased toxicity of those combinations that would be demonstrated in the
data. Scenarios A, B, and C demonstrate that the prior we selected for @ and ¢ is sufficiently
non-informative so as to allow the algorithm to “move with the data.” Early termination
occurred in 1%, 0%, and 16% of simulations in Scenarios A-C, respectively; the increased
early termination rate in Scenario C is due to a majority of combinations being unacceptably
toxic.

In Scenario D, where no combinations were tolerable, we see that an MTC was very rarely
identified, with only 5% of simulations fully enrolling 35 patients and identifying the MTC
at combination (1, 1), which was also the combination most frequently assigned to subjects.
From the results presented in Table 1 for scenarios E and F, we see that our algorithm is able
to adjust for distinctly differential dose-toxicity patterns of the two agents and still identify
the MTC at combinations in a neighborhood of the true MTC and assign a preponderance of
subjects to those combinations. However, we do see in Scenario F that the algorithm selects
combinations with dose 3 of Agent B more often than desired. This result is due to the
dramatic increase in DLT rates between doses 2 and 3 of Agent B that does not fit our
assumed model in Equations (1) and (2). Our model underestimates the toxicity probabilities
of combinations including doses 3 and 4 of Agent B, making them more likely to be
identified as the MTC and assigned to subjects more than desired. Nonetheless, the dose-
toxicity pattern of Agent B in Scenario F would challenge any parametric model applied to
this setting. Early termination occurred in 11% and 12% of simulations in Scenarios E and
F, respectively. One may argue that since there was at least one optimal combination in
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Scenarios C, E, and F, it is not desirable to observe early termination in those scenarios.
However, in order to have a design that stops early with high probability when all
combinations are overly toxic, we have to allow for some early termination when very few
optimal combinations exist. As stated earlier, we examined stopping rules based upon the
posterior distributions of the parameters rather than the actual number of observed DLTs,
but found those stopping rules were unable to stop the study soon enough when all
combinations were overly toxic unless the prior was skewed toward having all combinations
being overly toxic.

As a final summary of the performance of our algorithm, Figure 1 displays the average
assignment of each subject across all 1000 simulations in terms of the actual DLT rates of
the combinations. For example, in Scenario A, if two subjects were assigned to
combinations (1, 2) and (2, 1), their respective assignments were given values of 0.10 and
0.08. All subjects not receiving an assignment due to early termination were given a value of
0.00. The hope is that as more and more subjects are enrolled, the average combination
assigned to the final subject has a DLT rate close to the target of p* = 0.20 (the horizontal
line in Figure 1). In all scenarios except Scenario D, we see that the final subject is assigned
on average to a combination whose DLT rate is quite close to the targeted DLT rate. The
pattern for Scenario D reflects the fact that latter subjects tended to receive no assignment
and the average DLT rate tends toward 0.00.

5.2 Comparison to Alternate Methods

We also compared the performance of our approach to the performance of the CRM and the
approach of Wang and lvanova (2005) in all six scenarios. Table 2 displays results for
Scenarios A, B and E; Scenarios C, D, and F are omitted, as the results for each were similar
to the results for one of the presented scenarios. For the approach of Wang and Ivanova, we
selected Agent A as “dose 1” and applied the model, prior distributions, and study design
exactly as described in their manuscript, except that in the second stage, we enrolled patients
in cohorts of size one rather than three. For the CRM, we ordered the 16 combinations by
their prior DLT rates (the actual DLT rates in Scenario A). For these 16 “doses”, dg, £ =1, 2,

... 16, we used the model p[::[?, where p, is the probability of DLT for “dose” ¢ and { had
an exponential distribution with mean one. Note that combinations (1, 3) and (4, 1) had
equal prior DLT rates and thus equal ordering for the CRM. If those combinations were
selected by the CRM as the MTC, the algorithm was programmed to choose one of the
combinations with equal probability as the assignment for the next subject. The same
approach was used with combinations (4, 2) and (1, 4).

In Scenarios A and B, we see fairly comparable performance between our proposed method
and the CRM. However, in scenario A, the CRM assigns 80% of subjects to combinations in
the 10-point window, compared to 76% for our method, and in Scenario B, our method
selects and assigns combination (4, 4) much more often than the CRM does. The method of
Wang and lvanova has noticeably poorer performance in Scenario A, tending to select and
assign combinations that include dose 3 or 4 of both agents. This result is likely due to the
prior distribution for each parameter suggested by the authors (exponential with mean one).
It is possible that changing the exponential distribution to a gamma distribution with mean
one but flexible variance would allow for a less informative prior distribution and move the
algorithm away from the higher dose combinations. This preference for higher dose
combinations also leads to improved performance in Scenario B over our method and the
CRM.

Scenario E demonstrates the primary limitation of using the CRM, which was designed for
studies of a single agent, rather than a design specifically created to examine combinations
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of two agents. The forced ordering of the combinations reflected in the prior DLT rates is
drastically different from the true ordering of the combinations. Thus, the CRM tends to
focus upon combinations that include the lowest two doses of either agent, as opposed to our
method, which is able to more often select and assign combinations that include the middle
two doses of either agent.

5.3 Assessing Influence of Prior

In Table 3, we present results for Scenario A using six prior distributions with means and/or
variance different from that used for the simulations presented in Table 1. The prior DLT
rates used in Scenarios Al, A3, and A5 were the actual DLT rates of Scenario F shown in
Table 1 and the prior DLT rates used in Scenarios A2, A4, and A6 were the actual DLT
rates of Scenario B. The prior variance in Scenarios A1 and A2 equals that for the
simulations of Section 5.1 (62 = 10), while Scenarios A3 and A4 have a smaller prior
variance (o2 = 5) and Scenarios A5 and A6 have a larger prior variance (2 = 15). By
comparing the results in Table 3 to the results of Scenario A in Table 1, we see there are
slight variations in which combinations are selected as the MTC. For example, in Scenarios
Al, A3, and A5, combination (4,2) is selected as the MTC more often than it was before.
However, patient assignments and the algorithm’s ability to identify combinations within the
10-point window as the MTC are generally unaffected by the choice of prior.

6. Conclusion

Our manuscript has proposed a Bayesian hierarchical design for identifying doses of two
agents with optimal DLT rates when given in combination. The important aspects of our
design include the sequential enrollment of subjects in a single stage, an explicit procedure
for developing model parameter prior distributions from a set of DLT rates elicited from
investigators, and a design that formally accommodates patient heterogeneity. Future
planned extensions of our model include the incorporation of weights into our likelihood to
allow for decision-making with partial follow-up of currently enrolled subjects, thus
allowing subjects to be enrolled as soon as they are eligible and shortening the duration of
the trial. We also want to generalize our model to accommodate the actual administration
times of the two agents, as many dual-agent therapies do not administer both agents
simultaneously and the length of delay of the second agent may be important when assessing
the DLT rate of the combination.
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Figure 1.
Pattern of dose assignments.
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