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test can be used for such a scenario, it is usually conservative 
and thus its usefulness is diminished to some extent. Here 
we propose two novel approaches for the analysis of rare 
genetic variants. Simulation studies and two real examples 
demonstrate the advantages of the proposed methods over 
the existing methods.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Most current genetic association studies, including 
 genome-wide association studies (GWAS), look for the 
single-nucleotide polymorphisms (SNPs) with relatively 
high minor allele frequencies (MAFs) (say, MAF  1 5%) 
 [1–4]  in the search for genetic loci underlying susceptibil-
ity to complex diseases. The strategy of focusing on com-
mon SNPs in genetic association studies is very effective 
under the common-disease-common-variant (CDCV) 
scenario, that is, when common diseases are caused by 
common variants with relatively small to moderate ef-
fects. GWAS based on a quarter of a million to one mil-
lion common SNPs have been very successful in identify-
ing disease-susceptibility regions through indirect link-
age disequilibrium (LD) mapping  [5] . Under the CDCV 
paradigm, the set of common SNPs (tagSNPs) provided 
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 Abstract 

 Most current genetic association studies, including genome-
wide association studies, look for the single nucleotide poly-
morphisms (SNPs) with a relatively large minor allele fre-
quency (MAF) (e.g.  1 5%) in the search for genetic loci under-
lying the susceptibility for complex diseases. The strategy of 
focusing on common SNPs in genetic association studies is 
very effective under the common-disease-common-variant 
(CDCV) hypothesis, which claims that common diseases are 
caused by common variants that have relatively small to 
moderate effects. Although the CDCV hypothesis has be-
come the dogma guiding the conduct of association studies 
over the past decade, growing evidence from recent empir-
ical data and simulations suggests that the causal genetic 
polymorphisms, including SNPs and copy number variants 
(CNVs), for common diseases have a wide spectrum of MAFs, 
ranging from rare to common. Unlike the analysis for com-
mon genetic variants, statistical approaches for the analysis 
of rare variants receive very little attention. Methods devel-
oped for common variants usually rely on their asymptotic 
properties, which can be inaccurate for the study of the rare 
variants with limited sample size. Although Fisher’s exact 
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by the existing high-throughout genotyping platforms 
can cover the genome well enough so that they can cap-
ture the relationship between the ‘common’ causal vari-
ants at unmeasured loci and the disease through their 
high LD with the functional loci.

  Although the CDCV has been the dominant dogma 
guiding the conduct of association studies for the past 
decade, growing evidence from recent empirical and 
simulation studies  [6–16]  suggests that the causal vari-
ants for common diseases have a wide spectrum of 
MAFs, ranging from rare to common. For example, Gor-
lov et al.  [14]  found that functional SNPs tended to have 
low MAFs. A recent study by Need et al.  [16]  suggested 
that common genetic variants do not appear to have a 
major impact on predisposition to schizophrenia and 
that rare copy number variants (CNVs) may be more im-
portant in susceptibility to schizophrenia than common 
polymorphisms. Thus, in addition to the CDCV scenar-
io, the common-disease-rare-variant (CDRV) hypothe-
sis, which asserts that there are multiple rare variants 
underlying the susceptibility to a common disease, is a 
very plausible scenario for many complex diseases. Fur-
thermore, some researchers believe that both CDCV and 
CDRV hypotheses could be true even within the same 
susceptibility gene for a complex disease  [5, 14] .

  Under the CDRV scenario, the population-based as-
sociation studies that adopt the strategy of using com-
mon tagSNPs would be underpowered, as those common 
SNPs tend to have a low correlation with the unmeasured 
disease-causing (rare) variants, and thus are not very in-
formative when used in indirect LD mapping  [5] . Given 
the fact that the majority of SNPs in the human genome 
are rare  [14]  (MAF  ! 5%) and that the CDRV scenario ap-
pears to be the norm instead of a rarity for complex dis-
ease, it would be beneficial to study rare SNPs in large-
scale population-based association studies to enhance 
the chance of disease-gene detection.

  There are a vast number of analytic approaches for 
studying the association between the disease and a ge-
netic variant or set of variants. Most of them are designed 
for the analysis of common variants, relying on asymp-
totic distributions for their statistical significance evalu-
ation. Their accuracy on rare variants could be suspected. 
Li and Leal  [5]  have recently proposed a method targeting 
the analysis of multiple rare variants within a candidate 
region. Their approach, called the collapsing method, 
tries to enrich the association signals and to reduce the 
degrees of freedom by collapsing genotypes at multiple 
rare SNPs into a univariate test.

  In anticipating the agnostic screening for rare SNPs or 
CNVs in future studies, we focus on the single-marker 
analysis of rare variants. Fisher’s exact test is the standard 
approach when the sample size is limited, although it is 
well known that it is conservative  [17, 18]  and thus has its 
power diminished to some extent. The aim of this work 
is to develop more powerful single-marker tests for the 
analysis of rare variants (SNPs or CNVs) with MAFs be-
low 5%.

  Materials and Methods 

 Notation 
 We assume that there are cases and controls in a case-control 

genetic association study and that the genetic polymorphism un-
der study is bi-allelic (e.g. SNPs). We denote two alleles at a bi-
allelic marker as A and a. We represent the three genotypes as aa, 
Aa, and AA. We further assume that the high-risk allele A is a rare 
allele. When the sample size is limited, we expect the genotype 
count for AA is close to zero in both cases and controls. For the 
convenience of our analysis, we combine the genotypes Aa and 
AA into one type and denote the counts for the collapsed geno-
types by ( x ,  n  1  –  x ) for cases where  x  is the number of cases having 
genotype Aa or AA,  n  1  –  x  is the number of cases having genotype 
aa. Similarly, we denote the genotype count for controls by ( y ,
 n  2  –  y ).

  Fisher’s Exact Test 
 Fisher’s exact test is the standard approach when the sample 

size is limited. For the sake of completeness, we describe it here 
briefly. Let  �  1  and  �  2  be the probabilities of the event that (Aa or 
AA) occurs in cases and controls, respectively. Denote the ob-
served count of (Aa or AA) in cases by  X  and the count in controls 
by  Y .
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  Under the null hypothesis, i.e.  �  1  =  �  2  =  � ,  b  =  x  +  y  is the suf-
ficient statistic for  � . The conditional probability of observing
 X  =  i  and  Y  =  j  given  b , the total sum of the events, follows a hy-
per-geometric distribution,
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  where the symbol ! denotes the factorial operator. The p value is 
then calculated by summing the probabilities of the more extreme 
(in term of the probability) events with  X  +  Y  =  b  than the ob-
served one. There is a user friendly function in R (function fisher.
test) to calculate Fisher’s exact test. 

 AC-Test 
 Audic and Claverie  [19]  considered an alternative approach, 

assuming the unknown parameters  �  1  and  �  2  to be random, in-
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stead of fixed. In particular, they assumed  �  1  =  �  2  =  �  under the 
null hypothesis, where  �  followed a given random distribution. 
Their test built upon PrA

n1 
C     , n  2 ( X  =  x  �  Y  =  y ), the conditional probabil-

ity under the null. They proposed to approximate the binomial 
distributions Pr n  1  ( X  =  x  �  � ) and Pr n  2  ( Y  =  y  �  � ) through the corre-
sponding Poisson distributions. They obtained the following for-
mula for calculating Pr (An1, 

C      n  2 
)( X  =  x  �  Y  =  y ),
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  If the Pr (An1, 
C      n  2 

)( X  =  x  �  Y  =  y ) is treated as the observed value of the 
test statistic, the p value (two-sided) could be written to be
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    where  I (.) is the indictor function. This formula is different from 
equations 9a and 9b in Audic and Claverie’s paper  [19] , which were 
used for calculating the confidence interval. 

 The Proposed Tests 
 In the AC-test described above, two binomial distributions, 

Pr n  1  ( X  =  x  �  � ) and Pr n  2  ( Y  =  y  �  � ), are approximated by Poisson dis-
tributions. This approximation might not be appropriate, espe-
cially when the observed  X  or  Y  are not too rare. Instead of relying 
on the Poisson approximation, we can actually calculate Pr n  1 , n  2 
( X  =  x  �  Y  =  y ) exactly by assuming a suitable prior or posterior dis-
tribution for  � . Here we propose two alternative tests under such 
motivation.

  Uniform-Test 
 For  x   �  {0, 1, …,  n  1 }, and   y   �  {0, 1, …,  n  2 }, we notice that
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    where  f ( � ) is the prior density function of  �  under the null and 
 f ( �  �  Y  =  y ) is the posterior density function of  �  after observing the 
value of  Y . 

 Since we have no knowledge on  � , the least constrained hy-
pothesis on  �  is that the prior of  �  is uniform over (0, 1). Then
 f ( �  �  Y  =  y ) becomes the specified Beta distribution density

1 1(1 ); ,
B ,

� �� �
� � �

� �
Beta ,

    0  !   �   !  1, with  �  =  y  + 1 and  �  =  n  2  –  y  + 1, and where 
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  is the beta function. Therefore, we have, from (1), 
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    Thus we can calculate Pr (U
n1, 

N      n  2 IF)( X  =  x  �  Y  =  y ) numerically 
through the beta function. Similar to the AC-test, we can treat 
 Pr (U

n1, 
N      n  2 IF)( X  =   x  �  Y  =  y ) at the observed value as the test statistic and 

evaluate its significance (the p value). The p value can be exactly 
calculated as
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  This test, called the Uniform-test, is unconventional com-
pared to the standard statistical testing procedure, as the proba-
bility   Pr (U

n1, 
N      n  2 IF)( X  =  i  �  Y  =  y ) used in (2) is not the standard one de-

fined under the null hypothesis. A natural question is whether the 
test with its significance evaluated by (2) can maintain its type I 
error properly. From the Theorem in the Appendix, we can see 
that the type I error of the proposed test is well controlled for large 
 n  2 . Simulation results shown later will demonstrate that the pro-
posed test also has a satisfactory type I error rate for relatively 
small  n  2  (a few hundred).

  Beta-Test 
 While deriving the Uniform-test, we showed that  f ( �  �  Y  =  y ), 

the posterior distribution of  �  given  Y  =  y , is a beta distribution 
when we assume an uninformative prior for  � . Motivated by this, 
we could follow an alternative approach and make an assumption 
directly about  f ( �  �  Y  =  y ) without specifying the prior distribution 
for  � . For convenience, we assume  �  �  Y  =  y  follows the Beta distri-
bution  Beta ( � ;  u ,  � ),  �   �  (0, 1), but with  u  and  �  being calibrated 
by the observed  Y . Since the mean and variance of the Beta distri-
bution  Beta ( � ;  u ,  � ) are

u
u v 2 ,

( ) ( 1)
uv
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    and 

      respectively, and the moment estimate for  � , given that  Y  =  y  is 
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    with its variance given by 

      a natural choice for  u  and  �  is to calibrate them according to the 
following two equations: 
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    This gives  u  =  y ( n  2  – 1)/ n  2  and  �  = ( n  2  – 1)( n  2  –  y )/ n  2 . They are 
slightly different from the ones derived for the Uniform-test. 
Once we have specified  f ( �  �  Y  =  y ), we have 
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  Then after observing  X  =  x  and  Y  =  y , we can exactly calculate 
the two-sided p value as
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  Thus, similar to the Uniform-test, the above test, called the 
Beta-test, has its type I error well controlled when  n  2  is large. Sim-
ulation results shown later also demonstrate that the Beta-test has 
a satisfactory type I error rate for relatively small  n  2  (a few hun-
dred). We pointed out that both proposed tests are Bayesian tests. 
For the second one, we used the Empirical Bayes approach where 
mean and variance are used to derive the parameters.

  Simulation Design 
 Denote the three possible genotypes at the study SNP by G 0  = 

aa, G 1  = Aa, and G 2  = AA, with ‘A’ being the minor allele and the 
high-risk allele in a case-control genetic association study. We as-
sume that the Hardy-Weinberg equilibrium (HWE) holds in the 
study population. Thus, the genotype frequencies are given as 
Pr(G 0 ) = (1 –  f  ) 2 , Pr(G 1 ) = 2 f (1 –  f  ), and Pr(G 2 ) =  f   2 , where  f  is the 
minor allele frequency (MAF). Let the odds ratio (OR) for having 
1 copy or 2 copies of the high-risk allele ‘A’ be  �  1  and  �  2 . We fur-
ther assume that the disease under study is rare in the source 
population. Then the genotype frequencies in controls are (al-
most) the same as in the source population, and in cases they are 
given as

2

0 0

1
1 1

2
2

2 2

(1 )Pr(G |case) ,

2 (1 )Pr(G |case) ,  and 

Pr(G |case) ,
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�

fp
K
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    with  K  = (1 –  f  ) 2  + 2 �  1  f (1 –  f  ) +  �  2  f   2 . Based on the above genotype 
frequencies in cases and controls, we can randomly generate the 
genotypes for a sample of cases and controls given specified values 
of ( f ,  �  1 ,  �  2 ). 

 We first generate the data under the null hypothesis that there 
is no association ( �  1  =  �  2  = 1) between the SNP and disease to as-
sess the type I error rates of various considered tests, including 
Fisher’s exact test, the AC-test, and the proposed two tests. Follow-
ing Gorlov et al.  [14] , we consider MAFs with the following values: 
0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006, and 0.005. The 
sample sizes are set to be  n  1  =  n  2  = 250 or 500. For each considered 

scenario, the type I error rate at the significance level of 0.05 is es-
timated based on 10,000 replicated datasets.

  For the purpose of comparing power, similar to the above con-
figurations, we generate the data under the following two disease 
models, the multiplicative model with  �  1  = and  �  2  = 4 and the 
dominant model with  �  1  =  �  2  = 2. Again, for each considered sce-
nario, the power is estimated based on 10,000 datasets.

  Results 

 Type I Error Rates 
  Figure 1  shows the empirical type I error rates of all 

considered tests. From  figure 1 , we find that all tests can 
control their type I error rates, with Fisher’s exact test 
the most conservative, the AC-test the second most con-
servative. Both the Uniform-test and Beta-test have em-
pirical type I error rates close to the nominal level, with 
the Uniform-test more conservative than the Beta-test. 
They are occasionally anti-conservative for the relative-
ly small sample size. For large sample size, we have 
proved theoretically that both tests are conservative. 
This can be further verified by  figure 2  for  n  2  being 
2,000.

  Power 
  Figures 3  and  4  show the powers under the various 

considered scenarios at the significance level of 0.05. In 
general, the proposed two tests, especially the Beta-test, 
have a noticeable power advantage over Fisher’s exact test 
and the AC-test. It is also seen that the Beta-test is always 
dominant over Fisher’s exact test, the AC-test, and the 
Uniform-test in terms of power in the simulation situa-
tions. This could be due partially to the fact that the eval-
uation of the significance level for the Beta-test is less 
conservative than that of the other three tests. It is also 
seen that this trend does not alter for different choices of 
sample size (250 vs. 500). We also notice that the power is 
quite similar between the Uniform-test and the AC-test 
in situations where the risk allele frequency is small. This 
is to be expected, since the difference between the two 
tests stems from the way the conditional probability is 
calculated. The Uniform-test calculates the probability 
exactly, while the AC-test is based on the Poisson approx-
imation, which is fairly accurate when the risk allele fre-
quency is small. The AC-test is less powerful than the 
Uniform-test and Beta-test for relatively large MAF 
( 1 0.025). This is not surprising, since the Poisson approx-
imation for the AC-test is accurate only when the MAF is 
small.
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  Real Examples 
 Example I: The Association between Copy Number 
Variants and Schizophrenia 
 Need et al.  [16]  investigated the association between 

the copy number variants with length greater than 2 Mb 
and schizophrenia, using a total of 1,013 cases and 1,084 
controls. They observed 14 copy number variants in cas-
es and 3 in controls. Using Fisher’s exact test, they report-
ed the p value of 0.006 based on the 2-sided test. The AC-
test, Uniform-test, and Beta-test give p values of 0.0043, 
0.0041, and 0.0024, respectively. Among the four consid-
ered tests, the Beta-test provides the strongest evidence 
for an association. This is consistent with the simulation 
results.

  Example II: The Association between 
Microduplications and Schizophrenia 
 McCarthy et al.  [20]  investigated the association be-

tween microduplications of 16p11.2 and schizophrenia. 
In the replicated study, they observed 9 subjects with 
microduplications in 2,645 cases and only 1 in 2,420 
controls. Using Fisher’s exact test, they reported the p 
value of 0.022 based on the 2-sided test. The AC-test, 
Uniform-test and Beta-test give p values of 0.015, 0.015, 
and 0.0074, respectively. Again, among the four consid-
ered tests, the Beta-test provides the strongest evidence 
for association.
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  Fig. 1.  Empirical type I error rates of Fisher’s exact test (FISHER), the Audic-Claverie test (AC-test), and the 
proposed two tests (the Uniform-test and the Beta-test).  n  1  is the number of cases and  n  2  is the number of con-
trols. The number of replicates is 10,000. 
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  Discussion 

 Guided by the common-disease-common-variant 
(CDCV) assumption, common genetic polymorphisms 
(mainly SNPs) are the main focus of most genetic asso-
ciation studies in the pursuit of genetic loci underlying 
susceptibility to complex diseases, with rare genetic vari-
ants being mostly ignored. GWAS equipped with the 
state-of-the-art genotyping arrays have enjoyed tremen-
dous success in finding common genetic variants for cer-
tain complex diseases. The strategy of focusing on com-
mon variants, however, might not be as effective for some 
other diseases, such as schizophrenia  [16] . There is a 

growing consensus on seeking more rare genetic variants 
when examining genetic predisposition to disease. In 
contrast to the large number of statistical approaches 
available for the analysis of common variants, there are 
only a few options for the study of rare ones, mainly Fish-
er’s exact test and the AC-test  [19] . In this report we pro-
posed two more powerful alternatives and recommend 
their usage for future studies of rare genetic polymor-
phisms, such as SNPs and CNVs.

  By theoretical arguments and simulation studies, we 
have shown that both proposed tests can properly control 
their type I error rates for a wide range of sample sizes 
and are less conservative than Fisher’s exact test and the 
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  Fig. 2.  Empirical type I error rates of the proposed two tests (the Uniform-test and the Beta-test).  n  1  is the num-
ber of cases and  n  2  is the number of controls. The number of replicates is 10,000. 
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AC-test. Unlike the AC-test  [19] , which relies on the Pois-
son approximation for the binominal probability calcula-
tion and thus is appropriate only for the study of rare 
variants, the two proposed tests do not involve any such 
approximation in their calculations. As a result, these two 
tests can be used to analyze not only rare genetic variants 
but also common ones. Thus, the two tests can be used as 
exact tests for the analysis of 2 by 2 tables with limited 
sample sizes, just as Fisher’s exact test can. Among the 
two tests, the Beta-test appears to be slightly more power-
ful than the Uniform-test.

  We chose three different prior distributions of uni-
form distribution for the Uniform-test to evaluate its 

power sensitivity. Results (data not shown here) show that 
there is no big difference for the choice of the prior of uni-
form distribution when the minor allele frequency is rel-
atively small.

  The Uniform-test we proposed above is based on
Pr (U

n1, 
N      n  2 IF)( X  =  x  �  Y  =  y ). Due to the symmetric role played by 

 X  and  Y , a different test can be derived based on Pr (U
n1, 

N      n  2 IF)

( Y  =   y  �  X  =  x ), which is conditioned on  X . The two tests 
are not equivalent. Based on the Theorem in the Appen-
dix, we recommend using the test conditioning on the 
sample with the larger sample size to ensure that the
type I error is properly controlled. If the number of cases 
and controls are equal, we recommend using the control 
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  Fig. 3.  Power of Fisher’s exact test (FISHER), the Audic-Claverie test (AC-test), and the proposed two tests (the 
Uniform-test and the Beta-test).  n  1  is the number of cases and  n  2  is the number of controls. The number of rep-
licates is 10,000. 
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as the condition since the minor allele frequency of 
 control is more close to that of the source population for 
rare disease. The same argument also applies to the Beta-
test.

  The two new tests are derived under the setting of 2 by 
2-table analysis. They can be extended to the study of ge-
netic polymorphisms with more than 2 categories, where 
the priori distribution of the unknown parameters is the 
Dirichlet distribution. Finally, the proposed tests can be 
used together with the collapsing strategy of Li and Leal  
 [5]  to evaluate jointly the association between multiple 
rare genetic variants and the outcome.
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  Appendix 

 Theorem 
 For any given significance level  �  and any  n  1 ,
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    Before proving the theorem, we provide a lemma. 

 Lemma 1 
 Suppose that  �  1  =  �  under the null hypothesis. Adopting the 

notation in the text, we have, for any given  �  (0  !   �   !  1),
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    Then, for any given  �  ( 0  !   �   !  1),
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    Let  t  = max{ k  �  k   ̂    n  1  � ,  k  = 0, 1, …,  n  1 },  Ξ   � ,1  = { k  �  V ( k )  ̂    � ,  k  = 
0, 1, …,  t }, and  Ξ   � ,2  = { k  �  V ( k )  ̂    � ,  k  =  t ,  t  + 1, …,  n  1 }. Define
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    We now consider two cases: 
 (1) When Pr n  1 ( X  =  k   � ,1  �  � )  6  Pr n  1 ( X  =  k   � ,2  �  � ),
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  (2) When Pr n  1 ( X  =  k   � ,1  �  � )  !  Pr n  1 ( X  =  k   � ,2  �  � ), in the similar way, 
we have

  Pr( V ( i )  ̂    V ( k   � ,2 ).

  The lemma is proved by (1), (2), and the definition of  k   � ,1  and  k   � ,2 . 

 Proof of the Theorem 
 Suppose that  �  1  =  �  2  =  �  under the null hypothesis. Denote the 

true probabilities of observing  X  =  i  and  Y  =  j  by  	  n  1  ( X  =  i  �  � ) and 
 	  n  2  ( Y  =  j  �  � ), respectively. Then, for any  �  and  n  1 , the type I error 
rate of the Uniform-test is
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    In view of lemma 1, it suffices to show that 
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  converges to  g ( 	  n  1  ( X  = 1 �  � ), …,  	  n  1  ( X  =  n  1  �  � ),  i ,  � ) as goes to in-
finity. 

 Let a random variable  Z  �  Y  n  Beta ( z ;  Y  + 1,  n  2  +  Y  + 1),  z   �  (0, 
1) with the density function  f ( z  �  Y ), where  Y   n Binom ( n  2 ,  � ). Then 
we have

   E ( Z ) =  E [ E ( Z  �  Y )] =  E [ Y  + 1)/( n  2  + 2)] = ( n  2  �  + 1)/( n  2  + 2)  ]   � ,

  as  n  2  goes to infinity, and 

                                                                             as  n  2  goes to infinity.
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    Therefore,  Z  converges to  �  in probability. Hence,
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  converges to  	  n  1  ( X  =  i  �  � ) as  n  2  goes to infinity, and consequently 
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 By now we have proved
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