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Abstract
Cellular signaling and regulatory networks underlie fundamental biological processes such as
growth, differentiation, and response to the environment. Although there are now various high-
throughput methods for studying these processes, knowledge of them remains fragmentary.
Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie
outside of the expected pathways. These unexpected components of the cellular response are often
the most interesting, because they can provide new insights into biological processes and potentially
reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present
a technique, based on the Steiner tree problem, that uses previously reported protein-protein and
protein-DNA interactions to determine how these hits are organized into functionally coherent
pathways, revealing many components of the cellular response that are not readily apparent in the
original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast
pheromone response, it identifies changes in diverse cellular processes that extend far beyond the
expected pathways.

INTRODUCTION
High-throughput experimental techniques provide unprecedented views of the molecular
changes that occur in cells as they respond to stimuli. Because many of these techniques are
not dependent on prior knowledge of the relevant pathways, they provide a systematic view of
signaling and regulatory changes that can uncover previously unrecognized components of
these responses (1–4). For example, high-throughput genetic screening identifies sets of genes
whose expression changes lead to altered phenotype and, therefore, the products of these genes
are likely to be involved in the regulatory pathways (4,5). Mass-spectrometry techniques can
provide quantitative measurements of signaling events in the form of peptide or
phosphopeptide abundance (6–9). At the level of transcription, changes in the expression of
thousands of genes are readily obtained by microarrays. At the interface of protein and
transcription, chromatin immunoprecipitation (ChIP) followed by array hybridization or
sequencing reports whole genome protein-DNA binding interactions (10,11).

These system-wide datasets often reveal that our current understanding of regulatory networks
at the systems level remains incomplete, even in extremely well-characterized systems. For
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example, the mitogen-activated protein kinase (MAPK) cascade in the yeast Saccharomyces
cerevisiae that responds to mating pheromone has been extensively studied and the most
important transcription factors regulated by this process are known (12). However, when cells
are exposed to pheromone, differentially phosphorylated sites are detected on more than 100
proteins (7), only about 10% of which are known components in the MAPK cascade, and more
than 70% are not present in any of the yeast pathways annotated in the KEGG Pathway database
(13). Of the hundreds of genes that are differentially transcribed (3), a majority of them are not
known to be regulated by the transcription factors included in the MAPK cascade.

The number of unexpected components of the cellular response even in such a well-studied
system presents both a challenge and an opportunity for systems biology approaches.
Computational methods that can give context to these observations have the potential to reveal
more comprehensive views of cellular responses. Any computational approach for this purpose
must overcome the fact that not all components in the regulatory networks can be exposed in
one experiment due to systematic biases in the assays. For example, compensatory mechanisms
can mask the consequences of genetic manipulations. Thus, despite their important roles in
mating type signaling, the yeast MAPK-encoding genes FUS3 and KSS1 are not detected in
genetic screens for mating defects, because they are functionally redundant (14). Similarly,
due to many posttranslational regulation mechanisms that do not affect protein concentrations,
changes in many important components of signaling pathways escape detection by even the
most comprehensive proteomic technologies. For instance, after stimulation by the pheromone
alpha-factor (α-factor), the yeast α-factor receptor STE2 activates the trimeric G protein
(composed of the subunits GPA1, STE4, and STE18) through conformational changes, so it
was not surprising that these proteins were not detected by a mass-spectrometry experiment
(7). Although not reported by the assays, these “hidden” components are critical for
understanding the cellular response of interest.

We present a method for constructing a network of protein-protein and protein-DNA
interactions, including hidden components, that explains the functional context of genes and
proteins detected in these assays. This approach takes advantage of the large number of reported
protein-protein and protein-DNA interactions present in the interactome. An interactome-based
method is attractive, because it not only contains molecular pathways known to be relevant,
but also expands beyond these pathways for novel biological insights. Clearly, reconstructing
response pathways in the cell from the interactome is more complicated than simply assembling
all the interactions that link the proteins or genes reported by the experiments. Because not all
molecules in the regulatory networks are detected, the hits identified may be connected by
direct or indirect interactions. The “hidden nodes” that were not experimentally detected but
that link the proteins or genes detected are often critical for interpreting the functional
significance of the data. However, allowing for such indirect connections between proteins and
genes in the interactome quickly leads to a combinatorial explosion of potential paths that are
not informative.

To discover meaningful regulatory networks linking the identified genes, a few previous
studies combine information from phenotypic or expression experiments with a protein-protein
interaction network and search for regions that are enriched for the phenotype or differential
expression (15–19). Methods interested in transcriptional regulation search for paths less than
a predefined length from the stimulus to transcription factor binding activity (20,21). However,
most of these techniques do not explicitly consider the dramatically different reliability of the
interaction data, which is especially problematic when the interactome is built from multiple
databases or experimental sources. In addition to the varying quality of interaction datasets,
we recognize that some of the input proteins or genes should not be connected either because
they are false positives or because the true pathways that link them to the rest of the dataset
are not present in the currently known interactome.
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These two issues were taken into account previously in the context of connecting genetic data
and differentially transcribed genes by starting from the interactome and applying a flow-based
approach (4,22) or building a physical network model (21). The flow-based approach is
designed to find connections linking a set of differentially transcribed genes to a second set of
genetic hits that represent the upstream signal. However, applying this approach to
phosphoproteomic and transcriptional data is likely to miss many functionally relevant
connections within the proteomic data because these connections lack a direct link to
transcriptional changes. The physical network model algorithm requires the phenotypic and
transcriptional response of the genetic knockouts as input, so it cannot be applied when such
data is not available or to other types of signaling data.

Here, we propose to address the problems outlined above by taking a constrained optimization
view of the overall objective (Fig. 1). The proteins and genes that are detected in the
experiments should guide the selection of relevant pathways from the interactome. To avoid
forcing a solution that integrates false positives from the experiments and to preferentially
include the most reliable interactions, we treat the goal of connecting the data as a constraint
that we attempt to satisfy through an optimization procedure. We show that this problem can
be modeled as a prize-collecting variant of the Steiner tree problem.

The Steiner tree problem begins with a weighted graph and a set of “terminal” nodes in the
graph. The algorithm constrains the solution to link these termini directly or indirectly through
the edges of the graph. The prize-collecting variant of the Steiner tree problem relaxes these
constraints so that not all the termini are required to be included in the solution. Rather, the
algorithm balances two costs: (i) It pays a penalty for leaving a terminal out of the network;
(ii) it pays a price for using edges to include a terminal in the network. In addition, we control
the size of the solution network by introducing a single parameter β that weights the penalties
of excluding terminal nodes relative to the cost of including edges. We define the cost of the
edges so that more reliable edges have lower cost than less reliable ones and we define penalties
for excluding each terminal node to reflect the relative importance of that terminal in the
experimental data. The solution to the prize-collecting Steiner tree (PCST) problem is a
minimum-weighted subtree that connects a subset of the termini to each other through the edges
of the interactome graph and additional nodes not in the terminal set.

We demonstrate the utility of our approach by relating mRNA expression changes to two
classes of upstream regulatory data from S. cerevisiae: One is derived from curated genetic
interactors (23) and the other is from phosphoproteomics mass-spectrometry (7). We show that
our method reports compact networks that connect the experimental data through high-
confidence interactions. We present evidence that the proteins in the networks predicted by the
algorithm are functionally relevant, provide a clear context to interpret the experimental
observations, and uncover diverse pathways not obvious from the input.

RESULTS
Linking genetic and transcriptional data recovers relevant biological processes

The results of genetic screens generally share very little overlap with genes differentially
expressed in response to the same perturbations (4). One strategy to address this gap is a flow-
based algorithm that links the genetic hits and differentially transcribed genes (4). We evaluated
our approach by applying the Steiner tree algorithm to the same problem. We tested solving
the PCST on five sets of genetic hits and the associated mRNA profiles: Four were from genetic
interactors of a few components in well-characterized signaling pathways, such as MAPK
signaling (23,24) and the DNA damage response (25–27), and one was from overexpression
screen of alpha-synuclein (α-syn) (4), a protein implicated in Parkinson’s disease. In order to
derive connections between the genetic hits and differentially expressed genes, we followed
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the approach of the flow-based algorithm and supplemented the protein-protein interactome
(28,29) with protein-DNA interaction data (30,31). In this interactome, each protein and the
transcript that encodes it are represented as separate nodes. The nodes representing transcripts
are only linked to DNA-binding proteins that have been shown to bind the corresponding
promoter (Fig. 1).

In all four input datasets for the known signaling pathways, the nodes discovered by the network
are highly enriched in the relevant biological processes (Fig. 2). As expected, putting heavier
weights on the node penalties (larger β) forces more terminal nodes to be included and produces
larger solution networks. In some cases, this leads to marked decrease in the fraction of nodes
in the solution that have the expected annotation [the STE12 deletion (STE12Δ) and STE2
deletion (STE2Δ) datasets] and even results in the loss of significant enrichment (STE2Δ),
demonstrating the benefit gained by the exclusion of terminal nodes by the PCST. We then
compared our method to the flow-based approach and to two simpler methods of building
networks: (i) assembling the shortest paths between all pairs of nodes in the set of the genetic
hits and differentially transcribed genes, and (ii) expanding from the genetic hits to the nodes
that directly interact with them (first neighbors). Because the PCST algorithm excludes some
genetic hits and differentially expressed genes, we used solutions from the flow-based approach
that contain approximately equal number of nonterminal nodes and constructed the networks
for the other two methods with those terminal nodes included in the PCST solution. Although
all these methods predict hidden nodes that are significantly enriched for the relevant biological
process, the PCST solutions contain higher fraction of nodes with the expected annotation and
the networks are much smaller than the shortest path and first neighbor networks (Fig. 2). And
by these two measures the PCST solutions are comparable to the networks reported by the
flow-based algorithm. This suggests that the PCST approach reconstructs compact networks
that nevertheless retain the functionally relevant connections.

For the α-syn overexpression dataset, we compared our results to the reported cellular pathways
implicated in Parkinson’s disease and additional processes uncovered by the flow-based
approach. We observed that the solution network partitions into clusters that are biologically
coherent. To formally evaluate this observation, we used a previously reported algorithm for
partitioning a network into local clusters (32,33) and tested the Gene Ontology (GO) (34)
enrichment of each cluster (fig. S1). The most enriched biological process GO terms from the
clusters include vesicle trafficking [FDR (False Discovery Rate)-corrected P-value<1E-09]
and ubiquitin-dependent protein degradation (FDR-corrected P-value<3E-06). Both of these
processes have been associated with Parkinson’s disease (4). In addition, the network contains
smaller clusters of genes in the heat shock response and the target of rapamycin pathways (fig.
S1), two biological processes first identified in the flow-based approach as responsive to α-
syn expression and subsequently validated by biological experiments (4). This shows that the
PCST approach can uncover new mechanisms when applied to connect genetic data and
transcriptional data.

The pheromone response network linking proteomic and transcriptional data reveals diverse
biological processes

Having demonstrated that the PCST approach can identify relevant interactions from regulatory
proteins that may not directly interact, we tested whether it could be applied to find regulatory
networks from phosphoproteomic and transcriptional data. We used published mass-
spectrometry (7) and mRNA profiling (3) datasets for yeast responding to the mating
pheromone α-factor. As noted above, only a small fraction of the proteins with differentially
phosphorylated sites are mapped to the MAPK pathway or any annotated signaling pathways
in yeast. Among them only four proteins are annotated to have transcription factor activity. Of
the 201 genes differentially expressed by more than threefold at the mRNA level, only six
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encode proteins in the MAPK pathway and ten encode proteins in the cell cycle pathway in
the KEGG database.

We asked whether the PCST approach could provide a functional context for the many proteins
that lie outside of the expected pathways. We used the same interactome presented above that
contains protein-protein interactions with added transcription factor to target gene
relationships, and we defined the terminal nodes to include the proteins with differentially
phosphorylated sites in the protein-protein interaction layer and the genes with differentially
expressed mRNA transcripts in the transcription factor to target gene layer (Fig. 1). The
penalties reflected the magnitudes of the changes in phosphorylation or mRNA expression (see
Materials and Methods).

The resulting network (Fig. 3) reveals that the algorithm recovers the expected pathways, as
well as many other components of the cellular response that are not immediately apparent from
the input. The algorithm connects 56 of the 112 proteins with α-factor-responsive
phosphorylation sites and 100 of the 201 differentially expressed genes through 94 intermediate
proteins. The solution contains a subnetwork that resembles the known pheromone-induced
MAPK pathway (labeled “pheromone core” in Fig. 3). It is noteworthy that those components
in this pathway that were not detected by mass-spectrometry, GPA1, STE11, and BEM1, are
correctly recovered. We confirmed that the solution is relatively stable for a wide range of β
values (fig. S2) and is robust to noise in the interactome (fig. S3).

One of the principal benefits of our approach is that by placing the data in a functional context
it reveals broad changes in cellular processes beyond those that might have been expected. For
example, the solution features two other yeast MAPK pathways: the protein kinase C (PKC)
pathway and the filamentous growth pathway. The PKC pathway is activated during
pheromone induction to promote polarized cell growth for mating projection formation (35,
36). In the PCST solution, it is represented by the MAPK SLT2, the transcription factor RLM1
and the SWI4/SWI6 transcription factor complex. SLT2 is activated by PKC (37), and RLM1
and the SWI4/SWI6 complex are activated by SLT2 (38,39). Components of the filamentous
growth pathway appear alongside the pheromone core in Fig. 3, which is not surprising as
filamentous growth and pheromone MAPK pathways are known to share multiple signaling
components (40). SHO1 is an osmosensor in the high-osmolarity glycerol (HOG) pathway
(41) that also activates the filamentous growth pathway through the STE11 MAPKKK (42,
43), leading to the phosphorylation and inhibition of transcription factors DIG1 and DIG2 and
subsequently the activation of the transcription factors STE12 and TEC1 (44,45). In the PCST
solution, the proteins STE11, DIG1, DIG2, and STE12 are common between the pheromone-
induced MAPK pathway and the filamentous growth pathway, as expected (40). The decrease
in phosphorylation on SHO1 suggests a mechanism by which the specificity of mating signal
is achieved in response to pheromone. This may be similar to the situation where the HOG
pathway shares a few components with the mating response pathway and inhibiting SHO1
prevents the crosstalk between them (43).

Outside of the core pheromone signaling pathway, a diverse array of mating-related biological
functions are apparent, including regulation of cell cycle, transcription control, cellular
polarization, and cellular transport. The nonterminal nodes in the PCST solution provide
mechanistic insights into these processes. For instance, the algorithm included two proteins
that did not contain differentially phosphorylated sites, CDC5 (a protein kinase) and DBF4
(the regulatory subunit for the protein kinase CDC7), in a subnetwork related to DNA
replication that contains several phosphorylated proteins. CDC5 is a CDC28 substrate (46) and
is recruited to origin of replication by DBF4. DBF4 acts to initiate DNA replication in late G1
phase (47), the point at which pheromone-stimulated cells arrest their cell cycle (48). In the
shmoo (mating projection) formation subnetwork, the algorithm highlights the involvement of
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AFR1, a protein required for forming pheromone-induced projections, in regulating the septin
proteins through interaction with the septin protein CDC12, which is not phosphorylated
[reviewed in (49)]. The role of the molecular chaperone HSP82 is also made clear by its
interactors in the protein folding subnetwork. Differentially phosphorylated heat shock proteins
SIS1 and SSB2 are connected to HSP82, which is required for pheromone signaling (50), and
to the HSP82 co-chaperone SSE1. Neither HSP82 nor SSE1 has pheromone-responsive
phosphorylation sites that were detected in the mass-spectrometry experiment. These
observations demonstrate the rich range of biological knowledge represented by the hidden
nodes that are not present in the experimental datasets.

Similar to the results obtained from the α-syn datasets, the network can be partitioned into
functionally coherent clusters by an automated procedure (Table 1, and fig. S4) (32), and these
clusters represent many of the biological functions altered in response to mating factor.

The reconstructed network is enriched in genes implicated in mating defects
To further assess the relevance of the genes in the reconstructed network to pheromone
response, we asked whether the network was enriched in genes reported to display mating
defects in two whole-genome deletion screens (51,52) (Fig. 4). The sets of genes encoding the
protein nodes in the PCST solution network, excluding terminal nodes, are significantly
enriched in genes that are involved in the mating-specific transcriptional response (51) or in
changes in cellular morphology induced by pheromone (52). The PCST solution is smaller and
has a higher fraction of the genes implicated in these mating defects compared to the network
constructed by three other approaches: the flow-based approach, the network composed of
pairwise shortest paths between the terminal nodes, as well as the network of the set of
immediate neighbors of the phosphorylated proteins. Because these two screens are
independent of the data sources incorporated in the algorithm, the fact that the PCST solution
includes a high percentage of genes necessary to produce a normal mating phenotype is strong
evidence that our method identifies signaling nodes that are perturbed in pheromone response.

Targets of transcription factors in the solution show significant expression coherence
The transcription factors in the solution network are included because of constraints from both
the upstream phosphorylation events and the downstream target genes that are differentially
expressed. Many of the transcription factors in the solution are indeed known to be induced by
pheromone, such as DIG1, DIG2, MCM1, and STE12, or have functions in mating related-
processes, such as the cell cycle regulators SWI4, SWI6 and MBP1, but the algorithm also
includes many others that are not previously known to be involved in pheromone response. To
quantitatively assess the relevance of these transcription factors, we computed the expression
coherence scores under different conditions (53) for targets of each transcription factor and
used these scores as a condition-specific measure of the similarity of the mRNA expression
profiles of the targets. After stimulus by α-factor, the previously reported targets (30,31) of the
transcription factors included in the PCST solution are more likely to show significant
expression coherence than the transcription factors that were excluded. In addition, we show
that such coherence, as expected, is specific to pheromone signaling but not to unrelated
conditions, such as when yeast cells undergo metabolic shift from fermentation to respiration
(diauxic shift) (Fig. 5). Additionally, some transcription factors that function cooperatively are
placed in close proximity to the expected upstream signaling pathways. Examples include the
DIG1/DIG2/STE12 complex in the core pheromone signaling pathway and the SWI4/SWI6
and SWI6/MBP1 complexes in the PKC pathway (Fig. 3).

Most proteins in the network are not coordinately expressed
It has been proposed that genes in regulatory pathways tend to be coordinately expressed, and
this has been evaluated by several techniques, including the expression coherence score (53)
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and the expression activity score (18). This rationale inspires many of the network inference
algorithms to search for local neighborhoods in the interactome that have this property. Because
our network was constructed from phosphoproteomic data and represents proteins and
transcripts separately, it provides an opportunity to examine these assumptions in an unbiased
way. Overall, the proteins identified by our approach do not have significantly correlated
expression as measured by the significance of the expression coherence score or the
significance of the expression activity score (Table 1). We then examined the individual
clusters in our network produced by the clustering algorithm (33). Despite the high degree of
functional coherence, these clusters show a large variability in the significance of expression
coherence score and the significance of expression activity score (Table 1). For example,
although the cell cycle-related cluster (cluster 9) has a significant expression activity score, the
score for the cellular transport cluster (cluster 1) is not significant, and therefore this cluster
would not have been recovered by expression-based methods. These observations are
consistent with the fact that many biological processes are regulated posttranscriptionally and
highlight the critical role of proteomic data in revealing the full extent of the proteins involved
in biological responses.

DISCUSSION
We describe a computational method based on constrained optimization for discovery of
regulatory networks from high-throughput data and apply it to reconstruct pathways linking
transcriptional data with proteomic or genetic data. The objective of finding relevant
mechanistic connections is formulated as solving a PCST problem on the weighted interactome
graph. We reasoned that this approach would be well-suited to overcome noise in the input
data and in the interactome. Because the algorithm does not require all terminal nodes to be
included in the solution, it should handle false positives in the input data well. False positives
in the interactome correspond to reported interactions that do not occur in the cell. These may
be eliminated by choosing a cost function that penalizes edges based on the probability that
they represent real interactions (4).

Application of the algorithm to yeast genetic, phosphoproteomics, and transcription profiling
datasets reveals highly coherent, global views of the many cellular processes involved in
creating the response of interest, and identifies transcription factors that connect differentially
expressed genes to upstream regulatory events. In the reconstructed networks, the hidden
nodes, which are not present in the genetic, mass-spectrometry or transcriptional datasets, give
biological context for understanding the functions of the terminal nodes, while providing a
systematic view of the biological processes at the global level. Many of the functionally
coherent clusters that we identified are not coordinately expressed, and so could not have been
recovered by mapping mRNA expression data onto the interactome.

We note that our method is distinct from many existing computational techniques that are
typically applied to discover regulatory relationships from high-throughput signaling and
expression measurements. Approaches such as probabilistic graphical models (54) and partial
least-squares regression (55) can reveal the presence of correlated events across diverse
datasets, but it is often difficult to discern why these events are correlated. The biological
interaction network provides valuable context for interpretation of these events.

Previous studies using the Steiner tree formulation to analyze biological networks mapped the
mRNA abundance onto the protein-protein interaction network and searched for regions that
show high degree of differential mRNA expression (16,19). Despite the Steiner tree
formulation, this problem is inherently different from our objective of connecting signaling
and expression through intermediate nodes in the interactome. In addition to the distinct
objectives, the input data are also treated differently in these prior studies. Differential mRNA
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expression was used as a proxy for subsequent changes at the protein level. Here, we provided
evidence that mRNA expression measurements alone are insufficient to capture many of the
relevant cellular processes. In contrast, by modeling proteins and transcripts as separate
entities, our approach uses the mRNA data as evidence of upstream changes in signaling and
reveals biological processes not captured by measurable changes in mRNA abundance.
Furthermore, the optimization functions in these two studies (16,19) include only the weights
on the nodes but not the reliability of the edges in the interactome graph.

Another computational method that takes a constrained optimization approach constructs
functional protein networks from genetic hits by finding optimal paths on an interactome
weighted by interaction reliability (56). Our results are consistent with their observation that
the Steiner tree approach recovers pathways that are functionally coherent, but our approach
differs in two critical ways. First, by using a prize-collecting variant of the Steiner tree problem,
we can handle noise in the experimental data and in the interactome and avoid producing
unnecessarily large networks that include irrelevant nodes. Second, we demonstrate that our
approach effectively integrates expression data with proteomic and genetic data. As a result,
we can discover a coherent view of the links between the biological processes from diverse
experimental data sources.

This method represents a general framework for building models of regulatory networks from
high-throughput measurements of signaling and transcription. It can be applied when there are
suitably defined constraints and in different species where the interactome are available. The
constraints can be defined in multiple ways to focus on different aspects of the regulatory
networks. For example, we can easily extend our approach to use time-courses of proteomic
and expression measurements to examine the time-dependent changes in the signaling network.
We expect that our framework will be increasingly useful and accurate as the interactome
becomes more complete.

MATERIALS AND METHODS
Overview

We consider the goal of finding a network that explains the regulatory data as a constrained
optimization problem on an interactome graph, in particular, as solving a PCST problem. Input
to the algorithm consists of two components: terminal nodes and a weighted interactome. The
terminal nodes are derived from a list of molecules reported in some experiments as potential
components in the regulatory network, for instance, hits from genetic screens, proteins with
differentially phosphorylated sites, or genes with altered mRNA expression. Each interaction
is associated with a weight to indicate the confidence of the interaction. Solving the PCST
problem on the weighted interactome is equivalent to trying to find a set of most confident
interactions that connect the terminal nodes while possibly leaving some unconnected.

The PCST formulation
We use the Goemans and Williamson Minimization (GW) definition of the PCST problem
(57).

Given an undirected graph of nodes V and edges E, a function p(ν)≥0 that assigns a penalty to
each node ν∈V, and a function c(e)≥0 that assigns a cost to each edge e∈E, the PCST problem
is to find a subtree T of nodes VT⊆V and edges ET⊆E that minimizes the objective
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Note that we incur penalties for excluding nodes while paying costs for including edges.
Although this problem is NP-hard (58,59), exact solutions for the datasets presented here can
be found by a published algorithm (60).

The probabilistic interactome
The interactome graph of S. cerevisiae and probabilistic weights on the edges were constructed
as previously described (4). Briefly, experimentally determined protein-protein interactions
and the experimental evidence for each interaction were collected from publicly available
databases such as BioGRID (29) and MIPS (28). With a naïve Bayes probabilistic model where
the probability of each evidence is conditioned on whether two proteins interact, we computed
the conditional probability tables from published gold standard set of positive (61) and negative
(62) interactions. By applying Bayes rule to the experimental evidence of individual edges in
the interactome graph, we obtained the reliability of the interaction represented by the edge.
To this protein-protein interaction graph we added protein-mRNA edges that represent
transcription factor to target gene relationships. The mRNA node of a gene was represented
separately from the protein node of the same gene (Fig. 1). These transcription factor target
data were collected from literature and published ChIP-chip assays (30,31), and the edge
weights were computed to reflect the reliability of binding events.

Because the optimization objective is to minimize the sum of the edge costs, we took the
negative log of the probability weights on the edges as the edge costs. Furthermore, this general
interactome graph was slightly modified when the node penalties were defined for specific
mRNA expression datasets (see the section on node penalties).

Node penalties
Although the weighted interaction graph was generic, the node penalties were specific for each
dataset. We used a formulation such that the optimization would preferentially include nodes
that show the largest experimental signals. For example, the experimental signal can be the
severity of defect of the genetic hits in genetic screens or the fold change in phosphorylation
in the phosphoproteomics data. We will refer to the experimental signal generally as “strength.”
Let prot be the set of proteins with the experimental signal. For all ν ∈ prot we have strength
(ν)>0 as a measure of the importance of ν in the network. We computed the node penalty as
the normalized absolute log of the strength:

To connect mRNA profiling datasets to upstream regulatory events, we need to make some
modification to the interactome. Let mrna be the set of differentially expressed transcripts, and
fc(ν) be the fold change in mRNA abundance of each gene ν ∈ mrna. For each ν ∈ mrna, we
searched the interactome for the set of upstream transcription factors F, removed ν from the
interactome, and added one node νf for each transcription factor f ∈ F and one edge between
f and νf. The fold change of ν was transferred to all the νf and normalized so the penalties were
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All nodes in the interactome not in the prot or mrna set are given a penalty of zero.

Solving and analyzing the PCST
We introduced a scaling factor β for the node penalties described in the previous section. The
PCST minimization objective becomes

Intuitively, the objective function represents a trade-off between excluding nodes and including
edges. In a given problem with defined penalty and cost values, the larger the value of β, the
greater the penalty to exclude a node, making the optimization procedure exclude fewer nodes
at the expense of including more edges (with higher total edge cost) and generating a larger
network. The parameter β thus controls the size of the solution. We used a published algorithm
(60) to find the exact solution to the PCST and experimented with a wide range of β values.
For the pheromone response data, we show results for β=4 because it produces a midsize
solution network that includes most of the terminal nodes present in solutions of larger β values
(fig. S2). The solution networks were visualized in Cytoscape (63). GO enrichment statistics
were computing using BiNGO (64).

Yeast genetic and matching mRNA profiling data
Genetic interactors for STE2, STE5, and STE12 deletions were downloaded from the
Saccharomyces cerevisiae genome database (SGD) (23). Differentially expressed genes are
defined as genes that show at least a twofold change with P-value ≤ 0.05 (24). For the DNA
damage response, 91 genetic hits common to two independent screens (25,26) and the DNA
damage signature genes from mRNA profiling (27) were used. α-syn genetic and
transcriptional data were from (4).

Yeast pheromone response data
For termini that were proteins, we used the set of phosphorylation sites that change by least
two fold after 2 µM α-factor treatment for 120 minutes (7). Termini that were mRNA
represented genes that were differentially expressed by greater than three fold in wild-type
cells after 50 nM α-factor treatment for 120 minutes (3). Although the treatment concentrations
were different between these two datasets, there was evidence that the transcriptional response
to α-factor saturates at concentrations above 15.8 nM [fig. S5 and (3)]. The gene sets used in
calculating enrichment of mating-related genes were the Group III, pheromone-unresponsive
set from (51) and the ASD set from (52). Only the genes tested in each screen were used as
background in the calculation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Finding relevant interactions as a constraint optimization problem. We seek a set of high-
confidence edges present in the interactome that directly or indirectly link the proteins and
genes identified in the experimental assays. Because some of the input data may be false
positives (arrowhead) or may not be explained by currently known interactome (arrow), our
approach does not require that all the input data be connected, but rather uses these data as
constraints. Note that the protein product and mRNA transcript of the same gene are represented
as separate nodes.
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Fig. 2.
The PCST solution recovers compact networks. The fraction of nodes associated with the
expected biological process is comparable to the networks from flow-based approach that
include approximately equal number of nonterminal nodes, but this fraction is higher than the
first neighbor and shortest path networks connecting the same set of terminal nodes.
Perturbations for the genetic hits are STE12Δ (STE12 deletion), STE2Δ (STE2 deletion),
STE5Δ (STE5 deletion), and, MMS (methyl methanesulfonate treatment). The number above
each bar denotes the number of nonterminal nodes in the respective network. The GO
annotations tested are response to pheromone (GO:0019236) for STE12Δ, STE2Δ, and
STE5Δ, and response to DNA damage stimulus (GO:0006974) for MMS. The evidence code
IGI (Inferred from Genetic Interaction) was excluded from the calculation. Statistical
significance of the GO term enrichment was computed by hypergeometric test followed by
FDR correction (65).
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Fig. 3.
The protein components of the pheromone response network constructed by the PCST
approach. Note that the canonical pheromone response pathway (enclosed by dashed lines) is
but a small component of the broad cellular changes revealed by applying the algorithm to the
mass spectrometry and expression data. For clarity the differentially transcribed genes included
in the network are not presented. Functional groups based on GO annotation are outlined with
red boxes. PKC, protein kinase C; TF with phos. site, transcription factor with at least one
differentially phosphorylated sites; TF with no phos. site, transcription factor with no
differentially phosphorylated sites; non-TF protein with phos. site, a protein that is not a
transcription factor and with at least one differentially phosphorylated sites; non-TF with no
phos. site, a protein that is not a transcription factor and with no differentially phosphorylated
sites.
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Fig. 4.
The PCST pheromone response network is compact, and, when compared to networks
predicted by other methods, it contains higher fraction of genes that are implicated in mating
responses, measured by defects in activating a FUS1-lacZ reporter gene (51) and defects in
cell cycle arrest and shmoo formation (52). Enrichment P-values were computed by
hypergeometric tests using all the genes tested in the respective genetic screen as background.
The number above each bar denotes the number of nodes in the network.
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Fig. 5.
Percentage of transcription factors (TF) with targets that show significant expression coherence
(EC) scores computed from 50 nM α-factor time course (3) and diauxic shift conditions (66),
for transcription factors included in and excluded from the PCST solution network. The P-
values indicate thresholds on the significance of the expression coherence score of the target
genes.
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