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Complex spatio-temporal systems may exhibit irregular behaviors
when driven far from equilibrium. Reaction-diffusion systems
often lead to the formation of patterns and spatio-temporal chaos.
When a limited number of observations is available, the reconstruc-
tion and identification of complex dynamical regimes become chal-
lenging problems. Amethod based on spatial recurrence properties
is proposed to deal with this problem: generalized recurrence plots
and generalized recurrence quantification analysis are exploited to
show that detection of structural changes in spatially distributed
systems can be performed by setting up appropriate diagrams
accounting for different spatial recurrences. The method has been
tested on two prototypical systems forming complex patterns:
the complex Ginzburg–Landau equation and the Schnakenberg
system. This work allowed us to identify changes in the stability
of spiral wave solutions in the former system and to analyze
the Turing bifurcations in the latter.

complex Ginzburg-Landau equation ∣ spatial recurrence plots ∣ spatially
distributed systems ∣ Turing patterns ∣ reaction-diffusion systems

Reaction-diffusion equations are widely used for modeling a
large variety of observed natural and physico-chemical spatial

phenomena, such as chemical reactions (1), biological systems
and population dynamics (2), and pattern formation in physical
systems (3, 4). In fact, when driven outside from equilibrium,
spatially extended systems may exhibit irregular behavior both
in space and time. This phenomenon, commonly known as spa-
tio-temporal chaos (5, 6), consists in the spontaneous emergence
of spatial patterns like Turing structures, traveling and spiral
waves, and turbulence. Reaction and diffusion have been widely
investigated both from the theoretical (7, 8, 9) and experimental
viewpoints (10).

One important and still open issue arises in studying an un-
known dynamical spatio-temporal system when only the observa-
tion of one or a part of its spatial variables (or a combination of
them) is known and observation data is poorly available. The pro-
blem of space-state reconstruction and model identification of a
spatio-temporal dynamical system has been investigated in lattice
dynamical systems (11), whereas a method for spatial forecasting
from single snapshots has been proposed in (12). In such cases
one has to cope with the problem of understanding the dynamics
of a system by using only a limited amount of data.

This paper attempts to provide a methodology for extracting
information on the dynamics of a distributed dynamical system
from a limited number of spatial observations and, in particular,
for detecting structural changes in its dynamics.

Discussion
Spatial Recurrence Strategies. Let us consider the images shown in
Fig. 1. We may consider these images as snapshots of an unknown
two-dimensional system, and we want to extract as much infor-
mation as possible about the underlying system. Indeed, they
represent the numerical solutions at equal times of a spatially
distributed system (which will be described later) for different
values of its characteristic parameters. One can notice that some
images have similar patterns, whereas others are substantially
different.

Of course, the solution of the inverse problem is a formidable
task, which cannot be solved in general, except in very special
cases. For this reason, we focus on a more limited scope: to devise
a systematic methodology based on experimental data to detect
changes in the system dynamics and in its qualitative behavior.

We start by considering that the formation of a pattern in a
certain region depends on the spatio-temporal dynamics of the
system. Hence, spatial state recurrences may give insight in the
evolution of the system.

Indeed, the concept of recurrence is strictly related to that of
dynamical systems, as originally stated by Poincaré. For time ser-
ies, temporal recurrence of states has been widely investigated by
means of recurrence plots and recurrence quantification analysis
(13), whereas the problem of spatial recurrence in biomedical
images was investigated by Marwan et al. (14), who developed
the generalization for spatial systems, leading to generalized
recurrence plots (GRP) and generalized recurrence quantifica-
tion analysis (GRQA) (see Materials and Methods for details).

Recently, the authors of this paper proposed the use of GRP
and GRQA for the analysis of spatially distributed systems by
introducing the determinism-entropy (D-E) diagram, a tool
accounting for the recurrence properties of images generated
by a dynamical system (15). In this paper, we intend to go beyond
this task and answer the following question: Is this framework
capable of extracting all the useful information from a sequence
of images for detecting structural changes in the dynamics of the
generating system?

Following ref. 15, determinism is an appropriate measure
accounting for the global structure of the image, whereas entropy
represents a measure accounting for the patterns at small scales.
In fact, the combination of both indicators in the determinism-
entropy diagram provides a suitable description of the image
at micro and macro scales. Table 1 reports the values of both
indicators for the images of Fig. 1. One can notice that D ranges
approximately from 10.6 to 27.5 and E from 1.8 to 3.2. We
observe that the points corresponding to the pair (a),(b) are quite
close in the D-E plane. The same holds for the pair (e),(f),
whereas the pair (c),(d) shows values different from the other
two pairs and in addition (c) is somewhat far from (d). Such
differences may be related to structural changes (see ref. 16
for similar behavior in one dimensional systems). The hypothesis
of abrupt changes in the recurrence indicators is consistent with
the nature of the system used to generate the patterns; i.e., the
Complex Ginzburg–Landau Equation (CGLE)

∂tA ¼ Aþ ð1þ ıαÞ∇2A − ðβ − ıÞjAj2A; [1]

where Aðx; y; tÞ ∈ C2, x, y are the spatial variables and α; β ∈ R
(17, 18). This is one of the most important and studied nonlinear
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partial differential equations describing pattern formation in a
spatially distributed system near a Hopf bifurcation. The interest
in Ginzburg–Landau equations has been sustained because its
solutions display a very rich spectrum of dynamical behaviors
when the parameters are varied. This allows one to describe a
large variety of physical systems, such as nonlinear waves, second
order phase transitions, superconductivity and superfluidity,
Bose–Einstein condensation and population dynamics (19). An
important feature of the CGLE is the structure, nature, and role
of defects, i.e. points in the space where jAj ¼ 0. For two-dimen-
sional systems, defects are points that appear and disappear in
pairs, and, for small enough values of α, they are able to generate
(stable or unstable) spiral waves (further details in Materials and
Methods). The behavior of the solution in the parameter space
ðα; βÞ is very complex and still under investigation.

To give an answer to the problem posed at the beginning of this
section, in the following we present a methodology based on
recurrence properties of the images for a detailed analysis of
the CGLE and reaction-diffusion systems.

Detection of Structural Changes. The behavior of the CGLE in the
plane ðα; βÞ has been extensively studied by Huber (17, 20, 21),
Brito (22), and Chaté and Manneville (23, 24). On the basis of
extensive simulations, they define a set of transition lines in

the region β > 0. In particular, they identify the convective in-
stability limit, the absolute instability limit, and the regions in
which the phase turbulence and defect turbulence are observed.

In our investigation, a systematic analysis of the CGLE has
been performed in a square domain of the parameter space
α × β ¼ ½−1.5; 1.5� × ½−1.5; 1.5�*. The parameter plane has been
sampled by varying α by steps of 0.25, and β of 0.1. Specifically,
the real part of solutions Aðx; yÞ of the CGLE has been consid-
ered for each pair ðαi; βiÞ.

To guarantee the stationarity of the measures, we first look at
the temporal evolution of both determinism and entropy starting
from random initial conditions. Fig. 2 shows the dynamics of D
for α ¼ −1 and β ∈ f−1; 0.1; 1g. For each β, D reaches a different
saturation value, after the transient. For E the same behavior
has been observed. This analysis allows for the selection of an
appropriate stopping time for the integration and guarantees
the stationarity of both D and E.

A preliminary information on the variation of the GRQA
measures with respect to β is obtained by introducing a sensitivity
indicator defined by

KðβÞ ¼
��

ΔE
ĒΔβ

�
2

þ
�
ΔD
D̄Δβ

�
2
�
1∕2

; [2]

where Ē and D̄ are the averages of entropy and determinism,
respectively. A small value of KðβÞ indicates that both E and
D do not vary significantly with β. Fig. 3 reports KðβÞ for three
different values of α: One can notice that, depending on α and β,
the three curves show two clearly distinct behaviors characterized
by low and high sensitivity.

High values of KðβÞ point out that small variations of β may
produce strongly different patterns: This variability is related to
the position and number of defects, allowing for the formation of

Fig. 1. Patterns obtained by the system of Eq. 1 for different values of the
parameters ðα; βÞ.

Table 1. Values of D and E of the images in Fig. 1

(a) (b) (c) (d) (e) (f)

D 10.62 11.26 21.14 16.70 27.48 26.14
E 1.834 1.797 2.625 2.116 3.013 3.202
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Fig. 2. Analysis of the CGLE patterns. Time evolution of D and E for α ¼ −1.0
and β ∈ f−1; 0.1; 1g and random initial conditions. After the transient time
(approximately 1500 iterations), both D and E reach a stationary value. This
allows for a proper selection of the integration stopping time to avoid biased
values of determinism and entropy due to transient behavior.

*We have also considered negative values of β because, according to ref. 23, this region of
the parameter space is still not well investigated.
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structures with different spatial distribution. This is consistent
with the fact that defects arise, collide, and annihilate in the
unstable wave solution case. On the contrary, in the stable case,
the number and location of defects is robust to small variations of
the parameter β, giving small values of the sensitivity.

After this preliminary analysis, the values of D and E for each
image are computed and reported in the D-E diagram. Fig. 4
shows the position of all the analyzed images in the diagram.
Observe that the images are mainly organized in two regions,
indicated by A (D ∼ ½8; 14�, E ∼ ½1.6; 2�) and B (D ∼ ½20; 39�,
E ∼ ½2.6; 3.9�). The two regions are separated by a narrow zone
depicted in gray (G).

It is worth noticing that points in region A are much more con-
densed with respect to region B. This is explained by the very low
sensitivity of the GRQA measures, as mentioned before (Fig. 3).
The role of the transition zone G becomes clear when looking at
Movie S1, showing the dynamics of the points in the D-E diagram

as functions of α and β. One can notice a systematic behavior: The
points (i.e., the steady state solutions of the CGLE for a fixed pair
ðα; βÞ) are confined in one of the two regions (A or B), then move
toward the other region by crossing the transition zone, and
remain inside it. For example, consider the value α ¼ 0. For
increasing β, the points initially belong to A and remain in A until
a critical value βα¼0.0

A−G is reached; after this, the points cross G and
jump in B for a new value βα¼0.0

G−B . By increasing β, the scenario is
observed again in the opposite direction: Starting from B, the
points remain inside B until a critical value βα¼0.0

B−G is reached,
then they cross again G and jump in A after the value βα¼0.0

G−A .
The arrows in Fig. 4 indicate the directions along which the
motion of the points for increasing β takes place.

The behavior shown in Movie S1 and the regions with high and
low sensitivity with respect to β suggest that it is possible to detect
structural changes in the dynamics of the CGLE by looking at the
region jumps. For each value of α, following the evolution of the
points in the D-E diagram, we collect the values βα¼αi

jump for which
the transitions are observed and we report them in Fig. 5,
where the blue circles correspond to the values of β for which
the jumpsG–A and A–G are observed, whereas the red diamonds
correspond to the values of β for which the jumps G–B and B–G
take place.

One can notice that the blue circles lie with good agreement on
the Eckhaus stability limit (the line S1 in paper (23). The region
below the Eckhaus limit is mapped in the region A of the D-E
diagram. Analogously, the unstable region of the parameter
space is mapped to the region B, and the transition zone is
mapped to the light gray zone G separating A and B. By looking
at the values of β for which the jumps B–G and G–B happen, we
identify with very good accuracy the transition region that was
previously observed for some values of α and β by Huber et
al. (21) and by Bohr et al. (25). They analyzed the onset of tur-
bulence in the CGLE for finite domain size calling it transient
turbulent behavior.

Reaction-diffusion systems In this subsection the application of the
proposed method to reaction-diffusion equations is discussed.
Recently, the authors of the present paper have shown in (26)
that determinism and entropy are suitable indicators for detect-
ing different routes to Turing pattern formation in a Belousov–
Zhabotinsky reaction performed in a water–oil microemulsion
(27). Here we focus on one of the prototypical reaction-diffusion
systems showing Turing bifurcations: the Schnakenberg
model (28) (see Materials and Methods for mathematical details).
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Fig. 3. Sensitivity function KðβÞ for α ∈ f−1; 0; 1g and β ∈ ½−1.5; 1.5�. The
curves are shifted along the y axis for the sake of readability. High values
of KðβÞ point out that small variations of βmay produce significant variations
in the values of determinism and entropy.
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Fig. 4. Position of the images in the D-E diagram for the CGLE. The red
circles refer to the value α ¼ 0. We identify three regions: A, B, and G. For
a fixed α and increasing β, the points move from region A(B) to region B
(A) by crossing G (refer also to Movie S1). The arrows guide the eye for a
better understanding of the points motion in the diagram.
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Fig. 5. Identification of the transition curves in the parameter space. The
line S1 is the Eckhaus limit described in ref. 23. The red squares correspond
to the values of β for which the transition B–G or G–B occurs. The blue circles
are the values of β for which the transitions G–A and A–G occur. Notice that
the symmetric line in the region β < 0 is also well reconstructed.
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Referring to Eq. 9 and according to ref. 29, we choose γ ¼ 800,
k2 ¼ 1, whereas k1 varies in the range [0.1,0.6]. As expected, the
Turing bifurcation can be easily detected by computing the
recurrence indicators D and E. In fact, for diffusion coefficient
smaller than the critical value dcðk1; k2Þ, the solution converges
to a homogeneous state yielding the maximum feasible values of
D and E. Fig. 6 shows the evolution of both D and E for k1 ¼ 0.1
and 9.8 < d < 15. Notice that near the critical value dc ∼ 10 an
abrupt change in both values of D and E indicates the occurrence
of the bifurcation. Furthermore, for d > dc, both indicators show
some variations before reaching the saturation values D�ðk1 ¼
0.1Þ ¼ 20.64, E�ðk1 ¼ 0.1Þ ¼ 1.868. This may be explained by
the formation of transient patterns (Fig. 6, Insets) reported in
ref. 29. Let us now collect the saturation values D�ðk1Þ and
E�ðk1Þ for k1 ∈ ½0.1; 0.6�. Fig. 7 shows that D�ðk1Þ increases
quadratically, whereas the same behavior is not observed for
the entropy, whose regime value E�ðk1Þ ∼ 1.8 is independent
of k1. The behavior of both D� and E� can be explained by con-
sidering the Turing patterns: The increase of determinism may be
related to the decrease of the spatial frequency of the patterns
(Fig. 7, Insets). On the other side, entropy does not show impor-
tant changes because the information does not vary significantly
by reducing the spatial frequency.

Conclusions
Reconsidering the experiment proposed at the beginning of the
paper, we recognize that the pair of images (a),(b) falls in region
A of Fig. 1, and the pair (e),(f) falls in region B, whereas the pair
(c),(d) falls in region G. Then, with reference to Fig. 5, we can
conclude that (a),(b) come from stable spiral wave solutions of
the CGLE and (e),(f) come from unstable spiral wave solutions.
Notice that, despite the different visual aspect, (a) and (b) refer to
the same dynamical structure. This conclusion holds also for (e)
and (f) but with different levels of determinism and entropy.
Following the analysis performed in the paper, this indicates that
the system underwent a transition by changing the parameter β.
Moreover, the transition giving rise to images (c) and (d), takes
place according to a path that is clearly visualized in Movie S1.
The transition from (a),(b) to (e),(f), which has been clearly de-
tected through the D-E diagram analysis, is not easily detectable
by a visual inspection [e.g., notice that image (b) appears visually
more different from (a) than from (d)]. It is worthwhile to remark
that using different classical methods for measuring image com-

plexity (like, for example, pixel-based entropy (30) fails to discri-
minate the different pattern structures in Fig. 1 (A)–(F) (15).

Summarizing, we have shown that the generalized recurrence
quantification indicators are suitable for characterizing the
spatial patterns of the complex Ginzburg–Landau equation.
Specifically, following the evolution of the image positions in
the D-E diagram, we were able to identify, for each value of
α, a set of threshold values of β for which a region jump takes
place. By collecting these values, it was possible to reconstruct,
with good agreement, the Eckhaus limit of convective instability
of spiral waves in the ðα; βÞ plane. A transition zone of transient
turbulence was reproduced extending the preceding results.

Regarding reaction-diffusion systems, we have considered the
Turing patterns formed by the Schnakenberg model. As in the
CGLE case, the quantification of spatial recurrences allowed
for the detection of the different regimes observed in the pattern
formation. In particular, the determinism was found to increase
quadratically with the parameter k1 of Eq. 9. Moreover, the tran-
sition from homogeneous to fully formed patterned states was
easily detected.

The two examples addressed may be considered as prototypes
for covering a wide range of phenomena. Furthermore, the tech-
nique proposed can be usefully applied either for detecting struc-
tural changes in unknown systems or for uncovering bifurcations
in dynamical spatio-temporal systems, whose complexity prevents
the application of classical bifurcation analysis (8, 31).

Indeed, there are several application areas where the proposed
approach could help to understand the dynamical features of
biological and physical phenomena from sporadic spatial data,
such as spatial ecology (32), plankton turbulent patterns (33),
physiology of tissues (2), and functional MRI (34). Further
applications of the proposed method to these phenomena are
the subject of ongoing work.

Materials and Methods
Complex Ginzburg-Landau Equation. In the following only basic information is
provided (for an exhaustive treatment of the CGLE the reader is referred to
ref. 18). The CGLE reads

∂tA ¼ Aþ ð1þ ıαÞ∇2A − ðβ − ıÞjAj2A [3]

where Aðx; y; tÞ ∈ C2 and α; β ∈ R. The first term of the right hand side is re-
lated to the linear instability mechanism leading to oscillation. The second
term accounts for diffusion and dispersion, whereas the cubic term insures,
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Fig. 6. Detection of the Turing bifurcation in the Schnakenberg model
described by Eq. 9. The critical value dc ∼ 10 is well identified by looking
at the abrupt change of the indicators. For both determinism (A) and entropy
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for β > 0, the saturation of the linear instability and is involved in the renor-
malization of the oscillation frequency. When α ¼ 0 and β → ∞ one has the
real Ginzburg–Landau Equation, which possesses a Lyapunov functional and
exhibits relaxational dynamics (35). For α → ∞ and β ¼ 0 one recovers the
nonlinear Schrödinger equation. In two dimensions, the solutions of the CGLE
are families of plane waves A ¼ ak exp ıðkx þ ωktÞ with a2k ¼ ð1 − k2Þ∕β and
ωk ¼ 1∕β − ðαþ 1∕βÞk2, where k is the wave number.

We have integrated the equation using a pseudospectral code (36), in a
square domain of L ¼ 512 points with periodic boundary conditions†.

Generalized Recurrence Plots. The recurrence plot (RP) (37) is essentially a
two-dimensional binary diagram indicating the recurrences that occur in
an m-dimensional phase space within a fixed threshold ϵ at different times
i, j. For time series the RP is easily expressed as a two-dimensional square
matrix with ones and zeros representing the occurrences (ones) or not (zeros)
of states ~xi and ~xj of the system: Rij ¼ Θðϵ − jj ~xi − ~xj jjÞ, where ~xi ∈ Rm,
i; j ¼ 1;…; N, N is the number of the measured states ~xi , Θð·Þ is the step
function, and jj · jj is a norm. In the graphical representation, each nonzero
entry of Ri;j is marked by a black dot in the position ði; jÞ. Because any state is
recurrent with itself, the RP matrix fulfills Ri;i ¼ 1 and hence contains the
diagonal line of identity.

An RP is characterized by typical patterns, whose structure is helpful for
understanding the underlying dynamics of the system investigated. A homo-
geneous distribution of points is usually associated with stationary stochastic
processes; e.g., Gaussian or uniform white noise. Periodic structures, like long
diagonal lines parallel to the line of identity indicate periodic behaviors,
whereas drifts in the structure of the recurrences are often due to a slow
variation of some parameter of the system and white areas or bands indicate
nonstationarity and abrupt changes in the dynamics. For an extensive discus-
sion of RPs and recurrence quantification analysis (RQA) measures the reader
may refer to ref. 13. Recurrence plots may be exploited for the analysis of
systems showing complex patterns in time and space. In ref. 14 the GRP
for a d-dimensional data-set as the 2d-dimensional RP is defined by

R ~ı; ~j ¼ Θðϵ − ‖ ~x ~ı − ~x ~j‖Þ [4]

where ~ı ¼ i1; i2;…; id is the d-dimensional coordinate vector and ~x ~ı is the
associated phase-space vector. This GRP accounts for recurrences between
the d-dimensional state vectors. The line of identity is replaced by a linear
manifold of dimension d for which R ~ı; ~j ¼ 1, ∀ ~ı ¼ ~j.

The discretized solution of the two-dimensional CGLE at a fixed time can
be represented by images (one for ℜfAg and one for ℑfAg); in this case the
state ~xi1 ;i2 ¼ ℜfAðxi1 ; yi2 Þg or ℑfAðxi1 ; yi2 Þg and the GRP reads as follows:
Ri1 ;i2 ;j1 ;j2 ¼ Θðϵ − jjxi1 ;i2 − xj1 ;j2 jjÞ, ik , jk ∈ N, where each black dot represents
a spatial recurrence between two pixels, and every pixel is identified by
its coordinates ði1; i2Þ, being i1 and i2 the row and the column index respec-
tively. In this case, the recurrence plot is a four-dimensional RP and contains a
two-dimensional identity plane, defined by setting i1 ¼ j1 and i2 ¼ j2.

Because the GRP of an image is four-dimensional, its visual inspection is
possible only by projections in three or two dimensions. Although this is
possible, relevant information is hard to extract, and one must cope with
the fact that GRPs lose their visual appeal. Despite this drawback, RQA
can still be performed because the structures described before can be easily
extracted, and in the following we describe how to generalize the structures
formed by the recurrences. A line structure of length l is composed by l
consecutive recurrent points, according to the following formulation:

ð1 − Ri1−1;i2−1;j1−1;j2−1Þð1 − Ri1þl;i2þl;j1þl;j2þlÞ
Yl−1
k¼0

Ri1þk;i2þk;j1þk;j2þk ≡ 1.
[5]

On the basis of the above definition, we build the histogram PðlÞ of the line
lengths and define the GRQA measures as in the one dimensional case. In
particular, we focus on recurrence rate (R), determinism (D) and entropy
(E), defined as

R ¼ 1

N4 ∑
N

i1;i2;j1;j2

Ri1;i2;j1;j2 ¼
1

N4 ∑
N

l¼1

lPðlÞ; [6]

D ¼ ∑
N

l¼lmin
lPðlÞ

∑
N

l¼1
lPðlÞ ; [7]

E ¼ − ∑
N

l¼lmin

pðlÞ log pðlÞ pðlÞ ¼ PðlÞ
∑

N

l¼lmin
PðlÞ ; [8]

where lmin is the minimum length considered for the diagonal structures.
The recurrence rate R is a density measure of the RP, accounting for the

fraction of recurrent points in the spatial domain with respect to the total
number of possible recurrences. Determinism (D) is a measure of the predict-
ability of the system; in fact, it is the fraction of recurrent points forming
diagonal structures in the RP with respect to all the recurrences. The entropy
(E) is a complexity measure of the distribution of the diagonal lines in the GRP
because it refers to the Shannon entropy with respect to the probability to
find a structure of exactly length l.

The computation of the measures based on the diagonal lines and their
distribution provides valuable information about the structure of the RP and
the underlying structure of the solution under investigation. In particular, the
determinism is the measure of the global pattern recurrence in the image: A
value of determinism >60–70% indicates that the image has strong recurrent
components. In this sense, the measure fits the need to describe globally the
patterns showed by the image. On the other side, the entropy provides a
measure of the complexity of the GRPwith respect to the diagonal structures:
A low entropy indicates a poor organization of the line structures and is
related to the small scale patterns.

Schnakenberg System. The Schnakenberg system describes a simple
chemical reaction with limit cycle behavior (28). It has been widely used
for investigating Turing instabilities in biological and ecological systems
(2). The dimensionless system of equations reads

∂tu ¼ γðk1 − uþ u2vÞ þ ∇2u; ∂tv ¼ γðk2 − u2vÞ þ d∇2v;

[9]

where uðx; y; tÞ, vðx; y; tÞ ∈ R and x, y are the spatial variables; γ is propor-
tional to the spatial domain size and represents the relative strength of
the reaction terms, k1 and k2 depend on the reaction rates and d is the ratio
of the diffusion coefficients of the two reactants. The critical diffusion
coefficient dc is a function of the parameters k1 and k2. For further details,
the reader is referred to ref. 2, page 78.

The system has been integrated in a square domain of L ¼ 250 points
using a finite element method by means of ComsolMultiphysics software.

1. Epstein IR, Pojman J (1998) An Introduction to Nonlinear Chemical Dynamics:
Oscillations, Waves, Patterns, and Chaos (Oxford University Press, London).

2. Murray J (2004) Mathematical Biology (Springer, Berlin), 3rd Ed.
3. Cross M, Greenside H (2009) Pattern Formation and Dynamics in Nonequilibrium

Systems (Cambridge University Press, Cambridge, UK).
4. Rutherford A, Aronson DG, Swinney HL (1991) Patterns and Dynamics in ReactiveMed-

ia (The IMA Volumes in Mathematics and its Applications), (Springer, Berlin), Vol 37.
5. Janiaud B, et al. (1992) The Eckhaus instability for traveling waves. Physica D

55:269–286.

6. Cross M, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod

Phys 65:852.

7. Grindrod P (1991) Patterns and Waves: Theory and Applications of Reaction-Diffusion

Equations (Claredon Press, Oxford).

8. Mei Z (2000) Numerical Bifurcation Analysis for Reaction-Diffusion Equations (Spring-
er, Berlin).

9. Banks H, Kunish K (1989) Estimation Techniques for Distributed Parameter Systems

(Birkhauser, Basel).

10. Vanag V, Epstein IR (2003) Segmented spiral waves in a reaction-diffusion system.

Proc Natl Acad Sci USA 100:14635–14638.

11. Guo L, Billings S (2007) State-space reconstruction and spatio-temporal prediction of

lattice dynamical systems. IEEE T Automat Contr 52(4):622–632.

†The analysis was performed by considering increasing domains: For sizes L ¼ 256; 512; 1024
the GRQA measures did not change significantly.

Mocenni et al. PNAS ∣ May 4, 2010 ∣ vol. 107 ∣ no. 18 ∣ 8101

PH
YS

IC
S

SY
ST

EM
S
BI
O
LO

G
Y



12. Marcos-Nikolaus P, Martin-González JM, Solé RV (2002) Spatial forecasting: Detecting
determinism from single snapshots. Int J Bifurcat Chaos 12(2):369–376.

13. Marwan N, Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of
complex systems. Phys Rep 438:237–329.

14. Marwan N, Kurths J, Saparin P (2007) Generalised recurrence plots analysis for spatial
data. Phys Lett A 360:545–551.

15. Facchini A, Mocenni C, Vicino A (2009) Generalized recurrence plots for the analysis of
images from spatially distributed systems. Physica D 238:162–169.

16. Trulla LL, Giuliani A, Zbilut JP, Webber CL (1996) Recurrence quantification analysis of
the logistic equation with transients. Phys Lett A 223:255–260.

17. Huber G (1993) The onset of vortex turbulence. PhD thesis (Boston University).
18. Aranson I, Kramer L (2002) The world of the complex Ginzburg–Landau equation. Rev

Mod Phys 74:99.
19. Sherratt J, Smith M, Rademacher J (2009) Locating the transition from periodic

oscillations to spatiotemporal chaos in the wake of invasion. Proc Natl Acad Sci
USA 106:10890–10895.

20. Huber G (1995) Vortex Solids and Vortex Liquids in a Complex Ginzburg–Landau
System. In Spatio-Temporal Patterns in Nonequilibrium Complex Systems. (Addison–
Wesley, Reading, MA).

21. Huber G, Alstrom P, Bohr T (1992) Nucleation and transients at the onset of vortex
turbulence. Phys Rev Lett 69:2380.

22. Brito C, Aranson IS, Chaté H (2003) Vortex glass and vortex liquid in oscillatory media.
Phys Rev Lett 90:068301.

23. Chaté H, Manneville P (1996) Phase diagram of the two-dimensional complex
Ginzburg–Landau equation. Physica A 224:348–368.

24. Manneville P, Chaté H (1996) Phase turbulence in the two-dimensional complex
Ginzburg–Landau equation. Physica D 96:30–46.

25. Bohr T, Pedersen A, Jensen M (1990) Transition to turbulence in a discrete Ginzburg–
Landau model. Phys Rev A 42:3626.

26. Facchini A, Rossi F, Mocenni C (2009) Spatial recurrence strategies reveal different
routes to Turing pattern formation in chemical systems. Phys Lett A 373(46):
4266–4272.

27. Vanag VK, Epstein IR (2003) Segmented spiral waves in a reaction-diffusion system.
Proc Natl Acad Sci USA 100(25):14635–14638.

28. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behavior.
J Theor Biol 81:389–400.

29. Madzvamuse A, Wathen AJ, Maini PK (2003) A moving grid finite element method for
the simulation of pattern generation by Turingmodels on growing domains. J Comput
Phys 190:478–500.

30. Gonzalez R, Woods R, Eddins S (2003) Digital Image Processing Using MATLAB
(Prentice Hall, Englewood Cliffs, NJ).

31. Hirsch MW, Smale S (1974) Differential Equations, Dynamical Systems, and Linear
Algebra (Academic, London).

32. Allegretto W, Mocenni C, Vicino A (2005) Periodic solutions in modelling lagoon
ecological interactions. J Math Biol 51:367–388.

33. Abraham E (1998) The generation of plankton patchiness by turbulent stirring.Nature
391:577–580.

34. Huettel SA, Song AW, McCarthy G (2004) Functional Magnetic Resonance Imaging
(Sinauer, Sunderland, MA).

35. Graham R (1974) Hydrodynamic fluctuations near the convection instability. Phys Rev
A 10:1762.

36. Cox S, Matthews P (2002) Exponential time differencing for stiff systems. J Comput
Phys 176:430–455.

37. Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence plot of dynamical systems.
Europhys Lett 5:973–977.

8102 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0910414107 Mocenni et al.


