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Studying the cell cycle process is crucial for understanding cell
growth, proliferation, development, and death. We uncovered
some key factors in determining the global robustness and func-
tion of the budding yeast cell cycle by exploring the underlying
landscape and flux of this nonequilibrium network. The dynamics
of the system is determined by both the landscape which attracts
the system down to the oscillation orbit and the curl flux which
drives the periodic motion on the ring. This global structure of land-
scape is crucial for the coherent cell cycle dynamics and function.
The topography of the underlying landscape, specifically the
barrier height separating basins of attractions, characterizes the
capability of changing from one part of the system to another. This
quantifies the stability and robustness of the system. We studied
how barrier height is influenced by environmental fluctuations and
perturbations on specific wirings of the cell cycle network. When
the fluctuations increase, the barrier height decreases and the
period and amplitude of cell cycle oscillation is more dispersed
and less coherent. The corresponding dissipation of the system
quantitatively measured by the entropy production rate increases.
This implies that the system is less stable under fluctuations. We
identified some key structural elements for wirings of the cell cycle
network responsible for the change of the barrier height and there-
fore the global stability of the system through the sensitivity
analysis. The results are in agreement with recent experiments
and also provide new predictions.

oscillation ∣ barrier height ∣ entropy production and dissipation ∣

sensitivity ∣ global stability

Understanding the global stability and function of cellular net-
works is a grand challenge to the current systems biology.

The conventional way of describing the networks in terms of
either deterministic or stochastic [due to the intrinsic fluctuations
from a finite number of the molecules in the cell and external
fluctuations (1, 2)] chemical kinetics often probes only the local
properties of the network (3, 4). The global nature is hard to see.
When the state space of the cellular network is huge, then a re-
lated challenge is to understand globally how the seemingly infi-
nite number of genotypes can result in a finite of number of
functional phenotypes. The probabilistic landscape description
may provide an answer because the importance of each state
can be discriminated from its associated weight. Functional states
may correspond to higher probability of appearing and occupy
low potential valleys (5–15). For example, a one-dimensional
nonequilibrium potential under a periodic boundary condition
(6) can be quantified (6). The multidimensional nonequilibrium
potential under natural boundary conditions can also be quanti-
fied and explored (detailed discussions are in SI Appendix). The
global stability of the functional states can be quantified through
the topography of the underlying probabilistic landscape. The
barrier heights between the functional basins may provide such
a measure of the degree of difficulty to change from one
functional state to another. The corresponding stabilities under

different fluctuations, perturbations of wirings, and mutations of
the network quantify robustness of the system (11–14).

The probability evolution of the cellular network can be math-
ematically determined by the probabilistic diffusion equation for
environmental fluctuations and master equation for intrinsic
statistical fluctuations due to the finite number of molecules in
the cell. It is impossible to solve the equation exactly due to
the large number of states involved. In this paper, we will use
the self-consistent mean field approximation to approach a
specific cellular network-budding yeast cell cycle. It can reduce
the computational task from exponential to polynomial.

The cell cycle is the series of events that takes place in a cell
leading to its division and duplication (replication) crucial for
growth, proliferation, development, and death (16–23). The cell
cycle consists of several distinct phases: G1 phase, S phase
(synthesis), G2 phase (collectively known as interphase), and
M phase (mitosis). Activation of each phase is dependent on
the proper progression and completion of the previous one. In
a budding yeast, the cell cycle can often be thought of as alter-
native “states” (G1 and S-G2-M) separated by two transitions
(start and finish) (16).

Regulation of the cell cycle involves processes crucial to the
survival of a cell. The molecular events that control the cell cycle
are ordered and directional. Two key classes of regulatory mole-
cules, cyclins and cyclin-dependent kinases (CDKs), determine a
cell’s progress through the cell cycle. There are four kinds of main
proteins in the cell cycle process: CDKs including cyclin B (clb2,
clb5); enemies including CKIs (Sic1, Cdc6), Cdh1/APC (ana-
phase-promoting complex); start kinase (SK) including cln1,
cln2, cln3; and exit proteins (EP) including Cdc20, Cdc14 (17,
23). At the core of the cell cycle is a hysteresis loop from the fun-
damental antagonism between CDKs and APC: the APC re-
presses CDK activity by destroying its cyclin partners, whereas
cyclin/CDK dimers deactivate APC activity by phosphorylating
Cdh1 (Fig. 1 is a highly simplified illustration of the complicated
process (16–20). This mutual repression creates bistable states of
the control system: a G1 state, with high Cdh1/APC activity and
low cyclin/CDK activity, and an S-G2-M state, with high cyclin/
CDK activity and low Cdh1/APC activity. For a newborn cell in
the G1 phase, as the cell grows, the CycB (cyclin B) starts to in-
crease and drives the cell into the S phase and mitosis (start). This
turns on synthesis of Cdc20. As Cdc20 accumulates, Cdh1/APC is
activated by Cdc20, and the cell exits mitosis (finish), with CycB
destroyed. At cell division, the cell mass is reduced to two parts.
The system is captured by the stable G1 steady state until the cell
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size once more increases to the critical size (17) with the conti-
nuation of nutrition supply.

Fig. 1 introduces additional levels of control. Cdc20 is synthe-
sized only during S-G2-M phase of the cell cycle. A Cdc20-
activatory signal is illustrated by the mitotic process through
intermediate enzyme (IE), and a Cdc20-inhibitory signal is gen-
erated by mitotic spindle abnormalities (through Mad pathways).
Furthermore, CycB/CDK is inhibited by a binding partner (CKI)
that is prevalent in the G1 phase of the cell cycle. The abundance
of this inhibitor is controlled by phosphorylation reactions, which
label CKI for rapid proteolysis. CKI can be phosphorylated by
CycB/CDK, but there is little or no CycB/CDK activity in G1

cells. In order to leave G1 and enter the S phase, the cell must
produce a “starter kinase,” of which its whole job is to phosphor-
ylate and thereby remove CKI. SK is a dimer of CDK and a dif-
ferent type of cyclin (called Cln2 in budding yeast). The starter
kinase is not inhibited by CKI and not destroyed by Cdh1, so
when this alternative cyclin protein is produced in late G1, SK
can help CycB/CDK to overcome its repressions.

We will study the budding yeast cell cycle network to explore
the nature and topography of the underlying potential landscape
for stable cell cycle oscillations. We will also study the robustness
of the system (in terms of barrier height separating the basins of
attractions of oscillations) under stochastic fluctuations, pertur-
bations of the wirings, and mutations. We will identify some key
structural elements critical for maintaining the function and
stability of the network.

Results and Discussions
Cell Cycle Landscape. We first start with the reaction scheme in
Fig. 1 and write down explicitly the associated chemical reaction
equations (16–23).We can then establish the corresponding prob-
abilistic diffusion equation and use a self-consistent mean field
method to solve the steady state probability distributions P in
terms of the protein concentrations of the cell cycle network
for a given diffusion coefficient D characterizing the environmen-
tal fluctuation level (5, 7–14). From the nonequilibrium steady
state distribution, we can identify the underlying potential as
UðxÞ ¼ − lnPðx; t → ∞Þ ¼ − lnPss (when ∂P

∂t ¼ 0). In this way,
we map out the potential landscape (5, 7–14).

The potential landscape is multidimensional in concentration
configuration space x and it is difficult to visualize UðxÞ, so we
select only two important protein concentration variables
x1ðCycBÞ and x3ðCdc20Þ for the process from eight in the network
to calculate the landscape by integrating out the other six
variables. This makes it possible for visualization.

We monitor the cell mass to explore different stages of the cell
growth, and we obtain different landscapes when cell mass (often
represented as Mass) is increased from 0.1 to 0.8. Fig. 2 shows

SK

Fast
CKI CKI

P

Cdk

CycB

Cdk

CycB
CKI

Cdh1 Cdh1

Cdc20

+APC

+APC

Cdc20T

IEP MadIE

k123

k22 k4

k151,k132,k152

k31

k51,k52

k1

J3

k6

k161,k162

k10

k7

k11

Fig. 1. The basic cell cycle engine in eukaryotic cells.

Fig. 2. Figures show the three-dimensional landscape picture frommonostable, bistable, to oscillation state;m ¼ 0.4–0.55 are G1,m ¼ 0.58–0.64 are S-G2, and
m ¼ 0.68–0.8 are M stage.
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three-dimensional landscapes for different Mass at small environ-
mental fluctuation strength D ¼ 0.0005. We can see from the
figure that at the initial location when the Mass is small
(<0.4), the system is monostable around G1. As mass starts to
grow (beyond mass ¼ 0.4), two basins of attraction appear for
the underlying potential landscape, the system is in a weakly
bistable state, and the bistable state is not symmetric and is still
heavily biased towards G1. This still corresponds to a stable G1
steady state. As the mass increases further (beyond mass ¼ 0.58),
the second basin of attraction becomes deeper and more stable
and G1 loses its stability. The system begins to enter into the S-G2
phase. The network dynamics starts to shift from bistable states
towards oscillations (G1-S transition at cell mass ¼ 0.58) (21,
22). Furthermore, from m ¼ 0.6 to 0.8, the landscape changes
from two basins of attraction to strong oscillation with a Mexican
hat shape. This process is just like digging along a ring, first two
holes, then three holes, etc., and at the last becoming a groove.
From the shape of landscape, m ¼ 0.66 should be the beginning
of the M stage, and when m ¼ 0.8, it is the anaphase of mitosis,
with very stable oscillation. This gives a global picture and struc-
ture of the underlying landscape for the cell cycle network.

Flux Flow. The probabilistic evolution of diffusion equation,
∂P
∂t þ ∇ · Jðx; tÞ ¼ 0, represents a conservation law of probability
(local change is due to net flux in or out). And the probability
flux vector J of the system in concentration space x is defined
as Jðx; tÞ ¼ FP − D · ∂

∂xP.
In general, the dynamic driving force F can be decomposed

into a gradient of a potential and a curl flow flux (14)
(F ¼ þD∕Pss · ∂

∂xPss þ JssðxÞ∕Pss ¼ −D ∂
∂xU þ JssðxÞ∕Pss. Pss re-

presents steady state probability distribution and potential and
U is defined as U ¼ − lnPss. With detailed balance, the gradient
of potential controls the underlying dynamics as the driving force.
For nonequilibrium systems, the gradient of potential landscape
and flux of probability determine the dynamics and global pro-
perties together. The dynamics of a nonequilibrium network
can be described as a spiral, along the gradient direction, not like
the case of the equilibrium state only following the gradient. It is
similar to electrons moving in both electric and magnetic
fields (14).

The detailed potential landscape for stable cell cycle oscilla-
tion at large mass (mass ¼ 0.8) in the M phase has a closed ring
or Mexican hat structure in the projection concentration space of
x1 (CycB) and x3ðCdc20Þ as shown in Fig. 3A.

We can see that the closed ring is around the deterministic
oscillation trajectories. This means that the oscillation path or
the closed ring have lower potential (and higher probability).
Inside and outside the closed ring the potentials are both higher,
which form a Mexican hat shape. The system is therefore
attracted to the closed ring instead of a specific stable basin.

In Fig. 3A, the magenta arrows represent the steady state prob-
ability flux and white or blue arrows represent the force from the
negative gradient of the potential landscape. We can see the
direction of the flux near the ring is parallel to the oscillation path
and circulates along the closed ring. The forces from the negative
gradient of the potential landscape are insignificant along the
closed ring and significant inside and outside the ring (see also
SI Appendix for details). The direction of the negative gradient
of the potential is almost vertical to the ring. Therefore, the land-
scape attracts the system towards the closed ring and is driven by
the flux flow for oscillation along the closed ring valley. The none-
quilibrium system is an open one with constant exchange of
energy and information from outside environments. The nonzero
flux is from the energy input from the nutrition supply.

As the diffusion coefficient D measuring the degrees of
fluctuations increases, the potential landscape becomes flatter.
Fig. 3B shows that the landscape transforms from a distinct ring
valley into a shallower structure. This implies that there is more

freedom to go from one state to another. Therefore, coherent
oscillation is hard to maintain and the system becomes less stable.
On the contrary, the weaker the fluctuation is, the more robust
the oscillation is.

Notice that the mass acts as a control parameter to measure
the progression of the cell cycle. We can think of a picture of the
cell cycle as follows: Cell mass itself is also a measure of the
energy intake from outside. When cell mass is small, the energy
pump is insufficient to drive the state out of the basin of attrac-
tion. As the mass grows larger, energy intake is enough to drive
the system to the next basins of attraction (digging another hole
on the landscape). As the cell mass grows even larger, the energy
intake is enough to push the system around through the flux flow
and create a cycle of oscillations.

Robustness, Barrier Height, and Entropy Production Rate.Having the
underlying potential landscape, we can furthermore study the ro-
bustness of the cell cycle network by exploring the underlying
landscape topography. For the monostable state, the slope of
the basin attraction against local trapping termed as robustness
ratio RR measures the degree of stability. For bistability, the
barrier height between the basins of attraction and for oscillation,
the barrier height from the minimum of the ring valley to the top
of the barrier at the oscillation center becomes the quantitative
measure of the degree of global robustness. We compute RR and
barrier heights separately for the monostable state, bistable state,
and oscillation.

For monostability with small cell mass in the initial stage of the
cell cycle, we define RR (robustness ratio) for the network as
RR ¼ δU∕ΔU. Here the δU is the difference between the global
minimum Uglobal-minimum, and the average of U, hUi, and ΔU is
the half-width of the distribution of U. The δU measures the bias
or the slope toward the global minimum (G1) of the potential
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landscape, whereasΔU is a measure of the averaged roughness or
the local trapping of the potential landscape. Fig. 4A shows the
robustness measured by RR decreases with external noise in-
creased. This means under fluctuations the system will become
less stable.

For a bistable condition in the middle range of cell mass, we
define ΔUbarrier(barrier height) as Umax−Umin. Here, Umax is
the potential at the saddle point between the two stable basins of
attraction (G1 and SG2M) and U min is the potential at one of
the basins of attraction. Then, ΔUbarrier represents the potential
energy barrier height between two stable basins of attraction. In
Fig. 4B, we can see that as the fluctuation characterized by
diffusion coefficient D decreases, the ΔUbarrier increases. The
two basins of attraction become more stable since it is harder
to go from one well to another. Therefore, large barrier heights
and small fluctuations serve as the robustness and stability
conditions for bistability (12).

For oscillation with a large cell mass, we define the barrier
height in the same way, as Umax−Umin. Umin is the potential
minimum along the limit cycle attractor. Umax is the potential at
the local maximum point inside the limit cycle circle. In Fig. 4C,
when the diffusion coefficient is small, the barrier height asso-
ciated with escaping from the limit cycle attractor is higher.
The resulting limit cycle attractor becomes more stable because
it is more difficult to go from the ring to the inside or outside.
Thus, small fluctuations and a large barrier height leads to robust-
ness and stability in the oscillatory protein network (14). As we
can see, the barrier height becomes a quantitative measure of glo-
bal stability and degree of robustness of the cell cycle network.

In addition, we can compute the entropy production rate for
different fluctuations (24). Because the entropy production is a
feature of the global properties of the network combining both
the effects of landscape and flux just like the heat generated from
the voltage and current of an electrical circuit, we can use it to
analyze global features of the network. In Fig. 4 D, E, and F, we
plotted the entropy production (per unit time) or the dissipation
cost of the network in steady state for monostable state, bistable
state, and oscillation regime versus diffusion coefficient D. We
can see that the entropy production rate decreases as the
diffusion coefficient D decreases, which may reflect the fact that
the fewer perturbations make the system more robust and cost
less energy in the mean time. This might provide a design crite-
rion, which will optimize the connections for the network (13).

Period and Amplitude and Coherence for Oscillation. We also show
the distributions of the period and amplitude of oscillations
for x1ðCycBÞ for different fluctuations (SI Appendix). We can
see that, when the fluctuations increase, the distribution of period
and amplitude becomes more scattered, and the standard devia-
tion σ of period and amplitude from the mean increases, which
means more possible values of the period and amplitude of os-
cillations can appear. This implies that less fluctuations corre-
sponding to a more stable network make more coherent
oscillations with asingle period and amplitude rather than spread
periods and amplitudes.

The robustness of the oscillation can be quantified further by
the phase coherence ξ, which is a measure of the degree of per-
iodicity of the time evolution of a given variable (SI Appendix)
(25). The larger of ξ value represents the more periodic
evolution, in the presence of fluctuations. ξ decreases when
the diffusion coefficient increases. This means larger fluctuations
tend to destroy the coherence of the oscillations and further
decrease the stability of the system.

Analysis of Sensitivity. We did an analysis of sensitivity to uncover
the local key connections or wirings of the cell cycle network re-
sponsible for stability of monostability, bistability, and oscillation.
This is through changing the chemical reaction rate constants to
see their effects on robustness ratio RR (monostable state), and
barrier heights (bistable state and oscillation). Fig. 5 A1, B1, and
C1 show effects of rate constants on the robustness for mono-
stability, bistability, and oscillation separately. We chose some
top important rate constants and then studied the effects of these
parameters on robustness and entropy production rate of the
system, which are shown in Fig. 5 A2–A3, B2–B3, and C2–C3.

For monostability with small cell mass, we can see that the in-
crease of k31 and decrease of J3 makes the network more stable.
By checking the network, we found that the increase of k31 and
decrease of J3 at monostability will activate Cdh1 (Enemies).
Cdh1 represses CycB/CDK, which must increase the concentra-
tion in order to leave G1 and enter the S phase as seen in previous
studies (17). So the activation of Cdh1 makes the network
inclined to stay at the monostable (G1 state) state. Therefore,
increasing k31 makes monostability (G1 state) more stable,
and it is opposite for J3.

For bistability with a middle range of cell mass, we found two
important rate constants, k6 and k51, and analyzed their effects
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on barrier height and the entropy production rate. These are
shown in Fig. 5 B2–B3. From these figures we can see that the
increase of k6 makes the system more stable, and the increase
of k51 makes the system less stable. Checking the network, we
found that at bistability k6 and k51 repress and activate Cdc20,
respectively. From formal discussions and previous studies (26–
29), the presence of Cdc20 makes Cdh1 (Enemies) more active
and represses CycB/CDK and cell exits miosis (G1 state again).
This means that the system is inclined to be in the G1 state
(monostable state) when Cdc20 increases, making the bistable
state less stable. Therefore, the increase of k51 makes the bistable
state less robust, and the increase of k6 strengthens the bis-
table state.

For oscillation with a large cell mass, we explored the effects of
k1, k10, k151, and k161 on the stability and dissipations of the
system (Fig. 5 C2–C3). From the figures we can see that increas-
ing k1, k10, and k151 augments the robustness and causes less
dissipations of the system, while it is the opposite for parameter
k161. From the wiring diagram, k1 for oscillation increases CycB/
CDK and k161 inactivates SK (cln2). SK weakens Enemies (cdh1,
sic1), allowing CycB/CDK activity to rise. So inactivation of SK
means CDK is deactivated and the oscillation system is inclined
to be unstable. Therefore, the increase of k161 makes oscillation
less stable (30, 31). For the same reason, since k1 increases CycB,
the increase of k1 makes oscillation more stable (17, 23). Some
experimental explorations have found the importance of CycB
in both G1 and mitosis stages (31). As far as k10 is concerned,
it represses production of IEPðx5Þ and further deactivates
Cdc20ðx3Þ since IEP activates Cdc20. Cdc20 increases Cdh1
(Enemies) and then decreases CycB/CDK. So increasing k10 ac-
tivates CycB/CDK and makes the oscillation system more stable
(32). For parameter k151, it is related to a positive feedback loop
of SK (cln2), so increasing k151 makes oscillation more stable
(23, 26–29, 33, 34).

Furthermore, we studied the effect of a positive feedback loop
in the network on the stability of the system. The rate constants
related with a positive feedback loop include k152, k132, k22, k4,
and k123. See SI Appendix for the changes of the barrier height
with respect to the changes of these parameters. We can see that
when these rate parameters related to a positive feedback loop
increase, the corresponding barrier height of the landscape in-
creases. This means that the network becomes more stable. It
demonstrates that positive feedback loops provide the network
system with greater robustness and reliability. This is consistent
with some recent studies (23, 26–29, 33, 34). In addition, k152 and
k132 are positive feedback parameters related with Cln2 (SK).
This result is in agreement with recent experimental studies,
which showed that positive-feedback-amplified expression of
Cln1, Cln2 drives stable budding and rapid, coherent regulon
expression (26).

Methods
There have been intensive explorations on the cell cycle regulatory system for
budding yeast (Saccharomyces cerevisiae) (17, 19, 20). See details in SI
Appendix.

Our method is to uncover the potential landscape. The statistical nature of
the chemical reactions can be captured by the corresponding diffusion
equation, which describes the evolution of the networks probabilistically.
It is hard to solve a diffusion equation due to its inherent huge dimensions.
We therefore used the self-consistent mean field approximation to reduce
the dimensionality (7, 12, 13). In this way, we could follow the time evolution
and steady state probability of the protein concentrations and finally map
out the potential landscape, which is closely associated with steady state
probability distribution.

Self-Consistent Mean Field Approximation. The P follows probabilistic diffu-
sion equation: PðX1; X2; :::; Xn; tÞ where X1; X2;… is the concentration of
proteins. We expected to have a N-dimensional partial differential equation,
which is not feasible to solve since if every variable can have M values, then
the dimensionality of the system becomes MN . Following a mean field ap-
proach (7, 12, 13), we split the probability into the products of individual
ones: PðX1; X2;…; Xn; tÞ ∼Q

n
i PðXi; tÞ and solve the probability self-consis-

tently. Now the degrees of freedom are reduced to M × N. Therefore the
problem is computationally tractable from exponential to polynomials.

Although self-consistent mean field approximation reduce the dimension-
ality of system, it is still hard to solve diffusion probability directly. However
the moment equations are relatively easy to obtain. In principle, once we
know all moments, then we can construct probability distribution, but in
many cases, we cannot get all moments. We may start from moment equa-
tions and then we may simply assume specific probability distribution based
on physical argument, which means we give some specific relation between
moments (12, 13). Here we use gaussian distribution as an approximation (5,
35), and then we need two moments, mean and variance.

When diffusion coefficient D is small, the moment equations could be
approximated to (5, 35)

_xðtÞ ¼ C½xðtÞ�; [1]

_σðtÞ ¼ σðtÞATðtÞ þ AðtÞσðtÞ þ 2D½xðtÞ�: [2]

Here, x, σðtÞ, andAðtÞ are vectors and tensors, andATðtÞ is the transpose of
AðtÞ. The matrix elements of A are Aij ¼ ∂Ci ½XðtÞ�

∂xj ðtÞ . According to this equation,
we can solve xðtÞ and σðtÞ. We consider here only the diagonal element of
σðtÞ from the mean field splitting approximation. Therefore, the evolution of
distribution for one variable could be obtained using the mean and variance
by Gaussian approximation:

Pðx; tÞ ¼ 1
ffiffiffiffiffi
2π

p
σðtÞ exp−

½x − x̄ðtÞ�2
2σðtÞ : [3]

The total probability is the product of probability for each individual
variable from the mean field splitting approximation. Finally, once we have

Fig. 5. (A1), (B1), (C1) Effects of rate constants on the robustness for mono-
stable, bistable, and oscillation separately. (A2, A3) Effects of parameter k31
and J3 to RR and entropy production rate for monostable. (B2, B3) Effects of
parameter k51 and k6 to barrier height and entropy production rate for bis-
table. (C2, C3) Effects of parameter k1, k16, k10, and k151 to barrier height
and entropy production rate for oscillation. (A1), (B1), (C1) x axis: 1:k1, 2:k21,
3:k22, 4:k23, 5:k31, 6: k32, 7:k41, 8:k4, 9:J3, 10:J4, 11:k51, 12:k52, 13:k6, 14:J5,
15:k7, 16: k8, 17:J7, 18:J8, 19:Mad, 20:k9, 21:k10, 22:k11, 23:k121, 24:k122, 25:
k123, 26:Keq, 27:k131, 28:k132, 29:k14, 30:k151, 31:k152, 32:k161, 33:k162,
34:J15, 35:J16. (A2, A3), (B2, B3), (C2, C3) x axis: Δk∕k represents the percent
of parameters increased.
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the steady state probability distribution, we can construct the potential land-
scape by the relationship UðxÞ ¼ − ln PðxÞ.

Conclusions
We explored the global nature of a budding yeast cell cycle net-
work in terms of the potential landscape. To reduce the degrees of
freedom of the system from exponential to polynomial, a self-
consistent mean field approximation method was developed.
We used the experimentally inferred rate parameters to study
the network by computing RR (robustness ratio), barrier height,
coherence, entropy production rate, etc. for both a simplified
8-variable model (19) and more sophisticated 38-variable cell
cycle model (20) (details in SI Appendix).

The global shape of the underlying landscape of the oscillation
cell cycle has a closed ring valley shape attracting the system
down, and the curl flux (originated from energy input through
nutrition supply) along the ring is the driving force for oscillation.
We can see the cell cycle network can be globally characterized by
the landscape topography. The barrier height between basins of
attraction provides a quantitative measure of the stability. The
network is more stable and oscillation is more coherent when
there is less environmental fluctuations. The corresponding dis-
sipation of the network is also reduced. This might provide a way
of selecting the suitable parameter subspace of the cellular
network, guarantee the robustness, cost less dissipations, and
perform specific biological functions, which are useful for the
network design.

To explore the different stages of cell growth, we uncovered
different landscapes when cell mass increases from 0.1 to 0.8
for an 8-variable model. For small mass, the network is in mono-
stable state G1 (energy intake is insufficient to drive the system

out). When the mass increases (energy intake is sufficient), the
network starts to become bistable (m ≥ 0.4). For m ¼ 0.6 to
0.8 (energy intake is sufficient), landscape changed significantly
from bistable to oscillation. This process is like digging along a
ring, first two holes, then three holes, etc., at last becoming a
groove driven by the energy intake through nutrition supply. This
provides an evolution of landscapes along the cell cycle process.
Exploring the landscape of a cell cycle network may provide
insights and methods to study what happens from G1 to S-G2-M
in the cell cycle process.

Analysis of sensitivity provides one approach to study the
influences of specific rate constants or wirings or mutations to
robustness of the network. This helps us to identify the key struc-
tural elements or wirings that are responsible for the stability and
function of the whole network. Some results are in agreement
with experiments and others are unique insights and predictions
for future experiments to verify.

We also found that increasing the perturbation levels of rates
or wirings (details in SI Appendix) does not necessarily weaken
the cell cycle stability from wild-type. Nature might be at the
balance where the barrier height is just enough to maintain
the stable oscillation while not so high to adapt external changes.

The methods in this paper can be applied to other complicated
networks and also more realistic systems to explore the under-
lying global potential landscape and flux of biological networks.
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