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Antisense oligomer-induced manipulation of dystrophin 
pre-mRNA processing can remove exons carrying muta-
tions, or exclude exons flanking frameshifting mutations, 
and restore dystrophin expression in dystrophinopathy 
models and in Duchenne muscular dystrophy (DMD) 
patients. Splice intervention can also be used to mani
pulate the normal dystrophin pre-mRNA processing and 
ablate dystrophin expression in wild-type mice, with 
signs of pathology being induced in selected muscles 
within 4 weeks of commencing treatment. The disrup-
tion of normal dystrophin pre-mRNA processing to alter 
the reading frame can be very efficient and offers an 
alternative mechanism to RNA silencing for gene sup-
pression. In addition, it is possible to remove in-frame 
exon blocks from the DMD gene transcript and induce 
specific dystrophin isoforms that retain partial func-
tionality, without having to generate transgenic animal 
models. Specific exon removal to yield in-frame dys-
trophin transcripts will facilitate mapping of functional 
protein domains, based upon exon boundaries, and will 
be particularly relevant where there is either limited, or 
conflicting information as to the consequences of in-
frame dystrophin exon deletions on the clinical severity 
and progression of the dystrophinopathy.
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Introduction
Elucidation of many of the molecular mechanisms that are impor-
tant in disease provides opportunities for new bio-therapeutics. 
Antisense agents have proved to be valuable tools to inhibit gene 
expression by a variety of mechanisms, and to manipulate exon 
selection during primary transcript processing to overcome 
disease-causing gene lesions. We have developed antisense strate-
gies to bypass disease-causing mutations in the DMD gene that 
lead to Duchenne muscular dystrophy (DMD), a relentlessly pro-
gressive muscle wasting disorder with a predictable course and 
fatal outcome (for review see ref. 1).

Although predominantly expressed at low levels, dystrophin 
serves a crucial structural role in muscle. Mutations that prevent 
synthesis of a functional dystrophin result in muscle fibers prone 
to mechanical damage, with secondary changes in signaling and 

metabolism, causing the severe muscle wasting and pathology 
associated with DMD (for review see ref. 2). Selected exon exclu-
sion mediated by antisense oligomers can bypass premature 
termination codons3–5 or restore the reading frame around frame-
shifting mutations in the DMD gene,6–9 and can lead to functional 
protein expression and localization. Although whole-exon dystro-
phin deletions are clustered in hotspots,10 nondeletion mutations 
are spread across the entire gene.11 In-frame dystrophin deletions, 
particularly those in the central rod domain, generally result in 
the production of partially functional protein and the less severe, 
allelic disorder, Becker muscular dystrophy (BMD).12 Examination 
of the genomic organization in mildly affected BMD patients 
provides templates for a number of potentially functional dystro-
phin isoforms. However, in-frame deletions in the latter third of 
the gene are rare11 (Figure 1) and the optimal exon-skipping strat-
egies to bypass many DMD gene mutations, and the functionality 
of the induced dystrophin isoforms13 remain to be determined. 
The paucity of BMD-causing mutations in the 3′ region of the 
DMD gene probably reflects a combination of this area not being 
deletion-prone and the exon arrangement being such that most 
exon junctions occur within codons, thereby predisposing exon 
deletions or duplications to disrupting the reading frame.

Exclusion of an in-frame, multiexon block that maintains an 
open reading frame can result in a BMD-like protein,9,14–19 and 
will allow functional mapping of dystrophin domains accord-
ing to exon boundaries. This will assist in devising the optimal 
exon-skipping strategies to overcome DMD-causing mutations, 
particularly in those regions of the DMD gene that are not well 
represented in the dystrophin mutation databases. We now 
extend the application of selected exon removal to induce tran-
sient in  vivo models to allow specific dystrophin isoforms to 
be evaluated. In addition, exclusion of a frameshifting exon is 
another mechanism for efficient inhibition of gene expression 
and may be a useful technique to study the consequences of gene 
knockdown in vivo.

Results
Dystrophin exon arrangement
The dystrophin exon arrangement is shown in Figure 1, and the 
reading frame and encoded functional protein domains are indi-
cated. The primary actin-binding domain 1 occurs within the first 
90 amino acids.20 An intact actin-binding domain 1 is required for 
normal muscle function and to protect myofibers from necrosis.21 
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Genomic deletions extending downstream of exon 55 are rare,11 
and it is apparent (Figure  1) that most deletions in this region 
will disrupt the reading frame and/or impact upon important 
functional domains. Deletion analysis indicates that the broad 
cysteine-rich domain is indispensable for dystrophin func-
tion and coincides with the in vitro identified β-dystroglycan-
binding domain22 found to include EF1 and ZZ domains23 and the 
α-syntrophin binding site, coded for by exons 63–70,24 while the 
carboxy terminal is not essential for assembly of the dystrophin-
associated glycoprotein complex.25 Thirty-nine of the exons are 
in-frame, and may be deleted individually without disrupting the 
reading frame.

Induction of a dystrophin isoform missing  
exons 19 and 20
Neonatal C57BL/10ScSn mice, 3–4 days old (n = 5) were injected 
twice-weekly, with peptide-conjugated phosphorodiamidate mor-
pholino oligomers (PMOs) (20 mg/kg) targeting exon 19, and 
exons 19 and 20 simultaneously, via the intraperitoneal route. 
The animals were euthanized at 10 weeks of age and dystrophin 
expression in selected tissues was analyzed by reverse transcrip-
tion (RT)‑PCR, western blotting, and immunofluorescence. 

The  removal of exon 19 ablated dystrophin expression in dia-
phragm from treated C57BL/10ScSn mice, whereas the removal 
of exons 19 and 20 together render the diaphragm indistinguish-
able from wild-type, sham-treated mouse diaphragm (Figure 2a). 
RT-PCR analysis of dystrophin transcripts in tibialis anterior, 
diaphragm and heart from mice treated with oligomers targeting 
exon 19 and exons 19 and 20 together showed efficient splice-
switching and generation of induced shortened transcripts in stri-
ated muscle, but not in heart (Figure 2b).

Induction of a dystrophin isoform missing  
exons 52 and 53
Neonatal C57BL/10ScSn mice, 2–4 days old (n = 5) were injected 
intraperitoneal twice-weekly, with peptide-conjugated PMOs 
(20 mg/kg) targeting exon 52, exon 53, and exons 52 and 53 
simultaneously. Four weeks after commencing application of the 
oligomer targeting exon 53, severe dystrophic pathology with cen-
tral nucleation, mononuclear infiltrate, and fibrosis was evident 
in the diaphragm. Efficient exclusion of exon 53 from the tran-
script was demonstrated by RT-PCR on RNA prepared from 
diaphragm, and to a lesser degree in tibialis anterior, but not in 
heart (Figure  3b) and the absence of dystrophin in diaphragm 
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Figure 1 D ystrophin transcript structure,43 showing the reading frame and major functional protein coding domains (actin-binding 
domain; exons 2–8,20,21,44,45 central rod domain; exons 8–61, which includes nNos binding sites (exons 42–45),46 cysteine-rich domain22 
(dystroglycan-binding site; EF1 domain and ZZ domain23) exons 63–70, the α-syntrophin binding site24 and carboxy-terminal domain (exons 
70–79). In-frame exons are indicated by rectangles (red sides), whereas codons disrupted by exon junctions are indicated by arrows. 
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was confirmed by western blotting (Figure 3c). Dystrophin exon 
52 removal was less efficient, as shown by the residual dystrophin 
in Figure  3c and partial dystrophin staining of some fibers in 
Figure 3a. However, the simultaneous removal of exons 52 and 53 
maintained the dystrophin reading frame (Figure 1) and normal 
sarcolemmal dystrophin localization and muscle architecture 
(Figure 3a). RT-PCR showed the absence of a product represent-
ing the full-length transcript after dual exon skipping, consistent 
with the western blot that shows near-normal levels of dystrophin 
in diaphragm after removal of exons 52 and 53. Diaphragm muscle 
architecture and dystrophin expression was almost indistinguish-
able from that of an age-matched, untreated wild-type mouse.

Discussion
Intervention by splice switching is dependant upon several para
meters including appropriate oligomer design and chemistry, and 
efficient oligomer uptake. The use of PMOs, which have demon-
strated efficient and prolonged splice-switching action in vivo,26,27 
conjugated to cell-penetrating peptides for efficient systemic 
delivery4,28–30 allows exploitation of AO-mediated exon selection 
to study protein function in animal models. We are generating in-
frame transcripts to allow mapping of functional protein domains, 
based upon exon boundaries. Exclusion of an in-frame, multiexon 
block to maintain the reading frame permits functional assess-
ment of the dystrophin isoforms and will assist in devising exon-
skipping strategies for various DMD-causing mutations.

The genotype–phenotype data available in existing dys-
trophinopathy databases can be compromised by inaccurate 
mutation and clinical information and incomplete mutation 
type representation. Some of the apparent discrepancies to the 

reading-frame rule12 in the databases are due to the limitations of 
diagnostic procedures available at the time of testing. Mutation 
confirmation at the RNA level reveals over 99.5% concordance 
with the reading-frame rule.31 Completion of the TREAT-
NMD database32,33 will provide accurate information on defined 
mutations, permitting correlation of the genotype and clinical 
diagnosis, and assist in determining the best exon-skipping 
strategies for many dystrophin mutations. However, the paucity 
of BMD-causing mutations in some parts of the DMD gene, and 
in particular, the latter third, does not facilitate the design of 
exon-skipping strategies to bypass DMD-causing mutations in 
this region.

The first report of exon skipping in the dystrophin transcript 
described induction of abnormal splicing and exclusion of exon 
19 in a patient with an intraexonic deletion.34 Subsequently, an 
oligodeoxynucleotide targeted to exon 19 was administered to a 
patient with a deletion of exon 20 in an effort to restore the dystro-
phin reading frame.35 There are only three records of deletions of 
dystrophin exons 19 and 20 in the Leiden database (www.dmd.nl/) 
and all are described as DMD. However, one diagnosis was carried 
by Southern blotting, another by multiplex PCR and follow-up 
investigations of the third found no record of the submitted muta-
tion (K. Flanigan, personal communication).

The potential phenotype associated with the loss of exons 
19  and 20 is not known, but would be predicted to be mild, 
because these exons occur within the rod domain region. Data 
presented here confirms that the dystrophin isoform translated 
from a transcript missing exons 19 and 20 is correctly localized 
to the sarcolemma and that the muscle architecture in diaphragm 
and tibialis anterior appears normal.
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Figure 2  Analysis of dystrophin expression in selected tissues from 10-week-old C57BL/10ScSn mice injected i.p. twice-weekly with peptide-
conjugated PMOs (20 mg/kg) targeting dystrophin exons 19 and 20. (a) Immunofluorescent detection of dystrophin on diaphragm cryosections 
from mice treated with oligomers targeting exon 19 (Δ19) and exons 19 and 20 (Δ19 and 20) (upper panel), haematoxylin and eosin staining (H&E) 
(middle panel), and Picro Mallory trichrome (lower panel) staining revealing muscle architecture. Sections from sham-treated C57BL/10ScSn and 
mdx mice are included for comparison (bar = 20 µm). (b) Nested RT-PCR analysis of dystrophin transcripts in tibialis anterior (TA), diaphragm (Dia), 
and heart (H) from mice treated with oligomers targeting exons 19 and 20 (Δ19 and 20). Transcript product sizes in base pairs (bp) are indicated 
(M = 100 bp marker). i.p., intraperitoneal; PMO, phosphorodiamidate morpholino oligomer; RT, reverse transcription.
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Figure 3  Analysis of dystrophin expression in C57BL/10ScSn mice treated with PMOs (20 mg/kg) targeting dystrophin 52 and 53. 
(a) C57BL/10ScSn mice were injected twice-weekly with peptide-conjugated PMOs (combined dosage 20 mg/kg) for 4 weeks, beginning at 4 days 
of age. Dystrophin expression in unfixed cryosections (6 µm) from diaphragm of C57BL/10ScSn mice treated with oligomers targeted to exon 52 
(Δ52), exon 53 (Δ53), and exons 52 and 53 together (Δ52 and 53) was detected with Novocastra NCLDYS2 and Zenon Alexafluor 488 (upper panel). 
Sections from untreated, age-matched C57BL/10ScSn and mdx mice are included for comparison (lowest panel). Sections were also stained with 
haematoxylin and eosin (H&E) and Picro Mallory trichrome to reveal any pathogenic changes in muscle architecture (middle panels) (bar = 20 µm). 
(b) Nested RT-PCR across dystrophin exons 49–55 on RNA prepared from diaphragm (Dia), tibialis anterior (TA), and heart (H) of oligomer treated 
and untreated mice (M = 100 bp marker) and (c) western blot on extracts prepared from diaphragms of C57BL/10ScSn mice treated with oligomers 
targeted to exon 52 (Δ52), exon 53 (Δ53), and exons 52 and 53 together (Δ52 and 53). Dystrophin was visualized with NCLDYS2 (Novocastra) using 
Western Breeze (Invitrogen). Samples from diaphragms of C57BL/10ScSn (C57BL ut) and mdx mice (mdx ut) injected with vehicle only (saline), and 
a normal mouse, treated with an oligomer targeting dystrophin exon 23 (C57BL Δ23) are included for comparison (M = protein standard maker).
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The human dystrophin deletion hotspot extends from exon 44 
to exon 55. Antisense compounds to remove exon 51 are currently 
undergoing clinical trials, however, many additional compounds 
to exclude both single and multiple exons are required to address 
the majority of dystrophin mutations in this region. As in-frame 
deletions in this mutation prone region generally result in a BMD 
phenotype, we wished to demonstrate that exclusion of another 
dual exon block could result in functional dystrophin expression. 
As expected, exclusion of exons 52 and 53 induced near-normal 
levels of dystrophin expression and muscle architecture was indis-
tinguishable from that of sham-treated normal mice. This tech-
nique will allow evaluation of dystrophin isoforms induced by 
selected exon removal, and in particular, will identify the optimal 
exon-skipping strategies for those mutations that may be addressed 
by more than one exon skipping approach. Similarly, bypassing a 
mutation involving exon 51 could be achieved by removal of either 
flanking exon, as dystrophin transcripts missing exon 50 and 51, or 
51 and 52 are in-frame. Although both these dystrophin isoforms 
are associated with mild symptoms, it is possible one may be more 
functional than the other. Exons 50 and 51 encode the entire hinge 
3, whereas part of hinge 3 is retained in the isoform missing exons 
51 and 52.

It is also possible to efficiently disrupt the normal dystro-
phin mRNA reading frame by removing a frameshifting exon, 
and ablate dystrophin expression in the muscle of wild-type 
mice. Total suppression of DMD gene expression can be induced 
and maintained for several weeks in vivo, and a severe dystro-
phic pathology observed within 4 weeks of commencing treat-
ment in neonatal normal mice. PMOs have been widely used to 
study gene knockdown by translational blockade,36–38 however, 
induced nonproductive splicing provides a specific and effec-
tive alternative for the transient suppression of gene expression. 
Grounds et al.,39 have proposed a two-tiered model of DMD, and 
suggest that the absence of dystrophin has a greater impact on 
growing muscle than it does on adult muscle. Further investiga-
tion in adult mice, using this strategy, may help to elucidate the 
impact of dystrophin disruption in mature muscle. Disruption 
of gene expression through altered splicing patterns could be 
applied across any part of the DMD gene transcript or to other 
genes, and offers the ability to induce transient animal models to 
study the consequences of gene suppression and splice-switching 
in vivo. This strategy would be particularly useful in studying 
the expression of genes that result in embryonic lethality when 
suppressed.

Materials and Methods
In vivo oligomer application. C57BL/10ScSn mice were supplied by the 
Animal Resources Centre (Murdoch, Australia) and housed at the Biological 
Research Facility, University of Western Australia according to the National 
Health and Medical Research Council Code of Practice. All experiments 
performed on animals were approved by the University of Western Australia 
Animal Experimentation Committee (approval number RA4/100/702). 
C57BL/10ScSn mice were injected twice-weekly with peptide-conjugated 
PMOs4 in normal saline (combined oligomer dosage of 20 mg/kg) targeting 
dystrophin exons as indicated, beginning at 4 days of age.

Antisense oligomers. PMOs targeting exon 19; H19A(+35+65), (GCCUGA
GCUGAUCUGCUGGCAUCUUGCAGUU),40 exon 20; M20A(+23+47), 

(GUUCAGUUGUUCUGAAGCUUGUCUG) and M20A(+140+164), (AG 
UAGUUGUCAUCUGUUCCAAUUGU),41 exon 23; M23D(+7−18), (GGC 
CAAACCTCGGCTTACCTGAAAT),4,42 exon 52; M52A(+17+41), (UCCA 
AUUGGGGGCGUCUCUGUUCCA) and M52A(+42+71), (UUCAAAU 
UCUGGGCAGCAGUAAUGAGUUCU) and 53 M53A(+69+98) (CAGC 
CAUUGUGUUGAAUCCUUUAACAUUUC) and M53D(+05−25), (UU 
UUAAAGAUAUGCUUGACACUAACCUUGG),19 conjugated to peptide 
K30 were supplied by AVI Biopharma (Corvallis, OR). Oligomers were 
diluted in saline and combined into cocktails at the following ratios: exons 
19 and 20/20, 2:1:1, exon 52, 1:1, exon 53 1:1 and exons 52 and 53, 3:1, and 
applied at a total dosage of 20 mg/kg per injection.

Histology and immunofluorescence. Dystrophin expression on unfixed 
cryosections (6 µm) from muscles of C57BL/10ScSn, mice treated with 
oligomers, or sham injected, was detected with NCLDYS2 (Novocastra, 
Newcastle Upon Tyne, UK) and Zenon Alexafluor 488 (Invitrogen, 
Melbourne, Australia) according to the manufacture’s instructions.

Western blotting. Western blot extracts were prepared from tissue cryo-
sections and 7.5 µg of each sample was loaded onto 4–12% NuPAGE 
Novex BIS/Tris gradient gels (Invitrogen) and electrophoresed. The gels 
were stained and densitometry of the myosin band was used to standard-
ize loading of the samples for a second gel that was blotted as described 
previously.4,27 Dystrophin was visualized with NCLDYS2 (Novocastra) 
using the WesternBreeze Chemiluminescent anti-mouse Kit (Invitrogen). 
Images were captured on a Chemismart 3000 Gel documentation system 
(Vilber Lourmat, Marne-la-Vallee, France).

RNA extraction and RT-PCR. RNA was extracted from tissue cryosections 
using TRIzol Reagent (Invitrogen) and dystrophin transcripts were ana-
lyzed by nested RT-PCR across exons 18–268 and exons 49–55 for 35 and 
30 cycles, as described previously.19
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