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OBJECTIVE—Treatment of NOD mice with the dipeptidyl
peptidase-IV (DPP-IV) inhibitor sitagliptin preserved islet trans-
plants through a pathway involving modulation of splenic CD4�

T-cell migration. In the current study, effects of sitagliptin on
migration of additional subsets of CD4� T-cells were examined
and underlying molecular mechanisms were further defined.

RESEARCH DESIGN AND METHODS—Effects of sitagliptin
on migration of NOD mouse splenic, thymic, and lymph node
CD4� T-cells were determined. Signaling modules involved in
DPP-IV-, Sitagliptin- and incretin-mediated modulation of CD4�

T-cell migration were studied using Western blot and Rac1 and
nuclear factor-�B (NF-�B) activity assays.

RESULTS—Migration of splenic and lymph node CD4� T-cells
of diabetic NOD mice was reduced by sitagliptin treatment. In
vitro treatment of splenic, but not thymic or lymph node CD4�

T-cells, from nondiabetic NOD mice with soluble (s) DPP-IV
increased migration. Sitagliptin abolished sDPP-IV effects on
splenic CD4� T-cell migration, whereas incretins decreased
migration of lymph node, but not splenic, CD4� T-cells. Splenic
CD4� T-cells demonstrating increased in vitro migration in
response to sDPP-IV and lymph node CD4� T-cells that were
nonresponsive to incretins selectively infiltrated islets of NOD
mice, after injection. Sitagliptin decreases migration of splenic
CD4� T-cells through a pathway involving Rac1/vasodilator-
stimulated phosphoprotein, whereas its inhibitory effects on the
migration of lymph node CD4� T-cells involve incretin-activation
of the NF-�B pathway.

CONCLUSIONS—Benefits of sitagliptin treatment in diabetic
NOD mice may be mediated through selective effects on sub-
populations of T-cells that are related to autoimmunity.
Diabetes 59:1739–1750, 2010

T
he incretin hormones, glucose-dependent insuli-
notropic polypeptide (GIP) and glucagon-like
peptide (GLP)-1, potentiate glucose-stimulated
insulin secretion during a meal and exert addi-

tional actions, including promotion of �-cell survival and
proliferation (1–6). GIP and GLP-1 are primarily metabo-
lized by the endopeptidase dipeptidyl peptidase IV (DPP-

IV) (CD26), and both inhibitors of DPP-IV activity and
DPP-IV-resistant incretin analogs have been targeted as
type 2 diabetes therapeutic drugs, with the incretin mi-
metic exenatide (Byetta) and the DPP-IV inhibitors sita-
gliptin (Januvia) and saxagliptin (Onglyza) receiving U.S.
Food and Drug Administration approval. Although the
actions of DPP-IV inhibitors have been extensively studied
for treatment of type 2 diabetes, considerably less is
known about their potential in type 1 diabetes. In earlier
studies, the DPP-IV inhibitor isoleucine thiazolidide was
shown to improve glucose tolerance in type 1 diabetic
animal models by increasing �-cell survival and, possibly,
neogenesis (7,8). Additionally, sitagliptin (MK0431) was
demonstrated to prolong islet graft survival in streptozo-
tocin-induced (9) and NOD (10) mice. In the latter study,
sitagliptin protected the islet graft through a mechanism
that included modulation of splenic CD4� T-cell migration
(10). This response appeared to involve inhibition of direct
DPP-IV effects on CD4� T-cells, rather than through increas-
ing levels of active incretins by preventing their degradation.
However, the GLP-1 receptor (GLP-1R) is expressed in
lymphoid tissue, and exendin-4 treatment was shown to
increase numbers of CD4� and CD8� T-cells in lymph nodes
and reduce the number of CD4�CD25�Foxp3� regulatory
T-cells in the thymus, but not the spleen, suggesting specific
effects on different subpopulations of cells (11). One objec-
tive of the current studies was to examine responses to
sitagliptin in additional subsets of CD4� T-cell, including
those from the thymus and lymph nodes. Using a double-
labeling technique, we also examined whether in vitro treat-
ment of splenic CD4� T-cells with soluble (s) DPP-IV, or
treatment of those from the lymph node with incretins,
altered their ability to infiltrate islets of diabetic NOD mice.

Previously sDPP-IV was shown to increase migration of
splenic CD4� T-cells via a pathway involving cAMP/
protein kinase A (PKA)/Rac1 GTP binding activity, with
DPP-IV inhibition abolishing these effects (10). Active,
GTP-bound Rac1 plays an important role in regulating cell
migration through modulation of actin-rich lamellipodial
protrusions, critical components for generating the driving
force of cell movement (12). In several systems, inhibition
of Rac resulted in complete prevention of cell movement
(13–15), thus demonstrating its critical role. In the current
study, we examined whether a protein involved in actin
reorganization, vasodilator-stimulated phosphoprotein
(VASP), contributes to effects of sDPP-IV on CD4�

T-cell migration.
We demonstrate that administration of sitagliptin in vivo

reduces lymph node and splenic CD4� T-cell migration,
measured in vitro, via incretin- and nonincretin-mediated
effects, respectively, and splenic sDPP-IV-responsive CD4�
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T-cells and lymph node incretin nonresponsive CD4� T-cells
selectively infiltrated islets of diabetic NOD mice, after tail
vein injection. We also identified a downstream role for VASP
in sDPP-IV-stimulated CD4� T-cell migration and for nuclear
factor-�B (NF-�B) in GIP and GLP-1 stimulation of lymph
node CD4� T-cell migration.

RESEARCH DESIGN AND METHODS

Mice. NOD/LtJ mice (NOD, H2g7) were purchased from The Jackson Labora-
tory (Bar Harbor, ME). Mice (8–10 weeks old) were fed either a normal chow
diet (NCD) (Purina Rodent Chow 5015) or a diet containing sitagliptin (16)
(Purina Rodent Chow 5015 plus 4 g MK0431/kg; Research Diets, New
Brunswick, NJ). All animal experiments were conducted in accordance with
guidelines put forth by the University of British Columbia Committee on
Animal Care and Canadian Council on Animal Care.
CD4� T-cell isolation. T-cells were prepared from spleen, thymus, and
lymph nodes of nondiabetic female NOD mice. For studies in Figs. 1G and 2C,
lymph node cells represent a pool from multiple sites, whereas for those in
Fig. 2D–G, T-cells were isolated from inguinal, cervical, auxiliary, and
mesenteric regions, as described in (17). In all subsequent studies, mesenteric
lymph node T-cells were studied. CD4� T-cells were enriched using the
Dynabeads Mouse CD4� T-cell-positive magnetic isolation kit (Invitrogen).
Greater than 90% purity was confirmed by flow cytometry (95.1 � 2.2% of purity
for splenic, 99.7 � 0.1% for thymic, and 99.2 � 0.2% for lymph node CD4� T-cells).
(Representative fluorescence-activated cell sorter (FACS) profiles are in-
cluded in supplementary Fig. 1A–C, available in an online appendix at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-1618/DC1.)
In vitro migration assay. CD4� T-cells (1 � 106 cells) were plated on
membrane inserts (8-�m pore size) in serum-free RPMI 1640 medium. Cell
migration was assayed using Transwell chambers (Corning) in media �
purified porcine kidney DPP-IV (18) (32.1 units/mg; 100 mU/ml final concen-
tration) � sitagliptin (100 �mol/l) or human GIP (100 nmol/l) or human GLP-1
(100 nmol/l), all kindly provided by Dr. Hans-Ulrich Demuth (Probiodrug,
Halle/Saale, Germany). After 1 h, cells on the upper surface were removed
mechanically and migrated cells in the lower compartment were counted.
In vivo migration assay. Splenic and lymph node CD4� T-cells were plated
on membrane inserts of Transwell chambers and stimulated in vitro for 1 h
with sDPP-IV (100 mU/ml), GIP, or GLP-1 (100 nmol/l) (Fig. 3). With sDPP-IV
treatment, cells in the lower compartment were considered “responsive,”
whereas those in the upper chamber, not migrating, were considered “unre-
sponsive.” With incretin-stimulated cells, the responsive cells remained in the
upper chamber. Cells were differentially labeled with 1,1�-dioctadecyl-
3,3,3�,3�-tetramethylindocarbocyanine iodide (DiI) or 5,6-carboxyfluorescein
diacetate succinimidyl ester (CFSE) as indicated in Fig. 3A and D (DiI, red;
CFSE, green). Separately labeled cells were then recombined and injected
intravenously via the tail vein into diabetic recipient NOD mice (107 cells per
labeling, a total of 2 � 107 cells per mouse). Forty-eight hours after injection,
pancreata were snap frozen, cryostat sectioned, and examined by confocal
fluorescent microscopy to detect CFSE- or DiI-labeled CD4� T-cells in
infiltrated islets. To determine total levels of CD4� T-cell-associated fluores-
cent dye, pancreata were surgically removed, homogenized, and extracted in
lysis buffer. Fluorescence was measured at excitation/emission � 470 nm/520
nm for CFSE and 560 nm/600 nm for DiI [standard: CFSE or DiI extracted from
labeled CD4� T-cells].
Statistical analysis. Data are expressed as means � SEM with numbers of
individual experiments presented in figure legends. Significance was tested
using ANOVA with Newman-Keuls hoc test (P 	 0.05).

An expanded version of RESEARCH DESIGN AND METHODS is available in an
online appendix.

RESULTS

Treatment of NOD mice with sitagliptin results in
reduced splenic and lymph node CD4� T-cell migra-
tion. By 12–14 weeks of age, incidence of diabetes was
decreased in sitagliptin-treated mice compared with the
NCD group; 22.5% (9 of 40) of mice developing diabetes
in the sitagliptin group and 37.5% (15 of 40) in the NCD
group (Fig. 1A). Animals with glucose 	15 mmol/l were
grouped as “normal” and those with glucose �15 mmol/l
were grouped as “diabetic.” There were no significant
differences in blood glucose levels between diabetic

mice that had been fed NCD (25.3 � 3.4 mmol/l; n � 15)
and those receiving sitagliptin (27.6 � 1.2 mmol/l; n � 9)
(Fig. 1B). Plasma DPP-IV activities, measured 
8 h after
mice last ingested food, were as follows: 65.5 � 2.1
(nondiabetic NCD group), 47.8 � 2.9 (nondiabetic sita-
gliptin group), 157.9 � 4.7 (diabetic NCD group), and
104.7 � 4.8 mU/ml (diabetic sitagliptin group). Plasma
DPP-IV activity was significantly greater (P 	 0.05) in
diabetic compared with nondiabetic mice, and diabetic
sitagliptin mice showed significantly reduced DPP-IV
activity compared with the diabetic NCD group (Fig.
1C). Consistent with previous results (10), in vitro
migration of splenic CD4� T-cells isolated from diabetic
NCD mice was significantly increased, and sitagliptin
restored levels toward those in the normal NCD group
(Fig. 1D). In vitro migration of thymic CD4� T-cells
isolated from diabetic NCD mice did not differ signifi-
cantly among groups (Fig. 1E). By contrast, in vitro
migration of lymph node CD4� T-cells isolated from the
diabetic NCD group was significantly increased, com-
pared with the normal NCD group, and sitagliptin treat-
ment significantly reduced levels toward normal (Fig.
1F).

In vitro studies were next performed on CD4� T-cells
isolated from nondiabetic female NOD mice receiving
NCD to determine whether elevated circulating incre-
tins or DPP-IV were responsible for the altered migra-
tion. As previously reported (10), treatment of splenic
CD4� T-cells with sDPP-IV increased T-cell migration,
compared with control (Fig. 2A), whereas there were no
significant effects of GIP or GLP-1 � sitagliptin on
migration of splenic CD4� T-cells. There were also no
significant effects of sDPP-IV, GIP, or GLP-1 � sitaglip-
tin on migration of thymic CD4� T-cells (Fig. 2B).
However, GIP and GLP-1 significantly reduced migra-
tion of mixed inguinal, cervical, auxiliary, and mesen-
teric lymph node CD4� T-cells (Fig. 2C). Concentration-
dependent responses to sDPP-IV, GIP, or GLP-1 were
observed in splenic or lymph node CD4� T-cells (sup-
plementary Fig. 2, available in an online appendix).
Among the different sources of lymph node-derived
CD4� T-cells, only those harvested from the mesentery
demonstrated reduced migration in response to GIP and
GLP-1 (Fig. 2D). CD4� T-cells from inguinal, cervical,
and auxiliary lymph nodes showed no significant re-
sponses to treatment with GIP, GLP-1, or DPP-IV (Fig.
2E–G). These results strongly suggest that direct inhibi-
tion of DPP-IV by sitagliptin and resulting increases in
active forms of GIP and GLP-1 impact on different
subsets of CD4� T-cells.
Differential in vivo migration patterns of splenic and
lymph node CD4� T-cells in response to sDPP-IV and
incretins. We developed an imaging method to deter-
mine whether sDPP-IV and incretin treatment of subsets
of CD4� T-cells has an impact on their in vivo pancre-
atic homing ability. As detailed in RESEARCH DESIGN AND

METHODS, sDPP-IV-responsive CD4� T-cells migrating
into the lower compartment of Transwell chambers
after sDPP-IV treatment were labeled with DiI, and
nonresponsive splenic CD4� T-cells remaining on the
upper surface were labeled with CFSE (Fig. 3A). There
were no significant differences in efficiencies of labeling
splenic CD4� T-cells with DiI or CFSE (96.7 � 1.9% for
DiI and 98.4 � 0.9% for CFSE; representative FACS
profiles in Fig. 3B). After injection of the mixed DiI- and
CFSE-labeled splenic CD4� T-cells into diabetic NOD
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mice, sDPP-IV-responsive splenic CD4� T-cells (red)
were detected in the infiltrated islets of recipient mice
(Fig. 3C; additional images in supplementary Fig. 3A–D,
available in an online appendix). Staining for sDPP-IV-
nonresponsive splenic CD4� T-cells (green) was only
rarely detected.

Unfortunately, fractions of administered lymphocytes
detected in the islets after tail vein administration were
small and diffusely distributed, and it was not possible to
perform cell quantification. However, quantity of dye
extracted correlated with staining observed in tissue sec-
tions (Fig. 3C). To confirm this finding and evaluate the
effects of sitagliptin on in vivo migration, a further exper-
iment was performed, as outlined in Fig. 3D. Mixtures of
sDPP-IV-responsive DiI-labeled and sDPP-IV-unresponsive
CFSE-labeled splenic CD4� T-cells were injected into
diabetic NOD (group I) or sitagliptin-treated diabetic NOD
mice (group II). In a third group, untreated splenic CD4�

T-cells were randomly divided into two groups, respec-
tively, labeled with CFSE and DiI, and the mixed DiI- and
CFSE-labeled splenic CD4� T-cells were injected into
sitagliptin-treated diabetic NOD mice (group III). The
majority of dye extracted from pancreata of group I mice
correlated with staining previously observed in tissue
sections (Fig. 3C). Intriguingly, less DiI was extracted
from sitagliptin-treated diabetic NOD mice (group II)
compared with group I, reflecting reduced CD4� cell

uptake. With CD4� T-cells not receiving in vitro sDPP-IV
treatment, similar levels of both DiI and CFSE were
extracted from diabetic NOD mice (group III), but much
less DiI was extracted compared with groups I or II, in
agreement with sDPP-IV exerting promigratory effects on
CD4� T-cells. In a similar experiment on lymph node
CD4� T-cells treated with incretins, responsive cells, re-
maining on the upper surface of the Transwell chambers,
were labeled with DiI, and nonresponsive cells, migrating
into the lower compartment, were labeled with CFSE (Fig.
3E). No significant differences in labeling efficiency of
lymph node CD4� T-cells between DiI and CFSE were
observed (98.3 � 1.2% for DiI and 98.4 � 1.1% for CFSE;
representative FACS profiles are shown in Fig. 3F). After
injection of the mixed DiI- and CFSE-labeled lymph node
CD4� T-cells into diabetic NOD mice, incretin-nonrespon-
sive lymph node CD4� T-cells were detected in the infil-
trated islets of recipient mice (Fig. 3G and H; additional
images in supplementary Fig. 3E–H). Staining for incretin-
responsive lymph node CD4� T-cells (red) was rarely
seen. Taken together, these results suggest that subpopu-
lations of splenic CD4� T-cells responding to sDPP-IV and
of lymph node CD4� T-cells that are unresponsive to
incretins, exhibited pancreatic islet homing. A component
of the reduction in severity of insulitis observed in mice
treated with sitagliptin was therefore probably due to
reduced migration of these populations of CD4� T-cells
into the pancreas.
Mechanisms underlying sDPP-IV-mediated increases
in splenic CD4� T-cell migration. Because sDPP-IV
activated a cAMP/PKA/Rac1 pathway in splenic CD4�

T-cells (10) and Rac1 is involved in regulation of the actin
cytoskeleton (19), potential roles for adaptor proteins
were investigated. VASP is a PKA substrate that links
upstream signaling pathways to actin reorganization and
cell movement (20). As shown in Fig. 4A and B, sDPP-IV
activated Rac1 in splenic CD4� T-cells and increased
phosphorylation of VASP on serine 157, a critical site for
its activation by PKA. DPP-IV inhibitor treatment attenu-
ated this response. There were, however, no significant
effects of DPP-IV on phosphorylation of VASP serine 239,
a preferred site for cGMP-dependent protein kinase. Major
bands for phosphorylated forms of other proteins involved
in cytoskeletal organization were also unchanged by
sDPP-IV treatment, including Ezrin (Thr567)/Radixin
(Thr564)/Moesin (Thr558), and cofilin (Ser3) (Fig. 4C and
D). There were also no significant effects of DPP-IV, GIP,
or GLP-1 � sitagliptin on Rac1 activity or phosphorylation
of these signaling proteins in thymic (supplementary Fig.
4A–D, available in an online appendix) or mesenteric
lymph node CD4� T-cells (supplementary Fig. 4E–H),
indicating differences in upstream activation systems or
downstream signaling modules in these subsets of T-cells.
As shown in Fig. 5A and B, a Rac1 inhibitor (NSC23766;
100 �mol/l) (21) abolished the stimulatory effects of
sDPP-IV on splenic CD4� T-cell migration and the phos-
phorylation of VASP (Ser157). Forskolin, a direct activator
of adenylyl cyclase, mimicked the effect of DPP-IV on
VASP, and its action was greatly reduced by treatment
with the PKA inhibitor, H-89 (Fig. 5C). There were no
significant effects of treatment with DPP-IV, forskolin or
the Rac1 inhibitor on phosphorylation of Ezrin (Thr567)/
Radixin (Thr564)/Moesin (Thr558), or cofilin (Ser3) (sup-
plementary Fig. 5A–D, available in an online appendix).
These results therefore suggest that sDPP-IV directly
regulates the migration of splenic CD4� lymphocytes via
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FIG. 1. Sitagliptin modulates the migration of splenic and lymph
node CD4� T-cells. Female NOD mice (8–10 weeks old) were fed a
NCD or sitagliptin diet for 1 month, before isolation of lympho-
cytes. A–C: Effects of sitagliptin on incidence of diabetes (A),
blood glucose levels (B), and plasma DPP-IV activity (C). D–F:
Effect of sitagliptin on the migration of CD4� T-cells. CD4� T-cells
were isolated from spleen (D), thymus (E), and lymph nodes (F)
from the NCD and sitagliptin groups. The migration of CD4�

T-cells was determined using Transwell chamber (Corning) as
described in RESEARCH DESIGN AND METHODS. All data are means �
SEM, and significance was tested using ANOVA with a Newman-
Keuls post hoc test. **P < 0.05 vs. normal NCD group; ##P < 0.05
vs. diabetic NCD group. N.S., not significant.
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activation of cAMP/PKA/Rac1 and VASP phosphorylation,
whereas an alternative pathway is involved in lymph node
responses.
Mechanisms underlying incretin-mediated decreases
in lymph node CD4� T-cell migration. The involvement
of immune responses in the development of type 1

diabetes (22), and the central role played by the NF-�B/
Rel transcription factor family in regulating the matura-
tion, survival, and activation of T-cells (23,24), led us to
consider a possible role for NF-�B in incretin-mediated
lymph node CD4� T-cell migration. Treatment with GIP
or GLP-1 increased phosphorylation of inhibitor of

FIG. 3. In vivo migration of splenic and lymph node CD4� T-cells
after in vitro treatment with sDPP-IV or incretins. A: Experimental
designs for treatment of splenic CD4� T-cells with sDPP-IV and
administration to diabetic NOD mice. Splenic CD4� T-cells (A)
were stimulated for 1 h with sDPP-IV (100 mU/ml). Cells that
migrated into the lower compartment were labeled with DiI, and
the remaining cells on the upper surface were labeled with CFSE.
For studies on incretins, lymph node (LN) CD4� T-cells (E) were
stimulated for 1 h with GIP and GLP-1 (100 nmol/l). Cells that
migrated into the lower compartment were labeled with CFSE, and
those remaining on the upper surface were labeled with DiI. In both
cases, labeled cells were combined and intravenously injected into
recipient mice, and pancreata were examined by fluorescent mi-
croscopy to detect DiI- or CFSE-labeled CD4� T-cells in infiltrated
islets. B and F: Similar labeling efficiencies of splenic (B) and
lymph nodes (F) CD4� T-cells with DiI or CFSE. Splenic (B) and
lymph node (F) CD4� T-cells were labeled with DiI or CFSE. The
labeling was confirmed by fluorescent microscopy, and labeling
efficiency was determined by flow cytometry. Shown are represen-
tative profiles from n � 3. Scale bar: 10 �m. C and G: Islet
localization and quantification of labeled splenic (C) and lymph
node (G) CD4� T-cells after sDPP-IV or incretin stimulation.
splenicUp and splenicLow (C) and LNUp and LNLow (G) represent
splenic or lymph node lymphocytes from upper and lower cham-
bers, respectively. Mixtures of DiI- and CFSE- labeled splenic (C)
and lymph node (G) CD4� T-cells were intravenously injected into
diabetic recipient mice, and pancreatic homing of labeled lympho-
cytes was determined by confocal fluorescent microscopy. Number

of recipient mice: n � 4/group. Infiltrated islets are represented with an i. Scale bar: 50 �m. Upper right: Quantification of recovered fluorescent
label from the pancreata. Dye was extracted from pancreata and fluorescence was measured as described in RESEARCH DESIGN AND METHODS. D:
Experimental designs for treatment of splenic CD4� T-cells with sDPP-IV and administration into diabetic NOD mice � treatment with sitagliptin.
The experimental details are as in A, apart from treatment of mice with sitagliptin in groups II and II. Number of recipient mice: n � 6–10/group.
Significance was tested using ANOVA with a Newman-Keuls post hoc test. **P < 0.05 vs. group I, DiI. A high-quality digital representation of this
figure is available in the online issue.
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nuclear factor-�B (I�B) (Ser32), NF-�B p65 (Ser536),
and I�B kinase complex (IKK) �/� (Ser176/180) in
lymph node CD4� T-cells, whereas neither DPP-IV nor
sitagliptin was effective (Fig. 6A–C). Additionally, there
were no significant effects of GIP, GLP-1, or sitagliptin
on phosphorylation of I�B (Ser32), NF-�B p65 (Ser536),
or IKK �/� (Ser176/180) in splenic or thymic CD4�

T-cells (supplementary Fig. 6A–F, available in an online
appendix).

Phosphorylation of lymphocyte I�B, NF-�B p65, and IKK
�/� results in release of the NF-�B complex, its cleavage,
and nuclear translocation of the active p50 transcription
factor. Both GIP and GLP-1 increased the nuclear localiza-
tion and DNA binding of NF-�B p50 in lymph node CD4�

T-cells (Fig. 7A and B). The functional significance of
incretin-mediated activation of NF-�B signaling modules
for regulating lymph node CD4� T-cell migration was next
determined. Treatment of lymph node CD4� T-cells with
GIP or GLP-1 resulted in 
25% reduction in cell migration,
and decreased cell migration, induced by the incretins,
was restored by NF-�B inhibitor treatment (Fig. 7C).
Together, these results strongly suggest that incretins
activate a pathway involving NF-�B signaling modules,
which is involved in reduced lymph node CD4� T-cell
migration.

DISCUSSION

We demonstrated previously that survival of islets trans-
planted in NOD mice was preserved by treatment with
sitagliptin and that modulation of splenic CD4� T-cell
migration was involved (10). The objectives of the current
study were to determine whether additional subsets of
CD4� T-cells contributed to the beneficial effects of sita-
gliptin treatment and to define further underlying molec-
ular mechanisms responsible.

Lymphocytes are highly mobile cells that travel through-
out the body in response to various stimuli. Naive lympho-
cytes recirculate through secondary lymphoid organs
where priming occurs, followed by homing to effecter
sites. Active migration of antigen-specific lymphocytes
increases their chances of encountering specific antigens,
and their migration involves a multitude of proteins re-
sponsible for formation and continual reorganization of
the actin cytoskeleton (25). A number of actin-binding
proteins have been identified and classified according to
their effects on actin filaments. Cofilin promotes actin
filament regeneration by severing preexisting filaments,
and its severing activity is inhibited by phosphorylation
(Ser3) (26,27). Ezrin, Radixin, and Moesin act as signal
transducers between the plasma membrane and actin
cytoskeleton and are involved in cell adhesion, membrane
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ruffling, and microvilli formation (28). VASP is an adaptor
protein linking the cytoskeleton with signal transduction
pathways. Three phosphorylation sites in VASP have been
identified: Ser239 and Thr278 are phosphorylated by PKA
and cGMP-dependent protein kinase (29), whereas Ser157

is phosphorylated by PKA and PKC (22,30,31). VASP
promotes actin polymerization by restricting actin filament
capping, with PKA phosphorylation inhibiting this anticap-
ping activity, resulting in dynamic changes in lamellipodia
and formation of filopodial protrusions (32). In the present
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study, sDPP-IV was found to increase phosphorylation of
VASP on Ser157, in splenic CD4� T-cells, a critical site for
activation (Fig. 4B). However, there were no significant
effects of sDPP-IV on phosphorylation levels of VASP
(Ser157) in thymic (supplementary Fig. 4B) or lymph node
CD4� T-cells (supplementary Fig. 4F), suggesting that
DPP-IV selectively regulates migration of splenic CD4�

lymphocytes via direct actions involving VASP Ser157
phosphorylation.

Strong evidence for involvement of cAMP/PKA/Rac1
activation in DPP-IV-mediated splenic CD4� T-cell migra-
tion was previously obtained (10), although the protein
activation sequence was unclear. In studies on neutro-
phils, PKA has been shown to increase Rac1 activity (33),
whereas Rac1 activated PKA in endothelial cells (34).
DPP-IV-mediated phosphorylation of VASP was ablated by
treatment with inhibitors of both Rac1 (Fig. 5B) and PKA
(H89; Fig. 5C), suggesting that VASP is downstream of
both proteins, and the studies with forskolin support this
proposal. No evidence of altered phosphorylation of other
actin-binding proteins was obtained (supplementary Figs.
4D and 5A). One pathway by which DPP-IV interaction
with lymphocytes could promote migration is, therefore,
through cAMP-mediated activation of PKA, phosphoryla-
tion of Rac GDP/GTP exchange factor(s), such as �-PIX
(34), and activation of Rac1. However, although Rac1 may
lie downstream of PKA, serine 157 in VASP is within a PKA
consensus sequence, suggesting that it could be directly
phosphorylated. We therefore prefer an alternative sce-
nario, in which lymphocyte binding of DPP-IV results in
activation of a small pool of Rac1 that binds to and
activates PKA. Activated PKA may then phosphorylate Rac
GDP/GTP exchange factor(s), thus further activating Rac1

and PKA, resulting in VASP (Ser157) phosphorylation by
PKA. Such changes in activation and spatial distribution of
PKA during regulation of cell migration are critical com-
ponents of its action (35). As mentioned, an additional
possible pathway for VASP activation is through PKG (36),
although details of the pathways involved remain to be
defined. The mechanisms underlying sDPP-IV interaction
with upstream signaling pathways are also uncertain.
Lymphocytes contain significant amounts of membrane-
bound DPP-IV in a dimeric form (37) that is believed to
promote cell-cell interaction. It is therefore possible that
sDPP-IV disrupts this interaction, with resulting soluble/
membrane-bound tetrameric forms inducing conforma-
tional changes that result in activation of intracellular
signaling modules. It is additionally conceivable that inter-
action with the phosphatase CD45 or fibronectin are
involved. Alternatively, because sitagliptin decreases CD4�

T-cell migration, DPP-IV activation of a cytokine-mediated
promigratory pathway may result in autocrine/paracrine-
mediated responses.

In addition to its incretin action, GLP-1 has been shown
to play an immunodulatory role in rodents (11,38,39), and
expression of the GLP-1R was demonstrated in immune
cells from spleen, thymus, and lymph nodes of both
normoglycemic and diabetic NOD mice (11). However,
although activation of GLP-1 receptors was shown to
modulate the number of thymic CD4�CD25�Foxp3� reg-
ulatory T-cells (11), we observed no effect of either GIP or
GLP-1 on splenic or thymic CD4� T-cell migration in vitro
(Fig. 2A and B). The NOD mouse thymic CD4� T-cell
population consisted of 82.9 � 1.2% CD4�CD8� double-
positive and 16.8 � 1.1% CD4�CD8� single-positive cells
(representative FACS profiles are shown in supplementary

→

p-IκBα

p-NFκB p65

NFκB p65

p-IKKα/β

IKKα

IKKβ

IκBα

(Ser 32) →

β-actin

β-actin

β-actin

→

A 

B 

→

(Ser 536) →

→

GIP (100 nM):

GLP-1 (100 nM):

DPP-IV (100 mU/ml): +_
__

_ _
+

+

__
_ _

_
_

+

_

Sitagliptin (100 µM):

GLP-1 (100 nM):

DPP-IV (100 mU/ml):

Sitagliptin (100 µM):

_

_

_ + _ + _ +

_ _

+
+

GIP (100 nM):

+_
__

_ _
+

+

__
_ _

_
_

+

_

_

_

_ + _ + _ +

_ _

+
+

0
1
2
3
4
5
6
7
8

R
es

p
o

n
se

(f
o

ld
 d

if
fe

re
n

ce
 v

s 
C

o
n

tr
o

l)

→

→

→

(Ser 176/180) →
C 

GIP (100 nM):

+_
__

_ _
+

+

__
_ _

_
_

+

_

_

_

_ + _ + _ +

_ _

+
+

D

Control DPP-IV DPP-IV
+Sitagliptin

GIP GIP
+Sitagliptin

GLP-1 GLP-1
+Sitagliptin

****
**

****
**

**
**

**
****

**
******

**
**** ****

GLP-1 (100 nM):

DPP-IV (100 mU/ml):

Sitagliptin (100 µM):

p-IκBα (Ser32)

p-IKKα/β (Ser176/180)
IKKα
IKKβ

p-NFκB p65 (Ser536)
IκBα

NFκB p65

FIG. 6. Signaling modules potentially involved in the effect of sitagliptin on lymph node CD4� T-cells. Total cellular extracts were isolated from
lymph nodes CD4� T-cells of nondiabetic female NOD mice placed on NCD and treated as described in the legend to Fig. 3. Western blot analyses
were performed with antibodies against phospho (p)-I�B (Ser32), I�B (A), phospho-NF-�B p65 (Ser536), NF-�B p65 (B), phospho-IKK�/�
(Ser176/180), IKK�, IKK� (C), and �-actin. D: Densitometric analysis of A–C. All data represent means � SEM, and significance was tested using
ANOVA with a Newman-Keuls post hoc test. **P < 0.05 vs. control. Western blots are representative of n � 3.

SITAGLIPTIN INHIBITION OF DPP-IV IN NOD MICE

1746 DIABETES, VOL. 59, JULY 2010 diabetes.diabetesjournals.org



0

2

4

6

8

10

R
es

po
ns

e

0.00

0.25

0.50

0.75

1.00

1.25

D
N

A
 B

in
d

in
g

 A
ct

iv
it

y

o
f 

N
F
κB

 p
50

 (
O

D
 4

50
/6

50
)B

Control
+Sitagliptin

GIP GIP
+Sitagliptin +Sitagliptin

competitor

competitor+

_** ** **
**

A

Control DPP-IV DPP-IV
+Sitagliptin

GIP GIP
+Sitagliptin

GLP-1 GLP-1
+Sitagliptin

NFκB p50 →→

Histone H3 →→

Control
+Sitagliptin

GIP GIP
+Sitagliptin +Sitagliptin

** ** ** **

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Control DPP-IV DPP-IV
+Sitagliptin

GIP GIP
+Sitagliptin

GLP-1 Control
+Sitagliptin

GIP GIP
+Sitagliptin +Sitagliptin

0.0

0.1

0.2

0.3

0.4

0.5

C

M
ig

ra
te

d
 C

D
4+

T
 c

el
l (

x 
10

6 )

0.6

**
**

** **

GLP-1
+Sitagliptin

(f
ol

d 
di

ff
er

en
ce

 v
s 

C
on

tr
ol

)

DPP-IV DPP-IV GLP-1 GLP-1

DPP-IV DPP-IV GLP-1 GLP-1

NFκB inhibitor

DPP-IV DPP-IV GLP-1 GLP-1

FIG. 7. Involvement of NF-�B activation in the effect of incretins on lymph node CD4� T-cells. A: Nuclear localization of NF-�B p50. Lymph node
CD4� T-cells were stimulated for 1 h with sDPP-IV (100 mU/ml), GIP, or GLP-1 (100 nmol/l) in the presence or absence of Sitagliptin (100 �mol/l),
nuclear extracts were prepared, and Western blot analyses were performed with antibodies against NF-�B p50 and histone H3. Western blots were
quantified using densitometric analysis and are representative of n � 3. B: NF-�B p50 transcription factor activation. Nuclear extracts were
isolated from lymph node CD4� T-cells and treated as described above. DNA binding activity of NF-�B p50 transcription factor was determined
as described in RESEARCH DESIGN AND METHODS. C: Effect of treatment with NF-�B inhibitor on incretin-mediated lymph node CD4� T-cell migration.
Lymph node CD4� T-cells were stimulated for 1 h with sDPP-IV (100 mU/ml), GIP, or GLP-1 (100 nmol/l) in the presence or absence of sitagliptin
(100 �mol/l) and/or NF-�B inhibitor (7.5 �mol/l). The migration of lymph node CD4� T-cells was determined using Transwell chambers as
described in RESEARCH DESIGN AND METHODS. All data represent means � SEM, and significance was tested using ANOVA with a Newman-Keuls post
hoc test. **P < 0.05 vs. control.

S.-J. KIM, C. NIAN, AND C.H.S. MCINTOSH

diabetes.diabetesjournals.org DIABETES, VOL. 59, JULY 2010 1747



Fig. 1C). Therefore, lack of effect of DPP-IV or incretins on
thymic CD4� T-cell migration in vitro may be due to the
presence of a high percentage of immature CD4�CD8�

cells. Indeed, differential GLP-1R expression in sorted
immune cell populations and downregulation of GLP-1R in
NOD mice immature thymic CD4�CD8� cells were re-
cently reported (40).

Nevertheless, GIP and GLP-1 significantly reduced mi-
gration of lymph node CD4� T-cells (Fig. 2C), and this was
associated with activation of the NF-�B signaling pathway,
through phosphorylation of I�B (Ser32), NF-�B p65
(Ser536), and IKK �/� (Ser176/180), thus increasing DNA
binding activity of active NF�B p50 (Fig. 7B). This path-
way has previously been implicated in prosurvival effects
of GLP-1 in INS832/13 �-cells (41). The finding that de-
creased CD4� T-cell migration induced by GIP and GLP-1
was partially restored by an NF-�B inhibitor (Fig. 7C)
provided additional support for NF�B involvement.

Activation of NF-�B can modulate the expression of a
variety of genes associated with the immune response,
inflammation, cellular stress, cell adhesion, and apoptosis.
Notably, a group of genes related to cell migration possess
consensus NF-�B binding sites in their promoter regions,
including CD44, DC-SIGN, ELAM-1, endoglin, ICAM-1,
P-selectin, tenascin-C, and VCAM-1 (GenBank and MatIn-
spector databases). However, it is unknown whether any
of these gene products are involved in incretin-mediated
reduction in T-cell migration. The few functional studies
performed on NF-�B signaling and cell migration have
produced conflicting results, with NF-�B promoting breast
cancer cell migration (42), whereas high glucose-induced
activation of NF-�B inhibited endothelial cell migration
(43). Such disparities may be due to the cell type studied,
the intensity and duration of the signal (transient vs.
long-lasting), and whether p50/p50 homodimers (trans-
repression) or p50/p65 heterodimers (trans-activation) are
involved.

We previously found that the majority of islets in
sections from untreated diabetic NOD mice demonstrated
severe insulitis, whereas islets from sitagliptin-treated
mice exhibited more intact structure (10). Islet �-cell area
was also significantly increased by inhibitor treatment
(10). Additionally, in both the earlier and the current
study, numbers of mice in the treated group developing
diabetes were decreased (10) (Fig. 1A). However, sitaglip-
tin treatment did not significantly reduce the level of
hyperglycemia in the diabetic mice. A number of factors
may be responsible for this lack of response. The in vitro
treatment studies showed that overall effects of sDPP-IV
or incretins on migration of splenic and lymph node CD4�

T-cells, respectively, were fairly modest (Fig. 2), probably
reflecting changes in responsiveness of only a small frac-
tion of the total CD4� T-cell population. This conclusion is
supported by the labeling studies, which showed that
subpopulations of both sDPP-IV-responsive splenic and
incretin-unresponsive lymph node CD4� T-cells selectively
infiltrated the islets (Fig. 3), with dye extraction showing a
similar distribution. Of particular interest is the observa-
tion that prior treatment of diabetic NOD mice with
sitagliptin resulted in lower pancreatic DiI levels, reflect-
ing reduced CD4� T-cell uptake. Therefore, although T-
cells resident in islets may exhibit low responsiveness to
sitagliptin, earlier treatment with DPP-IV inhibitor and/or
combination therapy, for example, with a proton pump
inhibitor (44), may reduce lymphocyte infiltration, thus
attenuating progression to diabetes. DPP-IV also exhibits a

number of other actions on immune function (45,46), and
factors other than migration may be affected by DPP-IV
inhibition, including expression of homing receptors and
chemokine or cytokine production by CD4� T-cells or
antigen-presenting cells. Earlier sitagliptin treatment may
also have an impact on these responses.

In addition to the beneficial effects of DPP-IV inhibitor
treatment in the NOD mouse, a number of studies have
demonstrated their potential in other immune-related dis-
orders. Lymphocyte CD26 expression is increased by
cytokines (47), and several autoimmune diseases have
been linked to altered DPP-IV expression/function, includ-
ing rheumatoid arthritis, multiple sclerosis, and autoim-
mune encephalomyelitis (46,48). In rodent studies, DPP-IV
inhibitor treatment has been found to suppress arthritis
(49) and to abrogate heart transplant rejection and prolong
lung allograft function (50). Perhaps surprisingly, studies
on DPP-IV mutant Fisher 344 rats and DPP-IV knockout
mice have not revealed major defects in immune function
(51,52), and neither chronic treatment of rodents with
highly selective DPP-IV inhibitors nor their administration
to humans with type 2 diabetes (53) have shown deleteri-
ous effects on immune function. It is therefore possible
that benefits of DPP-IV inhibitor treatment are mediated
via effects on subpopulations of T-cells related to
autoimmunity.

In conclusion, sitagliptin decreased migration of a sub-
population of splenic CD4� T-cells through a pathway
involving Rac1/VASP, whereas its inhibitory effects on the
migration of lymph node CD4� T-cells involves incretin-
mediated activation of the NF-�B pathway. In the setting
of type 1 diabetes, clarification of the mechanisms under-
lying the effects of both DPP-IV inhibitor- and incretin-
mediated reductions in splenic and lymph node CD4�

T-cell migration, respectively, could provide additional
targets for therapeutic intervention.
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