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† Background Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in
acid soils. The mechanism of Al-induced inhibition of root elongation is still not well understood, and it is a
matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic.
† Scope The present review focuses on the role of the apoplast in Al toxicity and resistance, summarizing evi-
dence from our own experimental work and other evidence published since 1995.
† Conclusions The binding of Al in the cell wall particularly to the pectic matrix and to the apoplastic face of the
plasma membrane in the most Al-sensitive root zone of the root apex thus impairing apoplastic and symplastic
cell functions is a major factor leading to Al-induced inhibition of root elongation. Although symplastic lesions
of Al toxicity cannot be excluded, the protection of the root apoplast appears to be a prerequisite for Al resistance
in both Al-tolerant and Al-accumulating plant species. In many plant species the release of organic acid anions
complexing Al, thus protecting the root apoplast from Al binding, is a most important Al resistance mechanism.
However, there is increasing physiological, biochemical and, most recently also, molecular evidence showing that
the modification of the binding properties of the root apoplast contributes to Al resistance. A further in-depth
characterization of the Al-induced apoplastic reaction in the most Al-sensitive zone of the root apex is urgently
required, particularly to understand the Al resistance of the most Al-resistant plant species.
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INTRODUCTION

It has been estimated that soils of 30 % of the ice-free land area
of the world are acid, where crop productivity is limited by a
range of growth-limiting factors related to soil acidity (von
Uexküll and Mutert, 1995). Aluminium (Al) toxicity is the
most important soil constraint for plant growth and develop-
ment in acid soils. It is now well understood that the toxicity
of Al in aquatic and terrestrial systems is not correlated with
total Al concentrations (7 % of mineral soils), but is a function
of the concentration of the biologically active fraction in sol-
ution (Lewis, 1989). Among the soluble Al species in the
soil solution, the inorganic monomeric forms, particularly
Al3+, are considered the most important (Kinraide et al.,
1992). Organic and inorganic Al complexes are regarded as
not phytotoxic, or considerably less so (Kerven et al., 1989).

As early as 1918, Al toxicity was implicated as the main
cause of the inhibition of root growth of barley (Hordeum
vulgare) and rye (Secale cereale) in an acid soil (Hartwell
and Pember, 1918). Aluminium-induced inhibition of root
elongation can be measured within hours or less after the
roots have been exposed to excess Al supply (Llugany et al.,
1995; Blamey et al., 2004, 2005). Ryan et al. (1993) were
the first who unequivocally demonstrated the role of the root
apex in the perception of Al toxicity in maize (Zea mays).
They also clearly refuted the hypothesis put forward by
Bennet et al. (1985) that the root cap plays a decisive role
in the expression of Al-induced inhibition of root elongation.

In a more refined methodological approach, Sivaguru and
Horst (1998) presented evidence that in the Al-sensitive
maize cultivar ‘Lixis’ the distal part of the transition zone
(DTZ, 1–2 mm) is the most Al-sensitive apical root zone in
maize. Application of Al only to the DTZ reduced cell
elongation in the elongation zone (EZ) to the same extent as
application to the entire 10 mm root apex. However, appli-
cation of Al only to the EZ did not inhibit root elongation,
needing signal transduction as proposed by Bennet et al.
(1985) between the DTZ and the EZ (Kollmeier et al.,
2000). These authors also provided evidence that basipetal
auxin transport might be implicated in the signalling. The
role of ethylene-mediated inhibition of polar auxin transport
in Al-induced inhibition of root elongation has recently been
substantiated in Arabidopsis (Sun et al., 2010). The impor-
tance of the TZ (1–2 mm) as a main target of Al was also con-
firmed in common bean (Phaseolus vulgaris) by Rangel et al.
(2007). However, in contrast to maize, in common bean Al
also reduced root elongation when applied only to the EZ,
the zone initially impacted by Al in a digital microscopy
study with mungbean (Vigna radiata) (Blamey et al., 2004).

Treatment with Al as well as with other metals causes trans-
verse ruptures to develop in sub-apical regions of the root
through the breaking and separation of the rhizodermis and
outer cortical layers from the inner cortical cell layers
(Blamey et al., 2004; Kopittke et al., 2008). It was proposed
that these ruptures relate to the binding of Al to the cell wall
thus increasing cell wall rigidity and decreasing elasticity.
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The differences between metals could be related to the strength
with which they bind to the cell wall (Kopittke et al., 2009) in
agreement with Kinraide (2009). However, the relationship
between these ruptures and inhibition of root elongation is
not well understood to date (Ryan et al., 1993; Kopittke
et al., 2008).

Another sensitive indicator of Al injury in roots is the induc-
tion of callose synthesis (Wissemeier et al., 1987; Staß and
Horst, 2009), particularly in the root apex (Wissemeier and
Horst 1995; Sivaguru et al., 2006). Al-induced callose for-
mation is an indicator of Al sensitivity and a reliable parameter
for the classification of genotypes of different plant species in
terms of Al resistance (Wissenmeier et al., 1992; Horst et al.,
1997). Collet and Horst (2001) developed a rapid non-
destructive screening procedure for maize cultivars for adap-
tation to acid soils with high Al supply, and Eticha et al.
(2005c) successfully used Al-induced callose formation to
study inheritance of Al resistance and adaptation to an acid,
Al-toxic soil, using a 13 × 13 diallel of maize cultivars of
largely different origin.

Much progress has been made during recent years in the
physiological and molecular understanding of Al exclusion
(for reviews, see Matsumoto 2000; Kochian et al., 2004;
Zheng and Yang, 2005; Delhaize et al., 2007; Ma, 2007;
Panda and Matsumoto, 2007). In agreement with Ryan and
Delhaize (2010), in this review we use the expression ‘Al
resistance’ consistently as a plant property which allows a
plant to grow with little or no injury with elevated Al supplies.
The plant mechanism conferring resistance may be exclusion
from binding to and uptake by the roots (Al exclusion) or Al
tolerance (Al binding and uptake without Al injury). In spite
of the progress made, the Al exclusion mechanisms of some
of the most Al-resistant plant species such as rice (Oryza
sativa) (Yang et al., 2008; Huang et al., 2009), rye (Shi
et al., 2009) and signalgrass (Brachiaria decumbens) (Wenzl
et al., 2001; Watanabe et al., 2006) are still far from being
understood. Furthermore, the primary target site of Al phyto-
toxicity leading to inhibition of root elongation is still not
well defined. Indeed, the relative importance of symplastic
vs. apoplastic lesions of Al toxicity remains a matter of
debate, and the role of cell wall properties in Al resistance is
not widely acknowledged. Horst (1995), Rengel (1996) and
Blamey (2003) focused their attention on the role of the apo-
plast in Al toxicity and Al resistance. The additional exper-
imental evidence since then justifies an updated
consideration of the interactions of Al with apoplastic com-
ponents. This review summarizes the current understanding
of the role of the root apoplast in Al-induced inhibition of
root elongation and in Al resistance of plants.

AL INTERACTIONS WITH APOPLASTIC
BINDING SITES LEAD TO Al INJURY

Cell wall

Aluminium is accumulated by roots, with a rapid initial phase
and a lower rate thereafter (Zhang and Taylor, 1989, 1990).
The rapid initial phase reflects the binding of Al in the apo-
plast, which has been demonstrated using fractionated extrac-
tion methods (Wang et al., 2004; Rangel et al., 2009a),

surgical separation of the cell wall and symplast in the giant
algae Chara corallina (Rengel and Reid, 1997; Taylor et al.,
2000) and also in situ localization techniques such as X-ray
microanalysis (Marienfeld and Stelzer, 1993) and secondary
ion mass spectrometry (SIMS) (Horst et al., 2007). The
primary binding site of Al3+ in the apoplast is probably the
pectic matrix, with its negatively charged carboxylic groups
having a particularly high affinity for Al3+ (Blamey et al.,
1990; Chang et al., 1999). Short-term Al accumulation by
roots is closely related to the pectin content and may explain
the differences in Al contents between apical root sections of
maize and faba bean (Vicia faba) (Fig. 1). It appears that the
Al content and thus the binding of Al to the pectic matrix
are closely positively correlated to Al-induced callose for-
mation and thus Al sensitivity (Horst et al., 1999).

The role of the pectin content in Al accumulation and Al
sensitivity has been further substantiated using different
approaches modifying the pectin content of intact maize
plants (Horst et al., 1999) and maize cell suspension cultures
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solution+50 mM Al or 10 mM digitonin at pH 4.3. ***Significant at P ,

0.001. From Horst et al. (2007).
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(Schmohl and Horst, 2000). In fact, the factor responsible for
Al binding to pectin is not the pectin content alone but its
negative charge determined by its degree of methylation
(DM) (Eticha et al., 2005a), which is controlled by pectin
methylesterase (PME) (Bordenave, 1996; Gerendás, 2007).
Schmohl et al. (2000) provided evidence that Al accumulation
and Al sensitivity of maize cell suspension cells is modulated
by the DM of their cell walls. Also, short-term treatment of
intact maize roots with PME enhanced Al accumulation and
Al-induced inhibition of root elongation (Horst et al., 2007).

Accumulation of Al in the cell wall can also be expected on
the basis of the measured low rates of transport of Al through
the plasma membrane into the symplast of the model plant
C. corallina (Rengel and Reid, 1997; Taylor et al., 2000).
However, both studies as well as those by Marienfeld et al.
(2000) in maize also show that a rapid transfer of Al from
the apoplast to the symplast does occur. Using different tech-
niques Tice et al. (1992), Lazof et al. (1994) and Vázques
et al. (1999) demonstrated the accumulation of Al in the sym-
plast in wheat (Triticum aestivum), soybean (Glycine max) and
maize, respectively, leading to a rather uniform cellular distri-
bution of Al or even accumulation of Al in the symplast at the
expense of the cell wall. However, we have challenged the
results based on cellular Al localization using morin,
because morin is unable to bind to cell wall-bound Al
(Eticha et al., 2005b). The rapid uptake of Al into the symplast
(Ma et al., 1998; B. Klug and W. J. Horst, Leibniz University
Hannover, Germany, unpubl. res.), transfer to the central cylin-
der, xylem transport to the shoots and accumulation of Al in
the vacuoles of the leaves are a typical feature of Al accumu-
lator plant species such as hortensia (Hydrangea macrophylla)
(Ma et al., 1997; Naumann and Horst, 2003), buckwheat
(Fygopyrum esculentum) (Ma et al., 1998) and tea (Camellia
sinensis) (Carr et al., 2003). The reasons for the difference
in mobility of Al between Al excluders (most plant species)
and includers are not yet understood (Jansen et al., 2002;
Klug and Horst, 2010) and the role of Al tolerance in Al resist-
ance is still unresolved (see below).

Cell elongation requires cell turgor pressure driving expan-
sion, the release of cell wall components from the symplast to
the apoplast for cell wall synthesis, and the formation and clea-
vage of Ca bonds with the pectic matrix controlling cell wall
extensibility (Boyer, 2009). It has been shown that Al treat-
ment reduces root cell wall extensibility (Tabuchi and
Matsumoto, 2001; Ma et al., 2004). Strong binding of Al
(and other metals) to the pectic matrix may prevent cell wall
extension physically and/or physiologically by decreasing the
effectiveness of cell wall-loosening enzymes (Wehr et al.,
2004).

Plasma membrane

Aluminium rapidly affects the properties not only of the cell
wall but also those of the plasma membrane (Ishikawa and
Wagatsuma, 1998). Interaction of Al with membrane lipids
and proteins (Akeson et al., 1989; Caldwell, 1989; Jones and
Kochian, 1997) induces modifications of its structural proper-
ties such as fluidity and permeability (Vierstra and Haug,
1978; Wagatsuma et al., 2005a; Khan et al., 2009). Such a
structural change in membrane properties is one of the

prerequisites, in addition to an increase in the cytosolic Ca2+

activity, for the induction of callose synthesis (Kauss et al.,
1989), the most sensitive response of root apices to Al (see
above). Binding of Al to the plasma membrane alters its
surface negativity (Kinraide et al., 1992; Kinraide, 2006), as
shown by Ahn et al. (2001, 2004) in squash (Cucurbita
pepo) and wheat. Also, in most studies, Al supply rapidly
induced membrane depolarization (Lindberg et al., 1991;
Olivetti et al., 1995) specifically in the most Al-sensitive
root zone (the DTZ) (Sivaguru et al., 1999a). This may be
related to inhibition of the H+-ATPase activity (Ahn et al.
2001) which in turn may lead to a disturbance of the H+

homeostasis in the cytosol (Lindberg and Strid, 1997; Plieth
et al., 1999). These changes in plasma membrane properties
by Al affect its ion transport properties. In soybean, Al treat-
ment led to a rapid decrease of K+ efflux without changing
K+ influx (Horst et al., 1992; Staß and Horst, 1995). In
wheat the Al-enhanced release of malate was charge-balanced
by a release of K+ (Ryan et al., 1995), which is in agreement
with our results in maize where Al-induced citrate release
through an anion channel was observed without affecting the
K+ outward rectifier (Kollmeier et al., 2001).

Aluminium-induced impairment of membrane functions
may be related to Al-enhanced oxidative stress through the for-
mation of reactive oxygen species (ROS) leading to lipid per-
oxidation (Yamamoto et al., 1997, 2003; Jones et al., 2006)
and protein oxidation (Boscolo et al., 2003). Oxidative stress
genes are among the identified genes that are particularly
expressed after Al treatment (Richards et al., 1998; Ezaki
et al., 2005). Transformation of Arabidopsis thaliana with
such genes conferred Al resistance (Ezaki et al., 2001).
However, oxidative stress in roots appears not to be the
primary cause for Al-induced inhibition of root elongation
(Yamamoto et al., 2001), because, in most cases, it could be
observed only after prolonged Al treatment (Cakmak and
Horst, 1991; Maltais and Houde, 2002; Boscolo et al., 2003;
Liu et al., 2008). However, sustained Al resistance may
require protection mechanisms against oxidative stress.

In spite of these changes in plasma membrane structure and
function it needs to be stressed that there is no indication that at
physiological Al concentrations a severe disruption of plasma
membrane functions is a prerequisite for inhibition of root
elongation and callose formation (Horst et al., 1992). It
appears that Al triggers signal transduction pathways leading
to the observed symplastic physiological disorders. In this
regard, the effect of Al on cytosolic Ca2+ seems to play a
crucial role (Rengel and Zhang, 2003; Jones et al., 2006).
An increase in cytosolic Ca2+ as an immediate response to
Al treatment has been demonstrated in a range of plant
species (Jones et al., 1998; Zhang and Rengel, 1999; Ma
et al., 2002). The source of Ca2+ is probably the apoplastic
Ca2+ pool, because Ca2+ bound in the apoplast is liberated
by Al3+ and the change of the plasma membrane potential
results in an activation of Ca2+ channels. However, the trigger-
ing by Al of a release of Ca2+ from symplastic Ca2+ pools
cannot be excluded (Rengel and Zhang, 2003). Increasing
cytosolic Ca2+ can explain two cellular distortions: callose
formation and disorganization of the cytoskeleton (Rengel
and Zhang, 2003). An increase in cytosolic Ca2+ is one of
the prerequisites for the induction of callose synthesis by
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different elicitors (Kauss et al., 1989; Staß and Horst, 2009).
Aluminium-induced alterations of the cytoskeleton have been
reported by Blancaflor et al. (1998), Sivaguru et al. (1999b),
Schwarzerova et al. (2002) and Frantzios et al. (2005).
Amenós et al. (2009) also observed that Al resulted in disorga-
nized arrangements of actin filaments in the stele cells of the
TZ of maize root. Similarly, gene expression of actin and pro-
filin was inhibited by Al (Zhang et al., 2007). Profilin, an
actin-binding protein, regulates the polymerization of actin
filaments and plays a significant role in cell elongation
(Ramachandran et al., 2000). Although a direct effect of
cytosolic Al on the cytoskeleton cannot be ruled out, an inter-
action of apoplastic Al with the cell wall–plasma membrane–
cytoskeleton continuum appears more likely (Horst et al.,
1999; Sivaguru et al., 2000b).

MODIFICATION OF APOPLASTIC AL BINDING
MODULATES Al TOXICITY

Aluminium accumulated in the root apoplast modifies cell wall
composition and properties. Cellulose synthesis was inhibited
in favour of callose synthesis in barley (Teraoka et al.,
2002), and Al stress has been demonstrated to increase cell
wall pectin content in a number of plant species such as
squash (Van et al., 1994), maize (Eticha et al., 2005a), rice
(Yang et al., 2008) and common bean (Rangel et al.,
2009a). Increased pectin content caused by Al treatment has
been interpreted by some researchers as a tolerance mechanism
(Van et al., 1994), since the pectic substances bind or chelate
Al3+ ions via their free carboxyl groups, resulting in cross-
linking of pectin molecules (Klimashevskii and Dedov,
1975) and leading to detoxification of Al. However, there is
increasing evidence that binding of Al to pectins appears
to be more closely related to Al sensitivity since the
Al-induced increase in pectin content of Al-sensitive cultivars
was greater than that of Al-resistant cultivars (Eticha et al.,
2005a; Yang et al., 2008). Also, in an attempt to explain the
recovery from the initial (4 h treatment) Al-induced inhibition
of root elongation in an Al-resistant common bean cultivar,
Rangel et al. (2009a) related different cellular Al fractions to
Al-induced cell elongation. They showed that recovery of
root growth was closely negatively related to free apolastic
and particularly strongly bound cell wall Al (Fig. 2). This
suggests that the strong binding of Al to the pectic matrix of
the cell wall is a main factor in Al toxicity and not a resistance
mechanism in common bean. In contrast to the stably bound
cell wall Al fraction, there was no indication that the labile
bound (citrate-exchangeable) Al fraction was related to
Al-induced inhibition of root elongation. This was unexpected,
because in maize this fraction appeared to contribute to
explaining silicon (Si)-mediated amelioration of Al toxicity
(Wang et al., 2004). However, there seems to be a principal
difference between monocots and dicots in Al binding to
cell walls, which is not surprising given the difference in
cell wall composition (Carpita and Gibeaut, 1993; Sarkar
et al., 2009). This is well illustrated by the fact that treatment
of cell walls with 50 mM BaCl2 removed about 20 % of the cell
wall-bound Al in maize (Wang et al., 2004), and nearly all Al
adsorbed on wheat cell walls could be exchanged with 2.5 mM

CaCl2 (Zheng et al., 2004). In contrast, BaCl2 was unable to

exchange any Al in common bean even after only short-term
Al treatment (Staß et al., 2007). Overall, this clearly supports
the view that the main role of Al-induced release of organic
acid anions into the apoplast is the prevention of Al from
binding to the pectic matrix. Wehr et al. (2003) showed that
citrate and malate were able to remove Al from artificial
Al–pectate gels, suggesting that exudation of organic acids
would remove Al bound to pectin and this could alleviate tox-
icity. However, the decrease in the Al content of the stably
bound cell wall Al fraction with increasing Al treatment dur-
ation, as shown in Fig. 2, by root-released citrate appears to
be improbable because this fraction is defined as citrate non-
exchangeable. It thus appears that once Al is firmly bound it
is unlikely to be released by the citrate exuded from the
cells, unless the citrate concentration in the apoplast is much
higher than the concentration used for the exchange
(33 mM). Therefore, it is more likely that citrate released into
the apoplast reduces the binding of Al in the apoplast by com-
plexing Al and decreasing the strength of Al binding, thus pre-
venting the strong binding of Al to the cell wall (Zheng et al.,
2004).
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The Al-induced modifications of structural properties of the
cell wall (Schildknecht and Vidal, 2002) affect the mobility of
solutes in the apoplast of the root cortex. Schmohl and Horst
(2002) demonstrated that the release of proteins in general,
and acid phosphatase in particular, and pectins was inhibited
by Al in maize root apices and maize cell suspension cultures.
These effects were attributed to a reduction of cell wall poros-
ity by Al binding in the cell wall. However, these results can
also be explained by a lower permeability of the plasma mem-
brane for macromolecules. More convincing evidence of an
inhibition of the apoplastic solute bypass flow in maize root
apices was provided by Sivaguru et al. (2006). They showed
accumulation of fluorescent probes with mol. wts of 524
(8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt),
3000, 10 000 and 40 000 (neutral dextran–Texas red conju-
gates) in the outer cortical cells, especially in the DTZ, and
inhibition of transfer of these solutes to the xylem and
finally the shoot (Fig. 3). Water flow was not affected, in con-
trast to the expectations expressed by Blamey et al. (1993)
showing a strong reduction by Al of water flow through an arti-
ficial pectate membrane. Since the inhibition of callose syn-
thesis by pre-treatment of the roots with 2-deoxy-D-glucose
(DDG) prior to Al treatment partially alleviated the
Al-induced inhibition of solute bypass flow (Sivaguru et al.,
2006), it is assumed that callose deposition contributes not
only to the inhibition of cell to cell trafficking of solutes
through plasmodesmata (Sivaguru et al., 2000a) but also to
the apoplastic bypass flow in root cortical cell walls.

COMPLEXATION OF AL IN THE APOPLAST
CONFERS GENOTYPIC Al RESISTANCE BY

REDUCING INTERACTIONS BETWEEN
Al AND CELL WALL COMPONENTS

It is generally agreed that the release of Al-complexing solutes,
particularly organic acid anions, in the Al-sensitive apical root
zone is the most effective way to reduce the impact of Al on
apoplastic functions (Ma et al., 2001; Ryan et al., 2001;
Delhaize et al., 2007). Using the patch–clamp technique, it
is well established that the Al-induced release of malate in

wheat (Ryan et al., 1997; Zhang et al., 2001) and of citrate
in maize (Kollmeier et al., 2001; Piñeros and Kochian,
2001) is mediated by plasma membrane anion channels. The
frequency and magnitude of Al-induced anion currents are
greater in Al-resistant than in Al-sensitive cultivars
(Kollmeier et al., 2000; Zhang et al., 2001). The genes encod-
ing these anion channel proteins have been identified and
characterized in several plant species (see the review by
Delhaize et al., 2007).

The role of the metabolism of organic acids in Al resistance
is still a matter of discussion. Most studies have shown no clear
relationship between the root content and release of organic
acid anions (Ryan et al., 2001). Also, the activities of
enzymes involved in the synthesis of organic acids did not
differ significantly between Al-resistant and Al-sensitive gen-
otypes. These findings and others led Ryan and Delhaize
(2010) to suggest convergent evolution of Al resistance in
Al-excluder plant species through mutation of transport pro-
teins to organic acid anion permeases. However, based on a
detailed study on release from and content of specific 1 mm
apical root sections, Kollmeier and Horst (2001) showed that
an Al-sensitive cultivar was not capable of maintaining the
level of citrate in the apical root sections in spite of a lower
citrate release rate. This was in agreement with a general
trend of Al-enhanced activities of enzymes involved in
citrate synthesis such as NAD-malate dehydrogenase (MDH)
and phosphoenolpyruvate decarboxylase (PEPC), but not
citrate synthase (CS), in the Al-resistant cultivar and of citrate-
degrading aconitase in the Al-sensitive cultivar (Kollmeier and
Horst, 2001). Also, sustained recovery from Al stress through
citrate exudation in the Al-resistant common bean genotype
Quimbaya after 24 h Al treatment relied on restoring the
internal citrate pool and the constitutively high activity of
CS fuelled by high PEPC activity (Rangel et al., 2009b). In
the Al-sensitive genotype VAX-1 the citrate exudation and,
thus, Al exclusion and root elongation could not be main-
tained, resulting in an exhaustion of the internal citrate pool
and decreased CS activity.

There was no difference between the genotypes in the upre-
gulation of MATE genes coding for citrate permeases (Eticha
et al., 2010). Further evidence for an involvement of enhanced
organic acid synthesis and reduced degradation in Al resist-
ance comes from studies using transgenic plants with modified
organic acid metabolism. Al-induced citrate exudation driven
by Al-inducible expression of mitochondrial CS enhancing
Al resistance in Paraserianthes falcaria, a leguminous tree,
was reported: Al treatment increased the accumulation of mito-
chondrial CS transcripts, its activity and gene expression
(Osawa and Kojima 2006). The over-expression of the mito-
chondrial CS gene from Citrus junos conferred Al resistance
in Nicotiana benthaminana (Deng et al., 2006). Similarly, a
successful transformation of several independent tobacco
lines with rice mitochondrial CS resulted in increased citrate
efflux and greatly enhanced Al resistance (Han et al., 2009).
Not only the over-expression of CS, but also that of MDH
(Tesfaye et al., 2001) and PEPC (Osaki et al., 2001), was
reported to enhance Al resistance of plants. A role for PEPC
in Al resistance of soybean genotypes through citrate exuda-
tion has also been convincingly demonstrated by Ermolayev
et al. (2003). It thus appears that the maintenance of cytosolic
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organic acid anion concentrations and their release into the
root tip apoplast through activation of anion permeases are
both key factors for Al resistance in some plant species.

In addition to organic acid anions the release into the apo-
plast of polypeptides (Basu et al. 1999) and phenols (Heim
et al., 1999; Kidd et al., 2001) may also be involved in geno-
typic Al resistance in wheat and maize, respectively.

MODIFICATION OF Al BINDING PROPERTIES
OF THE APOPLAST CONFERS GENOTYPIC

Al RESISTANCE

Negativity of the root apoplast

As shown above, Al binds readily to negative binding sites of
the cell wall and the plasma membrane in the most
Al-sensitive zones of the root apex. Since this may lead to
enhanced transport of Al into the symplast and/or to impair-
ment of root growth and functions (see above), it cannot
only be expected, but has to be postulated, that reduced
binding of Al in the apoplast is a prerequisite for Al resistance.
Kinraide et al. (1992) were able to explain inhibition of root
elongation by Al3+ in the presence of competing cations,
including protons, on the basis of the computed cation distri-
bution on a negatively charged root membrane surface.
Blamey et al. (1992) and Grauer and Horst (1992) came to
comparable conclusions based on similar but conceptually
different approaches. A lower root cation exchange capacity
as a measure of cell wall negativity has been reported in
plant species adapted to acid soils with high Al supply
(Blamey et al., 1990; Büscher et al., 1990). However, across
a large range of plant species a clear relationship between
root cation exchange capacity and Al resistance does not
exist (Grauer, 1992).

The negativity of the cell wall depends mainly on the pectin
content and its DM. Across all plant species studied so far,
there is no consensus on differences in constitutive pectin con-
tents of plants with regards to Al resistance. Without Al
supply, Al-resistant and Al-sensitive maize cultivars did not
differ in pectin content in the 5 mm root apex (Eticha et al.,
2005a). However, in rice, the pectin content of the root apex
in the Al-resistant cultivars was lower than in Al-sensitive cul-
tivars (Yang et al., 2008). In common bean the initial (4 h Al
supply) high Al sensitivity and Al accumulation by roots of the
Al-resistant cultivar (Quimbaya) prior to the induction of
citrate exudation (Rangel et al., 2009b) was related to a
higher unmethylated pectin content in the 5 mm root tip
(Rangel et al., 2009a).

A modulating role for the DM of root cell walls in Al resist-
ance is most convincingly supported by the comparison of
potato transformants differing in the expression of PME
from Petunia inflata (Schmohl et al., 2000): transformants
with higher PME expression accumulated more Al, produced
more callose and were more inhibited in root growth when
exposed to Al than the wild type (Fig. 4). Applying a pectin
immunolocalization method to root tips, Eticha et al.
(2005a) demonstrated the importance of the DM of cell wall
pectin for differential Al resistance of two maize cultivars.
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The cultivars did not differ in pectin content but in DM: the
Al-sensitive cultivar had lower DM and consequently accumu-
lated more Al and experienced more severe Al injury com-
pared with the Al-resistant maize cultivar. Similarly, in rice
(Yang et al., 2008), root tip cell wall PME activity was consti-
tutively higher in the Al-sensitive cultivar than in the
Al-resistant cultivar. Immunolocalization of pectins showed a
higher proportion of demethylated pectins in the Al-sensitive
cultivar, indicating a higher proportion of free pectic acid resi-
dues in the cell walls corresponding to the higher Al contents
in root tips and the cell wall. In studying Al adsorption and
desorption kinetics, Yang et al. (2008) also confirmed that
root tip cell walls of the Al-sensitive rice cultivar bound
more Al, and that the bound Al was retained more tightly,
compared with the Al-resistant cultivar. Using similar exper-
imental approaches S. J. Zheng (Zhejiang University,
Hangzhou, China, pers. comm.) showed that the differential
Al resistance of two buckwheat genotypes could also be
related to differences in the Al binding capacity of root tip
cell walls.

Besides the cell wall, the plasma membrane contributes to
the negativity of the apoplast and may affect the toxicity of
metals (Kinraide, 2006). Wagatsuma and Akiba (1989) and
Wagatsuma et al. (1991, 2005b) related differences in Al
resistance between plant species to the plasma membrane
negativity of protoplasts, and Yermiyahu et al. (1997)
ascribed the higher Al sensitivity of the wheat cultivar
Scout to its higher plasma membrane negativity compared
with the Al-resistant cultivar Atlas. Recently, Khan et al.
(2009) provided evidence that genotypic Al tolerance in
rice was related to a lower ratio of phospholipids to
D5-sterols in the plasma membrane leading to a lower nega-
tivity and permeability compared with Al-sensitive culti-
vars. A role for the plasma membrane in Al resistance is
also indicated by studies showing that the transformation
of yeast and plants by a higher plant D8-sphingolipid desa-
turase modulated Al resistance (Da Silva et al., 2006;
Ryan et al., 2007).

Silicon nutrition

There are several reports showing that Si nutrition enhances
Al resistance of plants (Hodson and Evans, 1995). Both ex
planta and in planta effects are involved, but the latter
effects are only poorly understood (Cocker et al., 1998a). In
maize, Kidd et al. (2001) provided evidence for an
Al-induced enhanced release of phenolic compounds by
Si-pre-treated plants, thus detoxifying Al in the apoplast.
Wang et al. (2004), too, attributed Si-enhanced Al resistance
of maize to a clear in planta effect. However, they could not
relate Si-enhanced Al resistance to an increased release of
phenols or organic acid anions, but rather to a decrease in Al
binding capacity of the cell wall. Al treatment greatly
enhanced Si accumulation in the cell wall fraction, reducing
the mobility of apoplastic Al. In agreement with Cocker
et al. (1998b), Wang et al. (2004) concluded from their
data that Si treatment leads to the formation of hydroxyalumi-
num silicates (HAS) in the apoplast of the root apex, thus
detoxifying Al.

Boron nutrition

Boron (B) is a structural component in growing plant tissues
(Brown and Hu, 1997). The formation of bis-diester bonds
between the rhamnogalacturonan II (RG II) subunits of
pectin chains and boric acid is a main function of B in
plants (Brown et al., 2002; Goldbach and Wimmer, 2007).
Boron-induced amelioration of Al toxicity has been reported
in a number of plant species (LeNoble et al., 1996a, b;
Lukaszewski and Blevins, 1996; Wojcik, 2003; Hossain
et al., 2005; Staß et al., 2007; Corrales et al., 2008; Yu
et al., 2009). However, the picture emerging on the mechan-
isms responsible for B amelioration of Al toxicity is not yet
clear. Lukaszewski and Blevins (1996) reported that in
squash both Al toxicity and B deficiency caused a reduction
in ascorbate concentrations in root apices which was correlated
with reduced root growth. They proposed that Al toxicity
impaired the role of B in ascorbate metabolism which could
be prevented by supplemental B (Lenoble et al. 1996b) and
thus enhanced anti-oxidative defence (Corrales et al., 2008).
However, Staß et al. (2007) and Yu et al. (2009) provided evi-
dence that B-related changes in cell wall properties affect Al
binding in root apices and thus Al toxicity. B deficiency
increased the unmethylated pectin content of cell walls in
common bean, which created additional binding sites for Al
in the cell wall, thus enhancing Al accumulation and toxicity
(Staß et al., 2007). Similarly, B supplementation reduced Al
uptake by pea (Pisum sativum) root tips and Al binding to
cell walls, which resulted in less Al toxicity (Yu et al.,
2009). However, other studies have failed to find any ameliora-
tive effect of B on Al toxicity (Taylor and Macfie, 1994;
Corrales et al., 2008). In general, dicots display a stronger
response to B supply than monocots, which may be due to
the higher B requirement of dicots. Enhanced Al toxicity in
B-deficient dicot plant species could also be related to the
pore size of the cell wall which is affected by borate ester
cross-linking of the pectic polysaccharide RG II (Fleischer
et al., 1999). Reduced pore size of the cell wall could affect
Al uptake. In a study on the interaction of Al toxicity and
drought stress in common bean, Yang et al. (Z. Yang,
Leibniz University Hannover, Germany, unpubl. res.) pre-
sented circumstantial evidence that osmotic stress induced by
polyethylene glycol (PEG) treatment reduced the accumulation
of cations (Al3+ . La3+ . Sr2+) in root tips by reducing
cell wall porosity in agreement with their hydrated ionic
diameter (Fig. 5).

AL RESISTANCE IN Al ACCUMULATORS
REQUIRES Al EXCLUSION MECHANISMS

A close relationship exists between Al exclusion from the root
tip and Al resistance in Al-excluding plant species, e.g. in
wheat (Delhaize et al., 1993), maize (Piñeros et al., 2005), tri-
ticale (Yang et al., 2005), rice (Yang et al., 2008) and common
bean (Rangel et al., 2007). In all of these plant species Al
accumulation in the root tip of Al-resistant genotypes was
less than that of their Al-sensitive counterparts, indicating
that Al resistance is achieved through Al exclusion particularly
from the apoplast where the bulk of Al accumulates. Li et al.
(2009b) reported that the amount of Al adsorbed to cell walls
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isolated from the Al-resistant wheat line ET8 and the
Al-sensitive wheat line ES8 was similar, but the latter accumu-
lated several times more Al in root tips. This was explained by
the exudation of malate by ET8 under Al stress, thereby pro-
tecting the Al-sensitive sites in cell walls from binding Al.

The additional role of Al tolerance in Al resistance of Al
excluders is not yet fully resolved. Higher symplastic Al con-
tents may be indicative of enhanced or acquired Al resistance,
as suggested by Vázquez et al. (1999) who observed internal-
ization of Al into the symplast contributing to Al tolerance in
an Al-resistant maize genotype. Also Illes et al. (2006)
ascribed Al internalization into endosomal or vacuolar com-
partments contributing to the recovery from initial Al stress
in Arabidopsis. However, the trend of increasing symplastic
Al contents with the recovery from initial Al stress and the sig-
nificantly higher symplastic Al contents in the Al-resistant
common bean genotype Quimbaya compared with the
Al-sensitive genotype VAX-1 seems to indicate that transport
of Al into the symplast is not a prerequisite for Al toxicity
(Rangel et al., 2009a). From their results it appears rather unli-
kely that transfer to and inactivation of Al in the symplast can
explain enhanced Al resistance because of the quantitatively
small Al fraction in the symplast.

In contrast to Al excluder species, Al includer species which
are among the most Al-resistant plant species can contain
.1 mg (g d. wt)21 Al in their leaves (Jansen et al., 2002).
Thus, they can be classified as Al-tolerant. Al tolerance is
attributed to the symplastic complexation of Al by organic
ligands, particularly organic acids (Ma et al., 1997, 1998;
Morita et al., 2008). Rapid transfer of Al into the symplast
may contribute to keep the Al3+ activity lower in the apoplast.
However, also in Al accumulators Al3+ will strongly interact
with the negative binding sites of the apoplast. This assump-
tion is supported by the results with the Al accumulator buck-
wheat in which a lower pectin content of the cell wall resulted

in a lower Al content in the root tip of an Al-resistant com-
pared with an Al-sensitive buckwheat genotype (S. J. Zheng,
Zhejiang University, Hangzhou, China, pers. comm.). Thus
Al accumulators not only symplastically complex Al but also
release organic acid anions from the Al-sensitive root tips
and complex Al in the root apoplast when exposed to Al.
This has been shown for buckwheat (Zheng et al., 1998;
Klug and Horst, 2010), tea (Morita et al., 2001) and hortensia
(Naumann, 2001). In buckwheat, there was a close relationship
between the Al and oxalate concentrations, not only in the
symplast but also in the apoplast of root tips (Fig. 6). Klug
and Horst conclude from their results that the formation of a
1 : 1 oxalate : Al complex in the root apoplast both protects
root apoplastic binding sites from interaction with Al and is
a prerequisite for rapid transport of Al into the symplast
(Klug and Horst, 2010; B. Klug and W. J. Horst, Leibniz
University Hannover, Germany, unpubl. res.).

MOLECULAR EVIDENCE FOR THE
INVOLVEMENT OF CELL WALL PROPERTIES IN

Al RESISTANCE

In recent years, more molecular information on the role of the
root apoplast in Al toxicity and resistance has been accumulat-
ing. Using Al-hypersensitive mutants, Huang et al. (2009) dis-
covered two genes contributing to Al resistance in rice. These
genes, STAR1 and STAR2 (Sensitive To Al Rhizotoxicity),
encode a nucleotide-binding domain and a transmembrane
domain, respectively, of a bacterial-type ATP-binding cassette
(ABC) transporter, and are expressed in the root particularly
under Al stress. Disruption of either of these genes resulted
in hypersensitivity to Al. The authors showed that the
STAR1–STAR2 complex had efflux transport activity for
UDP-glucose and hypothesized that UDP-glucose or glyco-
sides derived from UDP-glucose modify the cell walls to
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mask potential Al-binding sites in the apoplast, resulting in Al
resistance in rice.

In line with this, the transcriptional analysis of Al resistance
in maize by Maron et al. (2008) indicated that several genes
related to cell wall structure and composition exhibit differen-
tial expression upon Al treatment. Among these, PME, the
enzyme responsible for the demethylation of pectin in the
cell wall, was upregulated by Al treatment in both
Al-resistant and Al-sensitive maize genotypes. The PME
expression was constitutively higher and its upregulation was
more enhanced in the Al-sensitive genotype. These results
nicely back-up the immunolocalization study on unmethylated
pectins in roots of two maize cultivars differing in Al resist-
ance by Eticha et al. (2005a) and Li et al. (2009a). The
results contribute to close the gap in the understanding of gen-
otypic Al resistance in maize which cannot be fully explained
by differential exudation of citrate (Piñeros et al., 2005).

In addition to PME, the expression and activity of apoplastic
peroxidases were enhanced under Al stress (Kumari et al.,
2008; Maron et al., 2008; Xue et al., 2008). Plant peroxidases
constitute a large group of proteins encoded by a multigene
family consisting of about 138 members in rice (Passardi
et al., 2004) and 73 members in Arabidopsis (Tognolli et al.,
2002). These enzymes catalyse diverse reactions and are
involved in a wide range of physiological processes, such as
auxin catabolism, lignin and suberin formation, cross-linking
of cell wall components, defence against pathogens, and cell
elongation (Hiraga et al., 2001). It thus may be assumed that
apopalstic peroxidases are involved in both Al toxicity and
Al resistance mechanisms.

In addition, Al caused changes in gene expression of a
number of cell wall-modifying enzymes such as xylogluca-
nase, endotransglycosylases, polygalacturonases, glycosyl
transferases, lipid transfer proteins and other wall-related
genes in Arabidopsis (Kumari et al., 2008), indicating the
important role of dynamic changes in the apoplast for the Al
stress response. Moreover, several hundreds of other
Al-responsive genes have been documented through transcrip-
tional profiling studies in Arabidopsis (Kumari et al., 2008;
Goodwin and Sutter, 2009), wheat (Guo et al., 2007; Houde
and Diallo, 2008), maize (Maron et al., 2008) and Medicago
truncatula (Chandran et al., 2008a, b). Their possible func-
tions in relation to Al toxicity and resistance can only be
speculated at this time. Therefore, future studies should
focus on elucidating the significance of these genes for Al
resistance of plants.

CONCLUSIONS AND FUTURE PERSPECTIVES

The binding of Al in the cell wall and to the apoplastic face of
the plasma membrane in the most Al-sensitive root tip zone
impairs both apoplastic and symplastic functions, disruption
of which is a major factor leading to Al-induced inhibition
of root elongation. Although symplastic lesions of Al toxicity
cannot be ruled out, the protection of the root apoplast appears
to be a prerequisite for Al resistance in both Al-excluder and
Al-accumulator plant species. The most important Al resist-
ance mechanism in most plant species is the sustained
release of organic acid anions from the root apex. These
organic acid anions complex Al, thus protecting the root

apoplast from Al binding. However, there is increasing physio-
logical, biochemical and, most recently, molecular evidence
showing that the modification of the binding properties of
the root apoplast contributes to Al resistance.

The physiological research during the last 15 years has con-
tributed to consolidate the role of the apoplast in Al toxicity
and resistance. Whereas the role of organic acid anions in
the protection of the apoplast from Al binding, including its
molecular basis, are well understood, the understanding of
the mechanism of Al toxicity is still mainly circumstantial.
Particularly our knowledge on the molecular mechanisms gov-
erning the Al–apoplast interactions leading to inhibition of
root elongation, callose formation and disruption of tissue
integrity is still scarce. The recent identification of a few
genes which code for proteins involved in the modification
of cell wall composition, structure and functions are mostly
by-products of studies searching for genes involved in
organic acid anion exudation and metabolism. A more
focused search for genes related to the root tip apoplast is
urgently needed. This would allow the function of these
genes in Al toxicity and resistance to be proved using trans-
genic approaches.
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von Uexküll HR, Mutert E. 1995. Global extent, development and economic
impact of acid soils. Plant and Soil 171: 1–15.

Van HL, Kuraishi S, Sakurai N. 1994. Aluminum-induced rapid root inhi-
bition and changes in cell-wall components of squash seedlings. Plant
Physiology 106: 971–976.

Vázquez MD, Poschenrieder C, Corrales I, Barceló J. 1999. Change in apo-
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