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Abstract
Abnormal expansion of a polyglutamine tract in huntingtin (Htt) protein results in Huntington's
disease (HD), an autosomal dominant neurodegenerative disorder involving progressive loss of
motor and cognitive function. Contrasting with the ubiquitous tissue expression of polyglutamine-
expanded Htt (polyQ-Htt), HD pathology is characterized by the increased vulnerability of
specific neuronal populations within the striatum and the cerebral cortex. Morphological,
biochemical, and functional characteristics of neurons affected in HD that might render these cells
more vulnerable to the toxic effects of polyQ-Htt are covered in this review. The differential
vulnerability of neurons observed in HD is discussed in the context of various major pathogenic
mechanisms proposed to date, and in line with evidence showing a “dying-back” pattern of
degeneration in affected neuronal populations.

Keywords
Huntington's disease; medium-sized spiny neurons; huntingtin; axonal transport; dying back
degeneration

Introduction
Polyglutamine (polyQ) expansion diseases including Huntington's disease (HD), spinal and
bulbar muscular atrophy (SBMA) and spinocerebellear ataxias are heritable neurological
diseases characterized by abnormal expansion of CAG repeats in the coding region of
structurally unrelated genes (Orr & Zoghbi 2007). Among these, HD represents the most
commonly inherited neurological disorder, involving progressive loss of motor and
cognitive function that mainly results from degeneration of selected neuronal populations
within the basal ganglia and the cerebral cortex (reviewed in (Walker 2007). In recent years,
much progress has been made regarding the etiology of HD, and a growing body of
evidence suggests the involvement of multiple pathogenic pathways in this disease.
However, little is known about mechanisms underlying the increased vulnerability of
selected neuronal populations in HD. Here, we provide a detailed summary of the unique
pathological topography of HD, and discuss the contribution of cell type-specific
characteristics to this topography in the context of various pathogenic mechanisms proposed
for HD. These mechanisms are discussed keeping in mind the “dying-back” pattern of
degeneration of neurons affected.
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HD etiology
HD is inherited in an autosomal-dominant manner and typically presents in adulthood
although juvenile forms of HD exist. Molecular mechanisms underlying HD remain elusive,
and thus no effective therapeutic treatments are currently available beyond clinical
symptomatic management of the movement disorder portion of this disease. HD patients
typically die within 17 years of diagnosis from various complications such as accidents,
aspiration and dysphagia (Walker 2007).

HD results from expansion of a polymorphic polyQ tract located near the N-terminus of the
huntingtin (Htt) protein (HDCRG 1993). The polyQ tract in wild-type, non-pathogenic Htt
(WT-Htt) ranges from 6 to 35 glutamines, but Htt variants with 36 or more Qs define a HD
allele encoding pathogenic Htt (polyQ-Htt) (Brinkman et al. 1997, Snell et al. 1993). As in
other polyQ diseases, the number of glutamine repeats in Htt correlates inversely with the
age of HD onset (Andrew et al. 1993, Duyao et al. 1993). The temporal pattern of
neuropathological features also relates to the number of glutamines in Htt, with the most
damage seen in the brains of age-matched HD patients bearing longer polyQ tracts (Penney
et al. 1997). However, HD is universally fatal and the ultimate pathological outcome is
similar for all patients showing pathogenic expansions of the polyQ tract.

The widespread distribution of Htt (see below) and the lack of sequence homology with
other proteins did not reveal significant information on the normal physiological function of
this protein. Deletion of Htt in mice results in embryonic lethality, suggesting a critical, yet
unidentified role of Htt during normal development (Nasir et al. 1995, MacDonald et al.
1996). Initial transgenic HD mouse models were illuminating in several respects (Beal &
Ferrante 2004). These mice express randomly inserted Htt truncation constructs bearing
unusually long polyQ stretches (>115 CAG repeats) that often result in severe early-onset
neuropathology and behavioral syndromes (reviewed in (Ramaswamy et al. 2007b). In
contrast, various knock-in mouse models expressing pathogenic, polyQ-expanded versions
of full-length Htt at endogenous levels are viable, displaying a late onset phenotype with
pathological features reminiscent of HD (Menalled 2005). Viability of these knock-in mice
indicated that aspects of Htt functionality relevant to embryonic development are not
compromised by polyQ tract expansion. The precise contribution that decreased Htt function
plays in HD pathogenesis remains unclear, but the autosomal dominant pattern of HD
inheritance and other genetic evidence strongly indicates that polyQ expansion confers a
toxic gain of function upon Htt (Orr & Zoghbi 2007, Morfini et al. 2005). Consistent with
this idea, several lines of experimental evidence showed that polyQ-Htt expression alters
multiple, critical cellular processes including transcriptional regulation, cell survival,
intracellular signaling, mitochondrial function and axonal transport, among others. However,
the nature of molecular mechanisms underlying toxic gain of function(s) associated with
polyQ-Htt continue to be debated (Morfini et al. 2005).

HD brain pathology
Motor impersistence (a term referring to the inability to maintain voluntary muscle
contractions), represents a major clinical feature of HD that correlates well with disease
progression (Reilmann et al. 2001). Involuntary, arrhythmic limb movements termed
“chorea” represent a common clinical motor phenotype in most, but not all, HD patients
(Barbeau et al. 1981), especially early in the disease. These movements were signature
features in the original description of the disease as Huntington's chorea (Okun 2003). In
addition to the relentless decline in motor function, non-motor disturbances such as
cognitive impairments, personality changes, depression, and behavioral disturbances are
commonly seen in HD patients and represent the more serious symptoms for their family,
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friends and caregivers (Walker 2007). These anomalies are believed to represent the
phenotypic manifestation of neuronal dysfunction and degeneration in selected areas of the
basal ganglia and the cerebral cortex (Reiner et al. 1988, Storey & Beal 1993).

The basal ganglia comprise a set of subcortical brain structures involved in various aspects
of motor control and cognition (Graybiel 1990, Mitchell et al. 1999) (Fig. 1). Within the
basal ganglia, the neurodegenerative process characteristic of HD typically begins in the
striatum (Vonsattel et al. 1985a), which serves the function of “filtering” multiple input
pathways originating in different cortical regions (Mitchell et al. 1999). Information
processed in the striatum ultimately returns to the cerebral cortex to complete the
corticobasal ganglia-thalamocortical loop (Parent & Hazrati 1995) (Fig. 1). Within the
striatum, signs of pathology initially appear in the caudate nucleus and putamen, with
reactive gliosis and neurons showing neuritic dystrophy. As the disease progresses, these
pathologies progressively extend along the caudal-rostral, and dorsal-ventral direction
towards the putamen (Vonsattel & DiFiglia 1998). The prominent expansion of the lateral
ventricles typical of advanced HD patients results from the dramatic degeneration of
neurons within the adjacent caudate nucleus. A significant loss of neurons is also observed
in the cerebral cortex of HD patients, including frontal, parietal, and temporal regions (Mann
et al. 1993, Heinsen et al. 1994), although these changes are initially less obvious than those
seen in the striatum.

Neuronal cell types affected in HD
At the cellular level, HD is characterized by differential vulnerability of specific neuronal
subpopulations within the striatum and cerebral cortex (Fig. 1). The striatum, comprised of
the caudate nucleus and putamen, represents the major “input” stage of the basal ganglia,
being mainly composed of projection neurons (up to 95% of total striatal neurons) and a
much smaller number of interneurons (approx. 5%). Golgi staining methods and electron
microscopic studies identified and classified various subtypes of projection neurons and
interneurons in the striatum with unique morphological and biochemical characteristics
(DiFiglia et al. 1976,Difiglia et al. 1980,Parent et al. 1984). Striatal projection neurons (also
known as Golgi type I cells) are all GABAergic and morphologically characterized by a
long axon, medium-sized cell bodies, and spiny dendrites, hence the commonly used term of
medium spiny neurons (MSNs) (Gerfen 1988,DiFiglia et al. 1976,Difiglia et al. 1980).
MSNs project their axons over relatively long distances to targets in the globus pallidus
(GP) and the substantia nigra pars reticulata (SNr), main “output” structures of the basal
ganglia (Fig. 1). Striatal interneurons (also known as Golgi type II cells) represent key
elements of the local striatal circuitry, displaying a wide range of morphological and
biochemical heterogeneity (Parent et al. 1984,Parent et al. 1980). Striatal interneurons have
unusually short axons, medium to very large-sized cell bodies, and display extensive
dendritic arborization, making abundant synaptic contacts with multiple MSNs (Kawaguchi
1997,Kawaguchi et al. 1995). Intriguingly, MSNs represent the main and earliest striatal cell
type affected in HD, whereas striatal interneurons are typically unaffected or only mildly
affected at late stages of the disease.

The differential vulnerability of MSNs within the HD striatum extends to specific MSNs
subtypes, as defined by their projection targets and neurochemical content (Mitchell et al.
1999) (Figs. 1-2). Based on their projection targets, MSNs in the striatum can be divided
into two main groups: a) MSNs in the “direct” (or striatonigral) pathway, which project
axons monosynaptically to the internal segment of the GP (GPi) or to the SNr (Smith et al.
1998), These neurons preferentially express the peptide enkephalin (ENK, a pentapeptide
derived from the preproenkephalin gene). b) MSNs in the “indirect” (or striatopallidal)
pathway, which project axons that polysynaptically contact the external segment of the GP
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(GPe). These neurons preferentially express substance P (SP). Intriguingly, MSNs in the
“indirect pathway” are affected at earlier stages and to a greater extent than MSNs in the
“direct pathway” (Reiner et al. 1988, Albin et al. 1992a, Richfield et al. 1995b). Early
functional abnormalities in the indirect pathway have been associated with development of
the chorea-like movements in HD (Crossman et al. 1988, Crossman 1987). Degeneration of
MSNs of the direct pathway late in the course of HD manifests as rigidity and bradykinesia
(Berardelli et al. 1999).

Albeit less pronounced than in the striatum, differential vulnerability and loss of selected
neuronal populations is also readily observed in the cerebral cortex of HD patients.
Specifically, large pyramidal projection neurons in cortical layers V, VI and to a lesser
extent, layer III, are preferentially lost (Cudkowicz & Kowall 1990, Hedreen et al. 1991).
Long axons emanating from cortical projection neurons in layers V and VI innervate the
striatum. In primates, these axons are thin and unbranched with a single target (Parent &
Parent 2006). As in the striatum, there is remarkable preservation of small cortical
interneurons (i.e., layer IV granule cells) in HD (Cudkowicz & Kowall 1990, Sotrel et al.
1991).

Vulnerability of different neuronal cell populations to Htt mutations:
Selective or differential?

The earlier and more pronounced degeneration of specific neuronal populations within the
striatum and cortex observed in HD prompted the phrase “selective neuronal vulnerability”
to be used by a number of investigators (Sieradzan & Mann 2001, Perez-Navarro et al.
2006, Cowan & Raymond 2006). However, the unique cellular topography of HD pathology
does not mean that the toxic effects of polyQ-Htt are limited to selected neuronal
populations. Supporting this idea, a large body of pathological and experimental evidence
demonstrates that polyQ-Htt expression can elicit toxic effects in additional neuronal cell
types and even in some nonneuronal cells. Pathological examination in advanced HD
patients revealed degeneration of neurons in other brain structures including the
hippocampus, the angular gyrus in the parietal lobe, and the lateral tuberal nuclei of the
hypothalamus (Lange et al. 1976, Vonsattel et al. 1985b, Oyanagi et al. 1989, Heinsen et al.
1999). Further, pronounced neuronal loss has been observed in the cerebellum of patients
with juvenile HD onset (Byers et al. 1973, Rodda 1981). Although some of these neuronal
losses may reflect secondary neuronal damage due to deafferentation, experiments involving
tissue-specific overexpression of polyQ-Htt in vivo demonstrated that polyQ-Htt expression
promotes functional abnormalities in many neurons not typically affected in HD (Senut et
al. 2000, de Almeida et al. 2002). Additionally, nonneuronal cells appear affected in various
peripheral tissues of HD patients and animal HD models (reviewed in (Sassone et al. 2009)).
Finally, a plethora of studies documented functional abnormalities and decreased cell
survival associated with the expression of pathogenic polyQ-Htt constructs across a range of
cultured cell types including mouse (Ye et al. 2008, Lunkes & Mandel 1998) and human
(Carmichael et al. 2002) neuroblastoma cells, PC12 cells (Li et al. 1999b), and kidney cells
(COS-7) (Carmichael et al. 2002), among many others. Taken together, these observations
indicate that the toxic effects of polyQ-Htt do not selectively affect specific neuronal
populations. Instead, cell type-specific features might differentially render specific neuronal
populations increasingly vulnerable to polyQ-Htt-induced toxicity.

Neurons affected in HD follow a “dying-back” pattern of degeneration
A discussion of cellular features modulating polyQ-Htt toxicity requires a revision of the
sequence of pathogenic events in affected neurons. Historically, our understanding of the
neurodegenerative process in HD was limited to the post mortem study of brain tissue
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harvested from HD patients. The marked loss of neurons observed in these tissues logically
focused research efforts into cell death-related mechanisms (Vila & Przedborski 2003,
Portera-Cailliau et al. 1995), and the development of HD animal models based on acute
intoxication and induction of cell death in the striatum. More recently, the development of
various rodent HD models revealed important information on earlier pathogenic events
(Menalled 2005). These animal models accurately reproduce the autosomal dominant pattern
of inheritance as well as the major pathological characteristics of HD, including formation
of Htt aggregates (see below), the development of motor and behavioral symptoms, and the
differential vulnerability of discrete neuronal populations [reviewed in (Ramaswamy et al.
2007b)]. Variations in disease onset and severity among HD models can be attributed to
differences in length of the polyQ tract, promoters driving transgene expression, and size of
the exogenous Htt transgene introduced (Ramaswamy et al. 2007b, Vonsattel 2008,
Menalled 2005). However, a common theme emerged from detailed pathological,
electrophysiological and behavioral analysis of these animals. All models analyzed thus far
have shown various degrees of behavioral and motor abnormalities well before apparent
neuronal degeneration (Levine et al. 2004, Tobin & Signer 2000, Menalled 2005). For
example, behavioral defects reminiscent of the HD human phenotype (i.e., increased motor
activity, gait abnormalities, and altered stride length) were observed in HD transgenic mice
models expressing truncated polyQ-Htt constructs, including R6/2 mice (Lione et al. 1999,
Luesse et al. 2001, Murphy et al. 2000), N171-82Q mice (Klivenyi et al. 2006), and a
transgenic rat model expressing a truncated Htt with 51 CAG repeats (von Horsten et al.
2003). Moreover, similar defects have been reported in various knock-in HD animal models
expressing polyQ-Htt at endogenous levels in its appropriate genomic context (Menalled
2005). Remarkably, behavioral abnormalities in knock-in HD animal models were detected
in the absence of neuronal loss (Menalled 2005) and prior to formation of polyQ-Htt
aggregates, suggesting that aggregate formation may not be required for functional changes
to occur in affected neurons. The relevance of these observations to HD is highlighted by
functional MRI imaging studies revealing early changes in neuronal function in
presymptomatic HD patients (Reading et al. 2004), and studies suggesting that the early
manifestation of chorea does not result from neuronal cell loss (Rosenblatt et al. 2003).

Providing a structural basis for these early alterations in neuronal function, histopathological
studies documented a marked reduction in the number of axonal fibers and synaptic proteins
early in the course of HD (DiProspero et al. 2004b, Reiner et al. 1988, Levine et al. 2004, Li
et al. 2001). These alterations in axonal connectivity and synaptic function were consistent
with the progressive electrophysiological disturbances reported in association with polyQ-
Htt expression (Klapstein et al. 2001, Bibb et al. 2000, Cepeda et al. 2001, Laforet et al.
2001). Diffusion tensor imaging studies further demonstrated early signs of axonal
degeneration in white matter of living, presymptomatic HD patients (Weaver et al. 2009,
Rosas et al. 2009). Together, these observations suggested the existence of critical
pathogenic events affecting neuronal functionality prior to cell death in HD. The
accumulated evidence indicates that alterations in neuronal connectivity play a major role in
HD pathology, and that neurons affected in HD follow a “dying back” pattern of
degeneration (Fig. 3) (Li et al. 2001, Ferrante et al. 1991, Morfini et al. 2005, Wade et al.
2008). This emerging concept has far reaching implications regarding experimental
therapeutic strategies. For instance, trophic factor therapies, which have been proposed for
clinical testing (Ramaswamy et al. 2007a), have primarily focused on preserving striatal
perikarya. However, few of these studies (Emerich et al. 1997) have employed tools to
demonstrate that basal ganglia circuitry, including the essential aspect of sustained
innervation and appropriate connectivity, was maintained following trophic factor delivery.
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Cellular factors influencing mutant huntingtin-induced toxicity
Projection neurons in the striatum and the cerebral cortex are major regions of the HD
pathology, whereas interneurons within these structures largely survive the
neurodegenerative process (Albin et al. 1992b, Reiner et al. 1988, Richfield et al. 1995a). In
addition, MSNs in the direct pathway are affected earlier and to a larger extent than MSNs
in the indirect pathway. Differences in biochemical content, morphology and connectivity
among these neuronal cell types could provide clues towards an explanation of their
differential vulnerabilities in HD. In the case of striatal neurons, one or more unique
characteristics of MSNs could exacerbate the toxic effects of polyQ-Htt in these cells,
rendering an otherwise “manageable” insult into a deadly one. Alternately, a unique set of
protective characteristics might confer upon striatal interneurons an advantage to deal with
the toxic effects of polyQ-Htt. Similar speculations can apply to projection neurons and
interneurons in the cortex, but mechanisms underlying the differential vulnerability of
cortical neurons are rarely addressed (Cepeda et al. 2007, Levine et al. 2004).

Because a molecular basis for the toxic gain of function associated with polyQ-Htt has been
unclear, the contribution of cell type-specific traits in the modulation of polyQ-Htt-induced
toxicity can only be speculative. Below, we discuss the potential contributions of various
cell type-specific factors to the differential vulnerability of neurons characteristic of HD
(Table I). These factors are discussed within the context of several major pathogenic
mechanisms proposed for HD.

Htt distribution, expression levels, and somatic instability
In some familial forms of human diseases, the increased vulnerability of cell types affected
can be explained by differential expression of the pathogenic gene product. Following the
discovery of the Htt gene, multiple studies examined whether heterogeneities in Htt mRNA
and/or protein expression could underlie the increased vulnerability of MSNs and cortical
neurons in HD. However, extensive mRNA and protein expression analyses indicated that
Htt is expressed in nearly all tissues (Trottier et al. 1995, Li et al. 1993, Fusco et al. 1999).
Moreover, Htt expression levels were comparable in normal and HD patients (Bhide et al.
1996, Landwehrmeyer et al. 1995a). Immunochemical studies showed widespread
distribution of Htt protein throughout the brain (DiFiglia et al. 1995), with no evidence of
increased Htt expression in brain regions most affected in HD (Gutekunst et al. 1995, Ide et
al. 1995). In fact, detailed studies showed that striatal interneurons, largely unaffected in
HD, express higher levels of Htt than MSNs (Bhide et al. 1996), suggesting that differences
in mutant Htt expression levels do not account for the increased vulnerability of MSNs.

Recent studies in HD patients and animal HD models showed that the mutant CAG repeat
tract in the IT15 gene coding for Htt can undergo both inter- and intra-generational
variability in expansion size (Shelbourne et al. 2007, Ishiguro et al. 2001). Studies on end-
stage human HD autopsy material indicated that approximately 10% of sampled striatal cells
contained hyperexpansions of over 200 repeats (Kennedy et al. 2003). Further, age-
dependent instability of Htt was observed in the striatum and the cerebral cortex of knock-in
HD mice (Ishiguro et al. 2001, Kennedy & Shelbourne 2000). These findings led to the
proposal that increased instability of Htt's CAG expansion might contribute to the marked
vulnerability of striatal neurons in HD (Shelbourne et al. 2007). However, greater instability
of CAG repeats in the striatum was also observed in other polyQ-expansion diseases
displaying little or no striatal pathology (Lopes-Cendes et al. 1996, Watase et al. 2003).
Moreover, observations from a bacterial artificial chromosome-based HD mouse model
expressing polyQ-Htt with a stable CAA-CAG tract appeared inconsistent with a role of
somatic repeat instability in HD pathogenesis (Gray et al. 2008). These observations argued
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against a direct causal relationship between somatic CAG expansion mosaicism and the
increased vulnerability of striatal MSNs. Collectively, the evidence indicates that neither
heterogeneities in Htt expression levels nor somatic instability of the Htt gene play a role in
the differential vulnerability of striatal neurons affected in HD.

Mutant Htt aggregation
Following the discovery of the Htt gene, various antibodies mapping to different Htt
epitopes were generated (Li & Li 1998). These antibodies revealed N-terminal fragments of
polyQ-Htt that accumulate to form microscopically visible aggregates (or inclusions) in both
the nucleus (DiFiglia et al. 1997b) and neurites (Li et al. 1999a) of some, but not all,
neurons affected in HD patients (Kuemmerle et al. 1999, DiFiglia et al. 1997a). These
aggregates are also found in most HD rodent models (Li & Li 2004, Perez-Navarro et al.
2006), and thus represent a major histopathological feature of HD.

Initial focus on polyQ-Htt aggregates as a pathogenic agent of HD was fueled by
biochemical findings suggesting that elongated polyQ stretches form insoluble structures
toxic to cells (Perutz 1996, Rubinsztein & Carmichael 2003). Cellular HD models based on
overexpression of truncated polyQ-Htt constructs first proposed a positive correlation
between the abundance of polyQ-Htt aggregates and cellular toxicity (Cooper et al. 1998,
Hackam et al. 1998). However, Htt toxicity and aggregation were experimentally
dissociated in both cellular (Arrasate et al. 2004) and animal (Perrin et al. 2009) HD models.
At present, it remains unclear whether polyQ-Htt aggregates promote neuronal dysfunction
and death, or whether polyQ-Htt aggregation represent the outcome of endogenous cellular
mechanisms conferring protection against soluble, toxic polyQ-Htt species (Truant et al.
2008, Wang et al. 2008).

Despite the large body of research on polyQ-Htt aggregates, little evidence exists linking
these structures to the preferential degeneration of MSNs and cortical neurons in HD. As
observed in SBMA (La Spada & Taylor 2003), and other polyQ diseases (Michalik & Van
2003), a poor correlation was found between polyQ-Htt aggregation and neuronal
vulnerability (Saudou et al. 1998). Moreover, the presence of polyQ-Htt aggregates in
surviving neurons of advanced HD patients suggested these structures might even promote
neuronal survival (Truant et al. 2008). Experiments in cellular (Arrasate et al. 2004) and
animal (Perrin et al. 2009) HD models further supported this view. Finally, prominent
polyQ-Htt aggregates have been reported in striatal interneurons (Kuemmerle et al. 1999),
and in brain regions largely spared in HD such as the hippocampus (Becher et al. 1998,
Gutekunst et al. 1999). The precise contribution of polyQ-Htt aggregation to HD
pathogenesis remains unknown, but no definitive evidence exists linking the formation and
abundance of polyQ-Htt aggregates to increased neuronal cell vulnerability or survival in
HD.

Abnormalities in BDNF signaling
Mechanisms underlying neural degeneration in HD are unknown, but pathology has been
linked to alterations in trophic factor function, specifically the function of brain-derived
neurotrophic factor (BDNF) (reviewed in (Zuccato & Cattaneo 2007)). BDNF is normally
synthesized by neurons in the cortex and the SN, and subsequently transported along axons
to the striatum (Baquet et al. 2004). Results from experiments in various knockout mouse
models suggested that BDNF supports the survival of MSNs, leading to the proposal that
abnormalities in BDNF signaling could contribute to the reduced survival of striatal neurons
in HD [reviewed in (Zuccato & Cattaneo 2007)]. Supporting this idea, reductions in BDNF
levels were demonstrated in a number of cellular and animal HD models, as well as in HD
patients (Zuccato & Cattaneo 2007). Further, genetic studies indicate that reductions in

Han et al. Page 7

J Neurochem. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



BDNF levels selectively exacerbate polyQ-Htt-induced degeneration of enkephalinergic
striatal projection neurons in the indirect pathway (Canals et al. 2004).

Functional studies indicated WT-Htt promotes BDNF expression in both cortex and striatum
(Zuccato et al. 2001, Canals et al. 2001). Interestingly, this function of WT-Htt appears
compromised by polyQ expansion, raising the possibility that reductions in striatal BDNF
levels might result from polyQ-Htt-induced transcriptional changes (Zuccato et al. 2001,
Canals et al. 2001). Alternatively, reductions in striatal BDNF could result from polyQ-Htt-
induced reductions in anterograde axonal transport in cortical neurons (Gauthier et al.
2004b, Szebenyi et al. 2003a, Trushina et al. 2004), decreased BDNF endocytosis by MSNs
(Her & Goldstein 2008), or both. Mechanisms underlying BDNF deficits remain a matter of
debate.

Recent studies in a conditional knock out model indicated that total number of striatal
neurons remained unaffected by BDNF depletion, challenging a long-standing assumption
that BDNF serves as a critical survival factor for these neurons (Rauskolb et al. 2010).
Instead, results from studies in these mice suggest BDNF is required for dendritic growth of
striatal neurons (Rauskolb et al. 2010). The degree to which defects in BDNF signaling
contribute to the degeneration of striatal and cortical projection neurons in HD remains
unknown, but deserves further study.

Mitochondrial Alterations
Mitochondria are the chief cellular producers of chemical energy and major regulators of
metabolism, as well as crucial modulators of intracellular signaling and survival (reviewed
in (McBride et al. 2006)). Observations of cellular metabolism disturbances in HD patients
suggested that mitochondrial dysfunction might represent a critical pathogenic component
(Sanchez-Pernaute et al. 1999, Jenkins et al. 1993). Post-mortem studies on HD brain tissue
further supported this idea, showing decreased activity in complex II, III, and IV of the
mitochondrial respiratory chain (Gu et al. 1996)s. Experimental evidence using cultured
neurons (Seong et al. 2005) and HD animal models (Browne et al. 1997) showed deficits in
mitochondrial respiration in association with polyQ-Htt expression. Consistent with these
observations, various mitochondrial inhibitors generate striatal pathology and phenotypes
reminiscent of HD when administered systemically (Browne 2008). For example, accidental
ingestion of the irreversible mitochondrial inhibitor 3-nitropropionic acid (3-NP) caused
chorea, dystonia, and basal ganglia degeneration in humans (Ludolph et al. 1991). Also,
systemic administration of 3-NP in rats (Beal et al. 1993) and primates (Palfi et al. 1996)
caused striatal cell loss, inducing the accompanying movement deficits. However, unbiased
gene expression analysis comparing HD and 3-NP changes in energy metabolism found
significant differences and indicated that HD effects on metabolism were extramitochondrial
(Lee et al. 2007). Further, any treatment compromising the connectivity and survival of
neurons in the striatal pathway would produce similar clinical symptoms. Significantly,
functional experiments indicated that activation of the cJun Amino Terminal kinase (JNK)
pathway represented an essential step in 3-NP-induced striatal degeneration (Garcia et al.
2002), but mechanisms linking reductions in mitochondrial function and JNK activation in
HD remain elusive.

Several mechanisms have been proposed linking polyQ-Htt to mitochondrial dysfunction in
HD (Grunewald & Beal 1999), including polyQ-Htt-induced reductions in ATP generation
(Seong et al. 2005), Ca2+ buffering (Reddy et al. 2009, Panov et al. 2002), and
mitochondrial trafficking (Li et al. 2010, Reddy et al. 2009, Orr et al. 2008). While tissue-
specific patterns of mitochondrial protein composition have been described (Mootha et al.
2003), no evidence exists showing that polyQ-Htt differentially affects mitochondria from
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specific cell types, making unclear how polyQ-Htt-induced mitochondrial dysfunction might
differentially affect selected neuronal populations. Alternatively, it has been proposed that
MSNs are uniquely susceptible to defects in mitochondria-dependent energy production
(Beal 1992). Unlike other neurons in the basal ganglia, MSNs display unusually low levels
of spontaneous discharge (Mitchell et al. 1999). This distinctive electrophysiological
characteristic of MSNs could place a higher energy demand on these neurons, because a
large portion of their ATP would presumably be used for the maintenance of a
hyperpolarized state (Calabresi et al. 1995). The susceptibility of striatal neurons to
mitochondrial inhibitors would therefore reflect unique energy requirements by these cells
(Lee et al. 2007). However, disruption of mitochondrial function does not typically produce
HD-like pathology. For example, systemic application of 3-NP induced neuronal cell
pathology in the hippocampus and the thalamus, structures which are normally affected only
at late HD stages (Bossi et al. 1993). Further, different mouse strains display differential
vulnerability to 3-NP administration (Alexi et al. 1998), and different patterns of neural
degeneration have been described for different mitochondrial inhibitors (McLin et al. 2006).
Most studies of mitochondrial pathology in HD look at advanced stages of the disease, when
mitochondrial-based cell death pathways may be activated as a secondary response to
primary pathogenic mechanisms (Bredesen et al. 2006, Jellinger 2006). Such observations
indicate that much remains to be learned regarding molecular factors that underlie the
selective vulnerability of striatal neurons secondary to mitochondrial changes.

Neurochemical content
Based on their neurochemical content, MSNs can be classified either as part of the
“striosomes” (also referred to as “patches”) or as part of the “extrastriasome” (also known as
“matrix”) compartments (Graybiel 1990, Gerfen 1992). Projection MSNs represent the main
cell type present in striosomes, while striatal interneurons are the dominant cell type at the
matrix compartment. According to this classification, MSNs in the striosomal compartment
are among the first to degenerate in HD (Hedreen & Folstein 1995). Various biochemical
markers have been identified showing differential expression between the striosomal and
matrix compartments, including neuropeptides and neurotransmitter receptors (Table I).

Neuropeptide and calcium-binding proteins
Besides expressing the neurotransmitter GABA, striosomal MSNs express higher levels of
various neuropeptides including ENK, SP, dynorphin (DYN, a class of opioid peptides
derived from the precursor protein prodynorphin) and neurotensin (NT, a 13 amino acid
neuropeptide), among others (Holt et al. 1997, Angulo & McEwen 1994). Interestingly, the
expression of specific neuropeptides is associated with increased vulnerability of MSN
subtypes. As mentioned above, MSN neurons in the “direct pathway” express DYN and/or
SP, whereas MSNs in the “indirect pathway” express ENK (Gerfen & Young 1988).
However, it remains unclear whether expression of DYN and/or SP exacerbates polyQ-Htt
toxicity, or whether ENK expression might provide a protective effect. Similarly,
interneurons expressing nitric oxide synthase (NOS), somatostatin and neuropeptide Y
(Ferrante et al. 1985) are particularly resistant in HD, but mechanisms making these proteins
protective remain elusive and thus such associations are correlative.

A positive association has been observed between the level of expression of some calcium-
binding proteins (i.e., calbindin, parvalbumin and caretinin) and the survival of interneurons
in HD (Gerfen et al. 1985). Such associations led to the proposal that higher levels of
calcium-binding proteins in striatal interneurons may protect these cells from glutamate-
mediated excitotoxic mechanisms (Mitchell & Griffiths 2003). However, these proteins are
not exclusively distributed in the striasomal compartment (Gerfen et al. 1985), and a small
fraction of calbindin or parvalbumin positive interneurons degenerate in HD (Mitchell et al.
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1999). Conversely, decreased expression of hippocalcin and other calcium sensor proteins in
MSNs was proposed to contribute to the increased vulnerability of these cells in HD (Luthi-
Carter et al. 2000). However, functional experiments based on lentivirus-mediated
hippocalcin expression yielded results in direct contradiction with this latter hypothesis
(Rudinskiy et al. 2009).

Glutamate-related factors
Glutamate is the most abundant excitatory neurotransmitter in mammalian brain, activating
both N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors (i.e.,
AMPA and kainate receptors) (Gasic & Hollmann 1992). Abnormally sustained stimulation
of NMDA receptors by glutamate can lead to prolonged increases in intracellular calcium,
triggering various intracellular events including activation of kinases and phosphatases,
calcium-dependent proteases, synthesis of nitric oxide synthase (NOS), generation of
reactive oxygen species, mitochondrial dysfunction, and activation of apoptotic pathways
(reviewed in (Aarts & Tymianski 2004)). Relevant to the subject of this review, both striatal
MSNs and cortical neurons receive a rich supply of excitatory glutamatergic inputs (Bouyer
et al. 1984). Striatal MSNs in particular are constantly stimulated by these inputs, remaining
hyperpolarized much of the time (Wilson & Kawaguchi 1996). These observations led to
suggestions that increased exposure of MSNs to cortical glutamate stimulation could render
these cells more vulnerable to excitotoxic damage. This idea provided the rationale for the
use of NMDAR antagonists in HD (Kieburtz et al. 1996, Bonelli & Hofmann 2004, Handley
et al. 2006), but these treatments had no beneficial effects in HD patients (Handley et al.
2006).

Experimental evidence using intrastriatal injection of agonists for NMDA (e.g., quinolinic
acid) and non-NMDA (e.g., kainic acid) receptors in rodent and non-primate animals
demonstrated greater vulnerability of MSNs to glutamate-induced excitotoxicity, compared
to striatal interneurons (McGeer & McGeer 1976, Coyle & Schwarcz 1976, Emerich et al.
1996). However, mechanisms linking polyQ-Htt expression to the increased vulnerability of
these neuronal subtypes to glutamate toxicity have not yet been established. Despite this,
various HD models have been proposed based on the administration of glutamate receptor
agonists (McGeer & McGeer 1976, Coyle & Schwarcz 1976). While these models generally
resemble the HD phenotype of striatal dysfunction, their time window for inducing cell
death contrasts sharply with the dying-back pattern of degeneration observed in HD (Fig. 3).
Further, some studies showed that the pattern of striatal neuron degeneration resulting from
systemic quinolonic acid injection differs significantly from that of HD, suggesting different
pathogenic mechanisms (Figueredo-Cardenas et al. 1994). Relevant HD animal models need
to replicate the sequence of changes in neuronal connections and neuronal populations seen
in the disease, including the “dying back” pattern of neuronal degeneration. Since the
neurological symptoms in HD reflect loss of functional connections made by affected
neurons, any treatment that disrupted these synaptic relationships would be expected to
exhibit similar clinical symptoms, without necessarily involving the pathogenic mechanisms
initiated by polyQ-Htt.

A molecular basis underlying the differential vulnerability of striatal neurons to glutamate
excitotoxicity is currently unknown, but reductions in levels of calcium-binding proteins,
heterogeneous expression of NMDA receptor subtypes, and abnormalities in glial function
have all been proposed as contributing factors (reviewed in (Mitchell et al. 1999)).

NMDA glutamate receptors exist as heteromeric dimers of NR1 and NR2 (A, B, C and D)
subunits (Rigby et al. 1996). In the brain, levels of NR1 expression greatly exceeds that of
the other subunits combined, whereas NR2A, B, C and D subunits varied widely (Goebel &
Poosch 1999). NR1 subunits are essential for NMDA receptor function, but
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heteromerization with NR2 subunits increases both the permeability of the channel (over
100 fold), and its deactivation time (Schoepfer et al. 1994). Significantly, differential
expression of NMDA subunits have been observed among striatal neurons (Cicchetti et al.
2000), with MSN projection neurons reportedly expressing higher levels of the NR2B
subunit, and striatal interneurons predominantly expressing NR2D (Landwehrmeyer et al.
1995b, Kuppenbender et al. 2000). While differences in NMDA receptor subtype expression
could help explain the increased vulnerability of MSNs over striatal interneurons to NMDA
agonists, these do not explain the minimal HD pathology observed in the hippocampus and
olfactory bulb, two other CNS regions showing higher levels of NR2B expression than the
striatum (Goebel & Poosch 1999, Laurie et al. 1997). Recently, experiments involving
selective expression of polyQ-Htt in astrocytes suggested that reduced expression of
glutamate transporter in these cells might contribute to increases in extracellular glutamate
levels (Bradford et al. 2010). Currently, no consensus exists on mechanisms by which
polyQ-Htt expression might promote imbalances in glutamate signaling (Mitchell et al.
1999, Sieradzan & Mann 2001, Estrada Sanchez et al. 2008), nor is clear how the
contribution of glutamate signaling relates to the early axonal and synaptic degeneration
phenotype of HD.

Dopamine signaling
Like glutamate, dopamine (DA) is a key neurotransmitter in several CNS circuits, and the
striatum is the brain region most heavily innervated by dopaminergic afferents. These fibers
originate from the SN (Albin et al. 1989) (Figs. 1-2). Interestingly, the striatal DA content
exhibits a dorsal to ventral gradient (Cass 1997) that is consistent with the progression of
pathology in HD (Vonsattel & DiFiglia 1998). Based on these observations, and findings of
DA signaling deregulation in HD models and patients (Tang et al. 2007), a role of DA in the
increased vulnerability of MSNs has been proposed (Jakel & Maragos 2000). DA in the
striatonigral circuit exerts excitatory signals by activation of D1 receptors, and inhibitory
signals by activation of D2 receptors (Albin et al. 1989) (Fig. 2). MSNs of the “indirect
pathway” express high levels of D2, in contrast with the MSNs in the “direct pathway”,
which express high levels of D1 (Gerfen et al. 1990), suggesting that differences in DA-
induced signaling could modulate the toxic action of polyQ-Htt. Consistent with this idea,
activation of the JNK pathway induced by polyQ-Htt (Phelan et al. 2001, Apostol et al.
2006, Morfini et al. 2009b) was reportedly exacerbated by D2 receptor activation (Luo et al.
1998, Charvin et al. 2005). However, both direct and indirect pathways are eventually
affected in HD. Again, the loss of synaptic connections early in the disease make it difficult
to determine whether altered dopamine signaling represents a primary or secondary element
in HD pathogenesis.

The cumulative evidence indicates that dopamine and perhaps other neurotransmitters might
modulate the toxic effects of polyQ-Htt and thus may represent factors contributing to the
differential vulnerabilities of striatal neurons in HD. While most studies have focused in
altered calcium homeostasis and induction of apoptosis as a consequence of abnormal
neurotransmitter signaling (Tang et al. 2007, Sieradzan & Mann 2001), little emphasis has
been placed on well-established events downstream of neurotransmitter receptor activation,
including the modulation of kinase-dependent signaling pathways (Luo et al. 1998, Zhen et
al. 1998). Indeed, specific neurotransmitters and neuropeptides might act synergistically
with polyQ-Htt-induced pathogenic kinase-mediated pathways (i.e., JNK activation) to
increase the vulnerability of specific neuronal populations (Morfini et al. 2005).
Alternatively, some neurotransmitters could promote activation of kinase pathways (e.g., the
Akt pathway) that counteracting toxic ones elicited by polyQ-Htt (Humbert et al. 2002, Kim
et al. 2002). Accordingly, cell type-specific changes in kinase activity and patterns of
protein phosphorylation have been found in association with drugs that target the striatum
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(Bateup et al. 2008). Additional studies are needed to illuminate molecular mechanisms by
which specific neurotransmitters might modulate polyQ-Htt-induced toxicity. Such studies
will help determine the precise contribution of each neurotransmitter system to the
differential vulnerability of neuronal subtypes in HD.

Alterations in Gene Expression
A plethora of gene studies in transgenic HD models and HD human tissue initially described
polyQ-Htt-induced transcriptional alterations (reviewed in (Thomas 2006, Cha 2007)).
Major advances in molecular biological and computer technology allowed for the screening
of large numbers of candidate genes in an unbiased fashion. Specifically, microarray studies
screened HD-related changes in the expression levels of thousands of RNAs encoding
molecular components involved in various cellular processes including calcium
homeostasis, intracellular signaling, energy metabolism and the transcriptional machinery
(Thomas 2006, Cha 2007). Changes in the expression levels of mRNAs encoding
neurotransmitters and their receptors, synaptic proteins, energy metabolism and mediators of
intracellular signaling have all been described (reviewed in (Cha 2007)). However, data
obtained thus far have not provided an explanation for the differential cellular vulnerability
of HD. Further, it is unclear whether changes in gene expression identified thus far play a
direct role on HD pathogenesis or represent a secondary response to primary pathogenic
events. Changes in the levels of specific genes could result from compensatory mechanisms,
making difficult to establish the relevance of such changes to HD pathogenesis.
Additionally, most gene expression studies screened for transcriptional changes in the
striatum or cortex, but few established quantitative comparisons between the most affected
MSNs or pyramidal neurons and mildly affected or unaffected cells such as striatal and
cortical interneurons. No signature pattern of gene expression changes has been defined for
neurons affected in HD. Currently, there is no direct evidence linking changes in the
transcription of specific genes to the differential vulnerability of neuronal populations in
HD.

Deficits in axonal transport
Although no common biochemical features have been found among the most vulnerable
neuronal cell types in HD, an analysis of their morphological characteristics does reveal a
common theme. Specifically, neurons affected in HD within the striatum and the cortex are
principally projection neurons (Cicchetti et al. 2000) (Table I). Indeed, MSNs and cortical
neurons affected in HD project axons to anatomically distant target structures outside the
striatum and the cortex, respectively (Fig. 2). In contrast, striatal and cortical interneurons
that are mainly spared in HD bear short axons that remain within the boundaries of these
brain structures. This morphological and functional difference has been proposed to play a
role in the differential vulnerability of neurons observed in HD (Cicchetti et al. 2000), as
well as other neurodegenerative diseases (Mattson & Magnus 2006, Morfini et al. 2009a,
Morfini et al. 2009b). The lack of protein synthesis machinery in axons and the enormous
distances separating the cell body from the axonal and synaptic domains impose a unique set
of challenges to neuronal cells. One such challenge includes the transport and delivery of
proteins and lipid components along axons, a process collectively referred to as axonal
transport (AT) [reviewed in (Morfini et al. 2006b, Morfini et al. 2005)]. In mature neurons,
AT of membrane-bounded organelles (MBOs, including mitochondria, synaptic vesicles,
and plasma membrane components) from their sites of synthesis in the neuronal cell body to
their final destination in axons is mainly executed by the microtubule-based motor protein
conventional kinesin. The multi-subunit motor cytoplasmic dynein on the other hand,
translocates signaling endosomes, multivesicular bodies, and lysosomes from axons back to
the neuronal cell body [reviewed in (Morfini et al. 2006b)]. The crucial dependence of
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neuronal function and axonal maintenance on AT is highlighted by observations linking loss
of function mutations in these molecular motors above to various neurological diseases
(Reid et al. 2002, Hafezparast et al. 2003, Roy et al. 2005). Significantly, pathological
studies revealed a “dying-back” pattern of neuronal degeneration in these diseases,
suggesting that alterations in AT might also represent a critical pathogenic event in HD (Roy
et al. 2005, Morfini et al. 2005, Morfini et al. 2009a).

Multiple independent studies provided evidence of AT deficits in HD. Ultrastructural
observations first showed reduced number of synaptic vesicles, and abnormal MBO profiles
within axons of affected neurons (Li 1999,Li et al. 2001,Li & Li 2004). Subsequently,
reports from various experimental models demonstrated that inhibition of AT represents an
important pathogenic event in HD (Gunawardena et al. 2003,Szebenyi et al. 2003b,Lee et
al. 2004,Sinadinos et al. 2009,Morfini et al. 2009b) and other polyQ-expansion diseases
(Morfini et al. 2006a). Studies in isolated squid axoplasm first showed that polyQ-Htt
inhibits AT in a manner independent of alterations in the neuronal cell body (Szebenyi et al.
2003b,Morfini et al. 2009b). Subsequent experiments in cultured cells (Gauthier et al.
2004a,Her & Goldstein 2008) and Drosophila neurons (Sinadinos et al. 2009,Lee et al.
2004) further documented reductions in AT and accumulation of axonal vesicle cargos in
association with polyQ-Htt expression. These observations, the absolute reliance of neurons
on AT, and the “dying-back” pattern of neuronal degeneration seen in HD all support the
concept that AT deficits might represent a major pathogenic event underlying the increased
vulnerability of projection neurons in this disease (Morfini et al. 2009b).

Reductions in AT observed in various HD experimental models raised the question of how
polyQ-Htt inhibits AT. An explanation to this question appears to be that polyQ-Htt inhibits
AT by promoting alterations in the activity of kinases involved in the phosphorylation of
molecular motor proteins (Morfini et al. 2005, Morfini et al. 2009b). Consistent with this
notion, aberrant patterns of proteins phosphorylation including neurofilaments (Nihei &
Kowall 1992, DiProspero et al. 2004a) and synapsin (Lievens et al. 2002), as well as
increased activation of kinases all represent well-established HD features (Apostol et al.
2006, Garcia et al. 2004, Liu 1998). Expression of polyglutamine-expanded huntingtin
activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line
(Liu 1998). Accordingly, studies in isolated squid axoplasm and a knock-in mouse model
further showed polyQ-Htt inhibits AT through a mechanism involving activation of the JNK
pathway and phosphorylation of the molecular motor protein conventional (Morfini et al.
2009b). Three JNK isoforms exist in mammals (JNK1, JNK2 and JNK3)(Brecht et al. 2005).
Neuron-specific JNK3 (Yang et al. 1997), but not ubiquitously expressed JNK1, mediated
the inhibitory effects of polyQ-Htt on AT, thus providing a partial explanation for the
increased vulnerability of neurons to polyQ-Htt (Morfini et al. 2009b). Increased activation
of JNK3 in HD would promote reductions in AT of various MBO cargoes, leading to
deficits in synaptic and axonal function and maintenance. Increased activation of the JNK
pathway in HD is also consistent with the changes in gene transcription and activation of
apoptotic pathways widely reported in association with polyQ-Htt expression (Phelan et al.
2001, Merienne et al. 2003).

Deficits in AT appear to play a role in the degeneration of neurons observed in HD.
Obviously, longer axons characteristic of projection neurons mean that larger cellular
volumes and surface area must be maintained, placing greater demands on AT-related
mechanism. However, why deficits in AT in HD would affect projection neurons in the
striatum and the cortex to a greater extent than projection neurons in other brain structures
remains to be established. Several possibilities exist. Among these, MSNs and cortical
projection neurons affected in HD may have unique AT requirements or specializations that
makes them more vulnerable to polyQ-Htt-induced toxicity. Consistent with this idea,
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cytotypic differences in AT have been documented in vivo for different neuronal populations
(Oblinger et al. 1987). Genetic evidence also demonstrates cell type-specific AT
specializations. For example, whereas some mutations in the molecular motor protein
subunit dynactin primarily cause motor neuron disease (Puls et al. 2005, Puls et al. 2003), a
different set of mutations in this protein result in Perry's syndrome, which lack motor neuron
pathology and instead is characterized by degeneration of cortical and extrapyramidal
neurons (Farrer et al. 2009). Alternatively, one or more components mediating the effects of
polyQ-Htt on AT (i.e., JNK3) might be expressed at higher levels in neurons affected in HD.
An exhaustive examination of JNK isoforms in the brain has not been done, but some
reports suggest differential expression of each isoform in different areas (Brecht et al. 2005).
A molecular basis underlying the increased vulnerability of MSNs and cortical projection
neurons to polyQ-Htt-induced alterations in AT is currently unknown, but likely reflects
unique AT specializations of these neuronal cell types (Oblinger et al. 1987, Morfini et al.
2001, Her & Goldstein 2008).

Conclusions
In HD, the ubiquitous pattern of polyQ-Htt expression contrasts sharply with the increased
vulnerability of specific populations of neurons in the striatum and cerebral cortex. The
consistent loss of these neuronal populations has been proposed to result from “selective”
vulnerability of these cells to the toxic gain of function associated with polyQ expansion in
Htt. However, multiple lines of evidence clearly indicate that the toxic effects of polyQ-Htt
are not restricted to specific neuronal populations. Instead, the evidence suggests that cell
type-specific features might render such populations increasingly vulnerable to polyQ-Htt-
induced toxicity.

Several scenarios, not mutually exclusive, appear consistent with the unique cellular
topography of neuronal degeneration in HD. One or more molecular components involved in
polyQ-Htt toxicity could be enriched in affected cells, but the identity of such component(s)
remains elusive. Alternatively, cell type-specific features could render some neurons more
vulnerable to the toxic effects of polyQ-Htt. Such features would represent the “weakest link
in the chain” and likely be associated with critical functional needs of affected cells. In this
regard, it is noteworthy that thus far, the presence of long axons constitutes the only
common characteristic observed among neuronal cell types affected in HD. Indeed, it is
striatal and cortical projections neurons bearing axons that project to anatomically remote
structures that mainly degenerate in HD, whereas interneurons bearing short axons are
largely spared. Significantly, polyQ-Htt has been shown to induce decrements in axonal
transport, a cellular process critical for the function and maintenance of axons. Moreover,
degeneration of neurons with defective axonal transport follows a “dying back” pattern that
is consistent with that of neurons affected in HD. At present, it is unclear why deficits in
axonal transport induced by polyQ-Htt would affect projection neurons in the striatum and
the cortex to a greater extent than projection neurons in other brain structures, but
differences in the composition, amounts, and regulation of axonal transport have all been
documented.

An understanding of the interactions between polyQ-Htt and cell type-specific
characteristics should provide a novel conceptual framework for the development of
effective therapeutic strategies in HD. Such knowledge could yield treatments that
specifically address neuronal populations affected in this disease. Regardless, preventing
loss of neuronal connectivity should represent a primary goal of any effective therapeutic
strategy.
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Figure 1. Overview of HD pathology
A subset of projection neurons in the striatum and the cortex (represented by dashed lines)
are particularly vulnerable in HD. These include medium spiny neurons (MSNs, pink dashed
lines) of the striatum and large pyramidal projection neurons in cortical layers V, VI and III
of the cerebral cortex (gray dashed lines). MSNs in the “indirect pathway” of the basal
ganglia project to the external segment of the globus pallidus (GPe) and are affected early in
the course of the disease. As HD progresses, MSNs projecting to the internal segment of the
globus pallidus (GPi) via the “direct pathway” and cortical pyramidal cells projecting to the
striatum are also impaired. Remarkably, most interneurons in both the striatum (pink solid
lines) and the cerebral cortex (gray solid lines) are largely spared. This morphological and
functional difference has been proposed to play a role in the differential vulnerability of
neurons observed in HD (Cicchetti et al. 2000), as well as other neurodegenerative diseases
(Mattson & Magnus 2006, Morfini et al. 2009a, Morfini et al. 2009b). Abbreviations: STN:
subthalamic nucleus; GPe: external globus pallidus; GPi: internal globus pallidus; SN:
substantia nigra.
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Figure 2. Cell type-specific characteristics of neuronal populations affected in HD
Cumulative pathological and experimental evidence indicates that cell type-specific
characteristics modulate the vulnerability of specific neuronal populations to mutant
huntingtin expression. Striatal medium spiny neurons (MSN) and cortical neurons affected
in HD project axons to anatomically distant target structures outside the striatum and the
cortex, respectively. In contrast, striatal and cortical interneurons (IN) that are largely spared
in HD bear short axons that remain within the boundaries of these brain structures.
Differences in biochemical content may also contribute to the differential vulnerability of
these neuronal populations, but the underlying pathogenic mechanisms remain unknown.
MSNs are GABA-ergic projection neurons (GABA, blue circles) and receive brain-derived
neurotrophic factor (BDNF, yellow circles) from cortical glutamatergic (Glutamate, red
circles), as well as dopaminergic afferents (Dopamine, white circles) from the substantia
nigra (SN). Interestingly, more vulnerable MSNs in the “indirect pathway” express
enkephalin peptides (Enkephalin, green circles) and D2 dopamine receptors (white ovals,
bottom), while less vulnerable MSNs in the “direct pathway” express substance P/dynorphin
(purple circles) and D1 receptors (white ovals, top). Abbreviations: MSN: medium spiny
neuron; IN: interneuron; BDNF: brain-derived neurotrophic factor; D1: dopamine receptor
subtype 1; D2: dopamine receptor subtype 2; NMDAR: N-methyl-D-aspartic acid receptor;
GABA: γ-aminobutyric acid; GPe: external globus pallidus; GPi: internal globus pallidus;
SN: substantia nigra; STN: subthalamic nucleus.
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Figure 3. “Dying back” pattern of neuronal degeneration in HD
A) Neurons undergo normal development, retaining normal connectivity and functionality
prior to disease state. B) Affected neurons begin to exhibit signs of synaptic and axonal
alterations early in the disease process, including abnormalities in the phosphorylation of
axonal proteins, abnormal accumulation of membrane-bounded organelles (blue circles) in
axons (Davies & Scherzinger 1997, DiFiglia et al. 1997a, Sapp et al. 1999, Davies et al.
1997), and loss of synaptic proteins (DiProspero et al. 2004b). These changes correspond to
functional impairments in synaptic function that appear very early on, even in
presymptomatic stages (Cepeda et al. 2003, Levine et al. 2004). C) Axonal degeneration
steadily advances in a retrograde fashion, and nuclear/neuritic Htt aggregates (red stars)
become evident. As HD progresses, dysfunction of striatal and corticostriatal projection
neurons manifest in clinical symptoms such as motor deficits and cognitive decline long
before evidence of cell death (Mizuno et al. 2000). D) Disruption of functional synaptic
connectivity and eventual loss of appropriate trophic support (Zuccato & Cattaneo 2007)
ultimately result in cell death, likely by apoptosis-related mechanisms (Vis et al. 2005).
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