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Abstract
Structural Equation Mixture Models(SEMMs) are latent class models that permit the estimation of
a structural equation model within each class. Fitting SEMMs is illustrated using data from one wave
of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM
parameter estimation and correct class assignment are investigated in a large scale simulation study.
Design factors of the simulation study are (im)balanced class proportions, (im)balanced factor
variances, sample size, and class separation. We compare the fit of models with correct and
misspecified within-class structural relations. In addition, we investigate the potential to fit SEMMs
with binary indicators. The structure of within-class distributions can be recovered under a wide
variety of conditions, indicating the general potential and flexibility of SEMMs to test complex
within-class models. Correct class assignment is limited.

Introduction
Finite mixture models have a long history of being used to test hypotheses about unobserved
population heterogeneity (e.g., Pearson, 1894, 1895; Hosmer, 1973; Titterington, Smith, &
Makov, 1985; McLachlan & Peel, 2000). Structural Equation Mixture Models (SEMMs) are
a special case of finite mixture models which have been proposed to compare latent classes
while specifying Structural Equation Models (SEMs) within each class (Jedidi, Jagpal, &
DeSarbo, 1997b). SEMMs are a generalization of Factor Mixture Models (FMMs; e.g., Yung,
1997; Dolan & van der Maas, 1998; Muthén & Shedden, 1999; Lubke & Neale, 2006) to include
regressions between latent factors within each class (Arminger, Stein, & Wittenberg, 1999;
Henson, Reise, & Kim, 2007). FMMs have received more research attention and application
than SEMMs, primarily in the special case of the Growth Mixture Model (GMM) and its
variants (e.g. Muthén & Muthén, 2000; Nagin & Land, 1993). Applied use of the SEMM has
been seen in marketing research on market segmentation (Jedidi, Jagpal, & DeSarbo, 1997a)
and in sociological research on individual lifestyles (Arminger & Stein, 1997). Potential
applications within psychology are abundant, and include in principle any investigation of
structural relations between several factors that might differ across unobserved groups.

Initial work on the performance of SEMM's found that within class parameter estimates can
typically be recovered when the correct number of classes is specified and the correct structural
relations between factors within classes are specified (Henson et al., 2007). This is true in cases
where classes differed with respect to latent variable correlations, with respect to the factor
mean separation, or a combination of the two. As expected, within class parameter estimates
were less accurate for the smaller of two classes when relative class sizes were imbalanced
(e.g., 90% in the larger class and 10% in the smaller class with total sample sizes of 500, 1500,
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and 2500). However, it was also shown that currently used fit statistics could not always
correctly identify the true number of classes when comparing models with increasing numbers
of classes, especially for smaller sample sizes (Henson et al., 2007).

The current study extends the prior research in various ways. Substantive research in
psychology, psychiatry, health, and aging often posits classes of very small sizes relative to
the majority. We examine a greater imbalance in relative class sizes than has previously been
explored. In addition, the empirically relevant condition where latent variable variances are
imbalanced across classes is considered. For example, depending on the item means or
thresholds, respondents in the majority class may have very little variance in their responses
while the minority class may have a much larger variability, or vice versa. The aspects of
imbalanced class size and imbalanced factor variances are investigated for varying sample
sizes, and class separations. While prior research has focused on finding the correct number
of classes, the current study focuses on finding the correct regression relationships between
latent variables. The number of latent factors within class is extended to three, and different
structural relations are investigated across classes. In addition, this study investigates the
correct assignment of subjects to their true class. The response format is continuous, as
empirical studies with several factors commonly rely on subscale scores. Additional results
with binary data are provided.

To demonstrate several practical aspects of fitting SEMM models to data, and to obtain
reasonable parameter values to inform data generation for the simulation study, the current
study starts with an illustration using a subset of the data from the Notre Dame Longitudinal
Study of Aging (Wallace, Bisconti, & Bergeman, 2001). The data are subscales measuring the
three factors stress, hardiness, and life satisfaction. The interrelations of these three factors
might vary substantially in the elderly, and it might be overly simplistic to assume a
homogeneous population. Instead, various subpopulations may exist that differ with respect to
the structural relations between the three factors. One way to investigate heterogeneity is to
use observed grouping variables such as gender. However, it is often the case that a single
observed grouping variable can not fully account for all heterogeneity. Attempting to use
multiple grouping variables can quickly lead to a large number of cells in a factorial table of
grouping variables, complicating the interpretation of results. An alternative is to attempt to
account for heterogeneity using a small number of latent classes. In the current study a SEMM
model is used to explore latent class membership and differences in regression relationships
between stress, hardiness, and life satisfaction across classes.

The current study combines the illustration of fitting SEMMs to empirical data and a large
scale simulation study. The focus of the simulation study is threefold. The first aim is to evaluate
the conditions under which differences in the covariance structure of within class factors can
be detected when fitting SEMM's. Specifically, we focus on two aspects, namely (i) whether
fitting models with unconstrained factor covariance matrices can detect evidence for
differences in factor regressions between classes, and (ii) whether models with correctly and
incorrectly specified within-class factor regressions can be distinguished. The second goal of
this study is the investigation of parameter estimate accuracy for the within-class structural
relations. Thirdly, correct assignment of cases to the classes is assessed.

The paper is structured as follows. A description of the SEMM as an extension of the FMM is
followed by the application of the model to data from one wave1 of the Notre Dame
Longitudinal Study of Aging. The application serves to highlight aspects of the performance
of SEMMs that are investigated in detail in the simulation study. The simulation study

1SEMM performance should first be evaluated at a single time point before combining time points in a more complex model fitted to
longitudinal data. Extension to Structural Equation Growth Mixture Modeling is currently being evaluated.
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addresses the three aims described above, and is supplemented with additional results
concerning larger effect sizes of within-class structural relations and models with binary
responses.

The Structural Equation Mixture Model
A basic assumption of finite mixture models is that the distribution of the observed data is a
mixture distribution. Mixture distributions are a weighted sum of two or more component
distributions, and the weights correspond to the relative size of a component. The latent classes
of a mixture model correspond directly to the component distributions. Mixture models for k
classes assume a mixture distribution with k components, and specify submodels for each of
the component distribution, for example which parameters are specific for a given component
or latent class, and which parameters are class-invariant. The latent classes can be interpreted
in two ways. In a direct interpretation the latent classes are basically equated to naturally
occurring qualitatively or quantitatively unique groups of subjects. This interpretation has
made mixture modeling an appealing tool for substantive researchers, and has motivated post
hoc tests that are based on assigning subjects to the latent classes. Alternatively, an indirect
interpretation simply states that the latent classes are used to approximate non-normal
distributions, and that there is no necessary one-to-one relation between latent classes and
distinct groups of subjects (Titterington et al., 1985; Lubke & Neale, 2006, 2008).

Regardless of how classes are interpreted, the joint distribution of the observed data is the
weighted sum of the component distributions. Details of general finite mixture models can be
found in Everitt and Hand (1981), Titterington et al. (1985), or McLachlan and Peel (2000).
SEMMs assume multivariate normal component distributions, and impose a SEM on the within
class mean vector and covariance matrix. The SEMM is given by

(1)

where y is a vector of p observed continuous variables, K is the number of classes, πk are the

class proportions where , ϕk are multivariate normal probability density functions
(PDF) with class specific mean vectors μk and class specific covariance matrices Σk. The mean
vectors and covariance matrices can be further structured by imposing a factor model, leading
to the factor mixture model (FMM)

(2)

(3)

where νk is a p × 1 vector of equation intercepts in class k, p is the number of observed variables,
Λk is a p × mk matrix of factor loadings in class k, mk is the number of factors in class k, αk is
an mk × 1 vector of factor means in class k, Ψk is the mk × mk covariance matrix for the factors
in class k, and Θk is a p × p covariance matrix of the measurement errors with error variances
on the diagonal. Extending the FMM to the SEMM, the model implied class specific mean
vectors and covariance matrices are given as
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(4)

(5)

where I is a mk × mk identity matrix, and Bk is an mk × mk matrix of regression coefficients
between factors.

The model implied mean vector and covariance matrices given in Equations 2 and 3 permit
specification of within class factor means, factor variances and covariances, factor loadings,
intercepts, and error variances (subject to identifiability constraints). FMM's have been
described in a growing body of literature including Yung (1997), Vermunt and Magidson
(2003), and Lubke and Muthén (2005). The model implied mean vector and covariance
matrices given Equations 4 and 5 extend the FMM, allowing the specification of structural
relations between factors. SEMM's have been described by Jedidi et al. (1997b), Dolan and
van der Maas (1998), Arminger et al. (1999), Bauer and Curran (2004), and Henson et al.
(2007).

Ordered categorical and binary data can be modeled by assuming that a continuous latent
response variable, typically denoted y*, underlies the observed categorical data, and by
imposing a threshold structure on the distribution of the latent response variable (Agresti,
2002). Using this approach, Equation 1 is rewritten for ordered category and binary data as

(6)

Additional constraints are needed to identify this model, and commonly involve assuming
standard normal distributions for the latent response variables and setting the regression
intercepts ν in equations 2 and 4 to zero. More specific information concerning the model for
categorical data can be found in Millsap and Tein (2004) and Muthén and Asparouhov
(2002).

Fitting SEMMs to empirical data: An illustration using data from the Notre
Dame Longitudinal Study of Aging

In this section the relationship of stress, hardiness, and life satisfaction in an elderly sample of
313 participants is used to illustrate a SEMM. The section focuses on some of the general
decisions that play a role when conducting a SEMM analysis.

The data come from the third wave of the Notre Dame Longitudinal Study of Aging.
Participants were recruited via systematic phone number sampling as described in Wallace et
al. (2001). A stress factor was measured by the items of the Perceived Stress Scale (PSS; Cohen,
Kamarck, & Mermelstein, 1983), and asks about feelings during the last month using items
such as ‘How often have you felt that things were going your way’. The items of the
commitment subscale of a hardiness measure (Bartone, Ursano, Wright, & Ingraham, 1989)
were used as a second factor. An example of a commitment item is ‘By working hard you can
always achieve your goals’. A life satisfaction factor was measured by items from the Life
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Satisfaction scale (Wood, Wylie, & Sheafor, 1969). The scale includes items such as ‘I feel
my age, but it does not bother me’. All indicators are 4-point ordered category data, and are
modeled as such. The stress factor, commitment factor, and life satisfaction factors are use to
illustrate the application of SEMM analyses.

Preliminary steps and considerations
Prior to fitting a hypothesized SEMM, researchers should consider the complexity of the model
in view of the available sample size. The data subset used in the current illustration consists of
313 participants with complete data. The three scales measuring stress, commitment, and life
satisfaction have a total of 41 items, each with 4 response categories. To reduce the number of
model parameters for the current illustration, we select 4 items each from the life satisfaction
and perceived stress scales, and 2 items from the commitment scale. In an empirical study,
item selection should be guided by theoretical considerations as well as considerations
concerning the number of parameters and the measurement properties of the items 2.

After establishing the structure of the measurement model, factor mixture models are fitted
with an increasing number of classes. This is done while imposing minimal constraints on the
within class parameters because imposing incorrect restrictions may result in the over-
extraction of classes (Lubke & Neale, 2006, 2008). Note that it is usually unrealistic to assume
a priori that the variances of the factors are class invariant. When different structural relations
between factors are hypothesized, it is especially appropriate to fit models with class specific
factor variances. Finding an adequate number of classes and investigating measurement
invariance across classes is carried out simultaneously since a measurement invariant model
with, say, 3 classes can provide a better fit than a non-invariant model with 2 classes. Issues
related to model comparisons and model selection have been described elsewhere (Lubke &
Neale, 2006, 2008). To focus on SEMM specific issues, we start the illustration at the point
where a 2 class 3 factor FMM with invariant loadings and class-specific thresholds has been
determined as the best fitting FMM for the aging data.

In addition to establishing the measurement models and the number of classes, another
important issue to consider are random starting values. It is known that multiple sets of random
starting values need to be used when fitting mixture models to avoid acceptances of local
maxima. In practice, replicating the best log-likelihood value for multiple starting values
enhances the confidence in the results. It should be noted though that replicating the best
likelihood value is neither necessary or sufficient to guarantee that the global maximum has
been found. In practice, software defaults for the number of starting values are not necessarily
sufficient. The number of random starting values needed can vary widely depending on model
complexity and data quality. In addition, the stability of the solution for the best likelihood can
be checked by comparing it to the solutions for random starting values that produced similarly
high likelihoods. 3

Empirical data results
The illustration with data from wave 3 of the Notre Dame Longitudinal Study of Aging consists
of initially fitting two different SEMM's, which represent two different hypotheses regarding
the ways perceived stress is influenced by life satisfaction and commitment. The pattern of
class specific factor variances and covariances of a fitted FMM should be consistent with the
structural relations among factors that are specified in a SEMM. For both of the initial SEMM's,
in the first class we specify commitment and satisfaction to be correlated predictors of stress.

2Item selection procedures in the context of mixture models are currently being investigated by the authors
3Researchers intending to fit SEMMs must set aside the necessary computational resources, as models with categorical indicators could
take considerable computation time.
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The second class differs for the two models. In SEMM 1, commitment predicts satisfaction
which in turn predicts stress. In SEMM 2, satisfaction predicts commitment which predicts
stress. In sum, the structural model in the first class is rather lenient in both models, whereas
in the second class, different causal chains are specified.

It should be noted that models with different structural relations between factors are usually
not nested. Model comparisons are carried out based on using the BIC information criteria as
recommended for mixture models by Nylund, Asparouhov, and Muthén (2007). Bootstrapping
the likelihood ratio test is infeasible in the current analysis due to computation times for
categorical indicators, but might be practical when using continuous data. Based on the BIC,
SEMM 2 provides the better fit (BIC is 5766.61 versus 5768.99 for SEMM 1). Both models
result in similar class proportions, which are approximately .75 and .25 for the first and second
classes, respectively. The larger class is more likely than the smaller class to use lower response
categories on most items, which corresponds to higher stress, lower satisfaction, and lower
commitment. The regression parameters describing the relations between the three factor have
signs expected by theory, satisfaction and commitment are positively related, and higher levels
of those factors predict lower stress levels.

In the better fitting SEMM 2, the regression of stress on commitment in the larger class (i.e.,
where commitment and life satisfaction are correlated predictors of stress) is not statistically
significant. This may be due to low power related to the relatively small sample size, but might
also indicate a more adequate that a model in which this regression parameter is fixed to zero.
This can be translated into a model where in one class satisfaction predicts commitment which
in turn predicts stress, whereas in the other class commitment predicts satisfaction which in
turn predicts stress. The model, SEMM 3, turns out as the best fitting model with a BIC
equalling 5760.89. The likelihood values, number of estimated parameters, and BIC's are
presented in Table 1. If based on the BIC we decide that SEMM 3 provides the most adequate
description of the structural relations between factors, we would then conclude that the smaller
class of participants with lower stress levels, higher life satisfaction, and higher commitment
can be characterized by a pattern where the effect of satisfaction on stress is fully mediated by
commitment, whereas in the large class with higher stress levels, satisfaction has a direct effect
on stress, and is predicted by commitment. The reader is cautioned to remember the limitation
of structural equation models to provide causal information for data collected at one time point
(e.g., Bollen, 1989). The same caution applies to SEMMs.

The results of the aging data SEMM analysis highlight several issues that deserve consideration
when conducting a SEMM analysis. Table 1 illustrates that the differences between the three
fitted models are small. This raises the question what the chance is to choose a correct model
when comparing complex mixture models. In other words, how confident can one be to draw
substantive conclusions based on the best fitting model, especially if competing models have
very different interpretations? The issue of model selection is addressed in the simulation study
by examining models with true and misspecified regression relationships between factors. A
second question concerns the precision of the parameter estimates. In the smaller class in
SEMM 3, the regression coefficient of stress on commitment is −.489 with a standard error
of .135, and the coefficient of commitment on satisfaction is .438(.156). In the larger class, we
have stress on satisfaction equalling −.71(.085), and satisfaction on commitment .359(.140).
Although the effects are statistically significant, the standard errors are relatively large.
Precision of parameter estimates is also addressed in the simulation, and includes not only
regression coefficients, but also the variances of the factors. We investigate simulated data
with different factor variances between classes since this is empirically relevant. For example,
in psychiatric data the variability might be considerably smaller in the affected class (or vice
versa, depending on the measurement instrument).
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A third issue pertains to the combination of sample size and effect size needed to detect
statistically significant class specific regression coefficients between the factors. In the Notre
Dame Longitudinal Study of Aging the sample size is 313 which is not uncommon in
longitudinal studies focusing on human development over time. The simulation study is
designed to address the question whether complex mixture models require larger sample sizes
and/or effect sizes than in the empirical example to produce reliable results.

The final question concerns correct class assignment. Correct assignment is obviously
impossible to assess when analyzing empirical data since true class membership is not known.
4 However, researchers might be interested in an indication of which proportion of correct
assignment to expect when fitting these rather complex models. Correct classification becomes
important especially if in a given empirical setting a specific class would benefit from receiving
class specific treatment. In addition to examining the proportion of correct assignment under
a variety of conditions, we compare correct assignment when fitting SEMMs to correct
assignment when fitting FMM's. If the SEMM is an adequate model for a given data set, then
it may improve correct assignment when compared to the corresponding FMM.

Simulation Study
In the first part of the simulation study, the performance of two-class SEMMs with continuous
outcomes is explored under a number of different conditions outlined in detail below. The
second part of the simulation consists of two additional analyses. The first additional analysis
replicates the first simulation study in its entirety with larger regression coefficients between
factors in the first class. This results in larger differences between first and second class factor
correlation coefficients, or, in other words, a larger effect size between class factor correlation
matrices. The second additional analysis explores SEMM performance with binary observed
item scores. Due to the computation time needed to estimate the binary models, this part is
carried out only for a small subset of the simulation design.

Simulation Study Design
Research questions in the behavioral and health related sciences often concern conditions with
low prevalence rates. This is incorporated into the current study by comparing SEMM
performance for data that have severely imbalanced relative class sizes to data that have
balanced relative class sizes. The second primary condition in the study design is the relative
magnitude of factor variability in each class, where conditions with both balanced and
imbalanced class variability are compared. Prior research has shown that class-specific factor
variances may lead to the over-extraction of classes when fitting FMM models with class-
invariant factor variances and increasing numbers of classes (Lubke & Neale, 2006), but this
has not been explored in a SEMM context. These two primary conditions, with two levels each,
are crossed in a 2 × 2 factorial design. Within each of the 4 cells there is a 3 × 4 factorial design
with 3 sample sizes and 4 levels of class separation as measured by the multivariate
Mahalanobis distance.5

The simulation study conditions are summarized in Table 2, and a diagram of the SEMM model
under which the data are generated is given in Figure 1. The structure shown in Table 2, with
references to blocks A, B, C, and D will be used throughout the remainder of the paper.

4Entropy has been suggested as a measure of classification accuracy when true class membership is unknown. However, entropy can
performed poorly in the context of factor mixture models (Lubke & Muthen, 2007).

5The multivariate Mahalanobis distance between two classes is given as .
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The variances of the factors in the second class are constant and equal 1 for all conditions. The
variance of all factors in the first class are either 1 or 5. See the rows of Table 2, that is, blocks
A and B versus blocks C and D. The relative class size of class 1 (i.e., the class proportion
πk in Equation 1) is π1 = 0.50 or π1 = 0.05. See the columns of Table 2, that is, blocks A and
C versus blocks B and D. The class proportions of the second class π2 are equal to 1 − π1.
Mahalanobis distances are controlled by manipulating the value of the mean of the first factor
in class 1 E(F1C1) while the means of all other factors in both classes are held constant at 0.
The population values for the measurement model parameter values are given in the Appendix.
The values of the regression parameters between factors are shown in Figure 1.

The second part of the current simulation study consists of two additional simulations focusing
on a larger effect size between class specific factor regression parameters, and binary data. In
the larger effect size conditions, the first part of the simulation study is replicated in its entirety
with larger values for the regression parameters in the first class (both .806 instead of .65; see
Figure 1). In the first part of the simulation study, model implied factor correlations are small
to medium according to Cohen. For the larger effect size replication, the model implied factor
correlations are medium to large according to Cohen. Sample size calculations associated with
these effect sizes are described in the additional analyses section below.

Due to the long times needed to fit models with categorical data, only a small number of binary
conditions are examined. Results from dichotomized versions of the first 30 data sets found in
block A of the N = 300 larger effect size conditions with Mahalanobis distances of 1.0 and 1.5
are reported.

Data Generation
For each condition in the first part of the study, 150 data sets are generated according to the
SEMM presented in Figure 1 for each cell of Table 2, resulting in 7200 data sets. Four observed
variables are generated as indicators for each of the three multivariate normal factors. Error
variances are multivariate normally distributed with zero means and variances equalling
0.5.6 The errors for each indicator are uncorrelated with each other and are uncorrelated with
the factors. The factor loadings, intercepts, and error variances are class invariant, and there
are no cross loadings. The class specific parameters include the regression and/or correlation
parameters between factors as shown in Figure 1. Factor means are set to 0 for all factors in
both classes except for the mean of the first factor in class 1 (F1C1). The value of the mean of
F1 is varied to obtain the four Mahalanobis distance conditions given in Table 2.

Class membership is generated as a random variable for each individual with the expected class
proportions being either π1 = π2 = .5 or π1 = .05 for class 1 and π2 = .95 for class 2 as shown
in Table 2. In N = 100 conditions with π1 = .05, the expected number of cases for the first class
is 5 cases, though it is possible to observe zero cases due to sampling fluctuations. This mimics
the potential to not observe any cases of a small class in an empirical analysis when the total
sample size is small. In addition to including conditions where the class proportions are
imbalanced between classes, conditions of class specific factor variances are included. The
factor variances are set to either to 1 or 5 for all factors the first class, while the variance of all
factors in the second class are always 1.7

6In the current study, error variance was held constant across all conditions, with the side effect that not only factor variances but also
item reliabilities differ when comparing balanced and unbalanced factor variance conditions. However, Lubke and Muthen (2007) found
that comparable differences in item reliabilities only had minor effects on FMM performance.
7Whereas different class proportions do not influence class separation, factor variances do influence class separation. The mean of factor
1 in class 1 E(F1C1) is adjusted across (im)balanced factor variance conditions such that class-invariant and class-specific factor variances
are not confounded with class separation as measured by the multivariate Mahalanobis distance.
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Model Fitting
Three models are fit to each data set, resulting in 21,600 analyses. The first model is the model
from which the data was generated (SEMM123, see Figure 1), which is referred to as a ‘true’
model. In an empirical data analysis, the ‘true’ model is of course not known, and, as discussed
above in the description of the SEMM, any model that fits real data well is only an
approximation. The next fitted model is the FMM which does not impose a specific structure
on the covariance matrix of the factors. Note that the FMM model is also a true model in the
sense that no parameters are misspecified. The true SEMM is nested within the FMM. The
third model reflects incorrectly specified structural relations between factors (SEMM231, see
Figure 2). Specifically, the order of the causal chain is misspecified, and factor one is misplaced
as the terminal rather than an originating factor in both classes, as is shown in Figure 2.

As mentioned in the previous section, only the first factor of the first class had a non-zero mean
and factor mean differences between classes have a major impact on class separation as defined
by the Mahalanobis distance. One goal of the current study is to explore the performance of
SEMMs when class separation is driven by a single variable in a chain of regression
relationships. Pilot results found no appreciable differences in model fit, parameter estimation,
or correct assignment of cases to classes when comparing data generated with factor mean
differences in originating factors versus in terminal factors, which is consistent with what
Henson et al. (2007) found. Therefore, the current study is confined to data generated with the
separation in the originating factor of the SEMM and exploring the misspecification of
reversing the causal chain and specifying the originating factor as the terminal factor of the
chain.

For all three models, the loading for the first indicator for each factor is fixed to be one and the
loadings, error variances, and intercepts are constrained to be class invariant (Meredith,
1993). The factor variances are free to be estimated in both classes, and the factor means in an
arbitrarily chosen reference class are fixed to be zero for reasons of model identification. Class
2 is the reference class throughout this simulation study. Even though the means of the second
and third factors in the first class are zero, the model implied means will be non-zero since
regression relationships are specified between factors. Because the factor means are fixed to
zero in the second class, the estimated factor means in class one are to be interpreted as factor
mean differences between classes. Each fitted model had 10 initial iterations computed for 800
sets of random starting values. Of the 800 sets of random starting values, the 10 with the largest
log-likelihood values are iterated to convergence and best solution of these 10 is used as the
final result.

Model comparisons are based on the Bayesian information criterion (BIC) and the sample size
adjusted Bayesian information criterion (saBIC).8 Nylund et al. (2007) have shown that these
information criteria perform well under a variety of conditions. An alternative would consist
of bootstrapping the Likelihood Ratio Test. However, this is not feasible in large scale
simulations due to the trade-off between time constraints and the computational demands of
bootstrapping procedures.

Parameter estimates are summarized across the 150 data sets within each condition.
Computation time restricted this study to 150 replications per condition, which is not sufficient
to examine whether standard errors are correct.9 At the end of the model fitting process, cases
are assigned to their most likely class using the highest posterior class probability (i.e., modal
assignment). The membership in the kth class is computed using Bayes' theorem

8Formula of the BIC and saBIC are given in the Appendix.
9For example, in unbalanced factor variance conditions, the empirical standard errors are much larger than average standard errors, which
may indicate an insufficient number of data sets within condition.
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(7)

where fk(y|πk) is the conditional distribution of Equation 1 for the kth class, fk(πk) is equal to
πk,10 and fk(y) is as given in Equation 1. To obtain the probability of membership in the kth

class, an individual's observed scores and the parameters estimates for the kth class are
substituted into Equation 7. This is done for each case for each of the k classes, noting that the
k probabilities for each case sum to 1 (within rounding error). The individual is then assigned
to the class with the highest probability. Using the known true class and the assigned class
memberships, the number of correctly and incorrectly assigned subjects is computed separately
for true class 1 and true class 2 subjects. In addition, we compute the Hubert and Arabie
Adjusted Rand Index (ARIHA, a chance corrected proportion correct assignment; Hubert &
Arabie, 1985). These measures are summarized (means and standard deviations) across the
data sets within each condition. The models are fit to the data using the software program Mplus
version 4.2 (Muthén & Muthén, 2006) on 20 dual-processor PC workstations managed by the
Condor High-Throughput Computing System (Thain, Tannenbaum, & Livny, 2005). Model
fitting for the continuous manifest variables took roughly 15 minutes for each data set.

Results
Convergence rates are considered first, and all subsequent results should be interpreted in the
context of the convergence rates. Next, model fit and model comparisons using the fit indices
BIC and saBIC are presented. In conjunction with the fit indices, we discuss the feasibility of
an approach where the estimated factor covariance matrix of the fitted FMM model is used to
determine whether its pattern is consistent with hypothesized relationships between the factors.
This is followed by a more general discussion about model performance in terms of accuracy
of parameter estimation. The final section presents results on the accuracy of assigning of cases
to classes.

In each of these sections, the sample size by Mahalanobis distance sub-structure shown in Table
2 is used for presenting results. The text of the following sections will include references to
blocks A, B, C, and D within each results table as shown in Table 2.

Convergence Rates
When fitting complex mixture models to data, researchers may be challenged by non-
converging models. Non-convergence can be the consequence of specifying an incorrect
model, model non-identification, empirical under-identification, or data characteristics such
as multivariate outliers.11 In the current study, an incorrect SEMM model (SEMM231) is
specified to explore the consequence of specifying an incorrect model, as discussed below. All
three fitted models used in the current study are identified. Empirical non-identification can
result from having too few observations in a class to estimate the numbers of parameters
specified by the model. Within blocks B and D of the design matrix where the total sample
size is 100 and π1 = .05, the expected number of cases in class 1 is 5 with a lower bound of
zero cases. Consequently, a substantial number of data sets have fewer cases in class 1 than
parameters to be estimated. Often these data sets would still converge, but the covariance matrix

10In general, f(πk) with the subscript k is the multinomial prior for the k classes.
11An insufficient number of starting values can also lead to non-convergence. In empirical analyses, the number of starting values can
be increased as needed. However, increasing the number of starting values will not compensate for model misspecification or model non-
identification.
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of the factors, Ψk (see Equations 3 and 5), would not be positive definite. Data sets with a non-
positive definite Ψk are excluded from further summaries and are treated as non-converged.

The (expected) general trend for convergence rates is that conditions with larger sample sizes
and larger Mahalanobis distances have higher convergence rates. The convergence rates for
the true model SEMM123 are given in Table 3, and the convergence rates for the FMM and
SEMM231 models are similar. Notice that in block D, the N = 100 conditions had higher
convergence rates than N = 300 conditions. This result is a consequence of the class proportions
of the smaller class being overestimated, resulting in fewer cases of empirical under-
identification.

Conditions with imbalanced factor variances (blocks C and D) have higher convergence rates
than conditions with balanced factor variances (blocks A and B). As will be seen throughout
the results, the imbalanced factor variance conditions generally outperform the balanced factor
variance conditions. The reason for this tendency is illustrated in Figure 3 for the balanced
class proportion conditions. For a given mean separation between two distributions (in this
case, 1.0), increasing the ratio of the variances in class 1 to class 2 at first increases the overlap
between distributions. However, as the variance of class 1 continues to increase, the overlap
between distributions decreases both above and below the mean of the constant distribution in
class 2. While the example in Figure 3 is univariate, the current study can be conceptualized
in terms of the three factors within each class, and this provides three dimensions on which
distributions can have overlap (or the lack thereof). Data with a greater degree of overlap will
under-perform relative to data with a lesser degree of overlap. A similar effect occurs for
imbalanced class proportion conditions.

All results present hereafter should be interpreted in the context of the convergence rates
presented in Table 3. For example, results for conditions in all of block B and the N = 100
conditions of block D are based on small proportions of converged data sets, hence there is
less confidence in the summary results than in conditions with higher convergence rates.
Results in Table 3 also provide an indication that applied data sets under the conditions of block
B and the N = 100 conditions of block D will a smaller chance of converging in practice.

Choosing the Correct Model: The Unstructured FMM Model and Fit Indices
Much of the prior FMM and SEMM research has focussed on choosing the correct number of
classes and/or factors (Celeux & Soromenho, 1996; Lo, Mendell, & Rubin, 2001; Jeffries,
2003; Lubke & Neale, 2006; Nylund et al., 2007; Lubke & Muthen, 2007; Henson et al.,
2007). The current study assumes that the numbers of classes and measurement models within
class have been established, and focuses entirely on the (mis)specification of the relationships
between factors. Both an exploratory inspection of the factor variances in the FMM model and
measures of model fit are considered as approaches to choosing the correct model.

An approach to examining regression relationships between factors is to fit a factor mixture
model with an unstructured factor covariance matrix as shown in the illustration with the aging
data. The FMM is a ‘true’ model in the sense that no parameters are misspecified. The pattern
of factor variances and covariances in the FMM model should be consistent with the
hypothesized structural relations between the factors. However, this approach is unlikely to be
successful if class specific factor covariance matrices are not estimated correctly.

In the current study, the factor variances are estimated most accurately in conditions with higher
convergence rates (blocks A, B, and D) with a pattern of smaller bias for larger sample sizes
and class separations. More detail is provided in the following section on the accuracy of
parameter estimates. Here, we conclude that using the estimated factor covariance matrices of
FMM's to inform the specification of structural relations in a SEMM is a viable approach under
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more ideal conditions, specifically when sample sizes are larger, class separations are larger,
and class proportions are balanced.

Prior research has explored the performance of fit indices to select the correct SEMM in a
series of model comparisons (Henson et al., 2007). In the current study, the BIC and the saBIC
fit indices generally identified the SEMM123 model as the true model, as is seen in the upper
and lower panel of Table 4. As expected, the BIC and saBIC performed relatively worse in
conditions with lower sample sizes and smaller Mahalanobis distances. Except in conditions
where the BIC or saBIC preferred the true model in 90% or more of the converged data sets,
the incorrect SEMM231 model is the second most frequently preferred model. This is related
to the exploratory approach to determining possible SEM models within class discussed above.
When factor variances are biased, the preferred model is likely to be an incorrect model. Also
notice that in block B and the N = 100 condition of block D of both panels of Table 4, the
proportions of data sets in which the true model is preferred is exaggerated in comparison to
the general pattern described above. Recall that these conditions had the lowest convergence
rates, and therefore results may be dominated by a few ideal data sets.

Parameter Estimates
This section reports the accuracy of the estimates of the latent variable parameters and their
structural relations.12 The focus is on general trends, with some specific results reported in
tables. In all cases, parameter estimates are more accurate for the more ideal conditions. Lower
sample sizes are more problematic than then smaller Mahalanobis distances used in this study.

In what follows, ‘ideal conditions’ refers to all N = 1000 conditions, N = 300 conditions with
Mahalanobis distances ≥ 1.5, and N = 100 with a Mahalanobis distance of 2.0. The presentation
of results in this section is restricted to the true models (FMM and SEMM123). In both of the
true models, the estimation of the measurement parameters (factor loadings, intercepts, and
error variances) is accurate for all conditions, and measurement parameters are not commented
on further.

In the FMM model, factor variance estimates are more accurate in the second class than in the
first class for all blocks. In block A factor variance estimates were reasonable for most
conditions in the second class, and for ideal conditions in the first class. In block B factor
variance estimates were reasonable for most conditions in the second class, with biases ranging
from .1 to .7 in the first class. Recall that class one has the smaller class size in block B. In
block C factor variance estimates were reasonable in the first class for sample sizes ≥ 300 and
for ideal conditions in the second class. In block D in the first class, which had large model
implied factor variances, factor variances were almost always underestimated. In block D in
the second class, which had small model implied factor variances in relation to the first class,
factor variances were overestimated except in N = 1000 conditions with Mahalanobis distances
≥ 1.5. This pattern of under/over estimation is relatively balanced across classes, just as total
variance in a data set is distributed across classes. In conditions with biased factor variances,
sample size was almost always more influential on the magnitude of the bias than was class
separation.

12When reporting on parameter estimates in a mixture simulation study, the issue of class switching must be addressed. Since class
labeling is arbitrary, there can be fitted models in which class 1 subjects were labeled class 2 subjects and vice versa. This creates problems
when averaging a parameter across data sets within a condition. When the within-class factor models are the same, switching can be
corrected by relabeling the class-specific parameters prior to summarizing. In the current study, this was not possible for the SEMM123
model but is feasible for the unstructured FMM model. For the conditions examined herein, switching was not problematic except in
conditions where convergence rates were low enough to preclude serious interpretation of parameter estimates as discussed at the end
of the section on convergence rates.
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Accuracy of factor variance estimates for the SEMM123 model were roughly the same as for
the FMM model. For conditions where the factor variances in both classes are accurately
estimated, the results of the FMM model can be used to check consistency with potential
SEMM models as described in the results of the empirical data illustration.

Table 5 shows the estimates of the regression of F3C1 on F2C1 in the first class averaged over
the 150 data sets when fitting the correct model. The empirical standard errors shown between
brackets in the table indicate that there is considerable variability of estimated regression
coefficients across data sets, especially in the small class when class proportions are unequal.
Point estimates are on target when class proportions are equal. They are also accurate when
the overlap between component distributions is low as in the unequal variance conditions, that
is, in all conditions of blocks A and C for Mahalanobis distances ≥ 1.5 in block B and for N =
1000 conditions of block D. In the second class, estimates of the regression parameters are
reasonable in most conditions of all four blocks of the design matrix. The covariance between
the first and second factors in the second class are reasonable for all conditions except for N =
100 conditions of blocks C and D.

Correct Assignment
For some research questions, correctly recovering class specific variances and covariances of
the latent variables, or their structural relations, may be sufficient to answer the relevant
research questions. Prior sections show that for many conditions considered in the current
study, the correct model is likely to be selected. In addition, for the more ideal conditions,
factor variances and the regression parameters between factors can be estimated accurately. In
some applications, however, the focus of a mixture analysis might be to assign individuals to
their most likely class.

Modal assignment is defined in terms of assignment to the class with the highest posterior
probability, which is illustrated in Figure 4. The figure shows a hypothetical item distribution
for two classes, where class 1 is represented with a black curve and has larger variance than
class 2 which has a red curve. Suppose fitting a mixture model exactly reproduces the true
model, and therefore the item distributions. Subjects with an item score between −∞ and the
leftmost vertical line would fall into area a4 if they truly belong to class 2, and into area a1 if
they truly belong to class 2. Class 2 members would get assigned to their true class, whereas
class 1 members would get incorrectly assigned. All subjects between the two vertical lines
would be assigned to class 1 since class 1 has a higher probability in that range. True class 2
subjects would fall into area a2, and would be incorrectly assigned to class 1. True class 1
subject would be correctly assigned.

During estimation of a mixture model, each subject contributes to the likelihood of all
component distributions weighted by the class probabilities of belonging to each of those
components. However, the above hypothetical example illustrates that even if the structure of
a model is adequately recovered, there can be substantial proportions of the sample that get
incorrectly assigned. In fact, the proportion is directly related to the area of overlap between
component distributions. A coefficient based on the area of overlap called ‘overlapping
coefficient’ was initially proposed by Weitzman (1970). The overlapping coefficient for two
normally distributed variables with unequal means and equal variances was presented as a
generalization of the t-test by Mishra, Shah, and Lefante (1986) and is also reported in
Dudewicz and Mishra (1988, page 351). Multivariate extensions allowing for unequal
variances result in highly complicated expressions, which we are currently investigating. In
the present study, we computed the overlapping coefficient for the distribution of the first factor
which is the factor used to manipulate class separation and factor variance differences. Holding
everything else constant, the unequal variance conditions have less overlap than the equal
variance conditions. Increasing the Mahalanobis distance decreases overlap within each block
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of the design matrix. The pattern of correct class assignment in the current study is consistent
with the pattern of overlap differences of the distribution of the first factor.

Tables 6 and 7 present cross tabulations of true and assigned class for each of the 4 blocks of
the study design. The tables show the average number of subjects (averaged over the 150 data
sets in each condition) together with the corresponding standard deviation. The latter indicates
the variation of correct assignment across individual data sets.

Table 6 shows the results for equal class proportions (blocks A and C). Since in this case the
overlap is symmetric for the two classes, we can see that the numbers of correctly and
incorrectly assigned subjects is generally similar across classes. Larger sample sizes
correspond to a more precise estimation of the model, which is reflected in generally higher
odds of correct assignment. Correct assignment improves with increasing class separation, and
is better for the unequal variance conditions.

Most importantly, the average numbers of incorrectly assigned subjects are high. Table 8 shows
proportions correct assignment for balanced class sizes corresponding to Table 6. In the equal
variances condition (i.e., larger overlap), the proportion exceeds 80% correct assignment only
if MD > 1.5 for all sample sizes. In the unequal variance condition, this is achieved with MD
= .5 given sample size ≥ 300, or MD > 1.0 for all sample sizes.

Table 7 shows the results for unequal class sizes, which are generally worse, especially for the
minority class. It is important to note that proportions correct assignment assessed for the whole
sample (i.e., pooled over minority and majority class) would provide distorted results since the
larger class has a much larger a priori chance of correct assignment. In addition, consider that,
on a conceptual level, the unequal class size scenario reflects data where the minority of the
population belongs for instance to a risk group. Usually, the focus of these studies is on the
minority class. Hence, the interest might be less in correct assignment of subjects to the majority
class than in the quality of class assignment to the minority class. In other words, correct
assignment to the minority class and incorrect assignment to the minority class. Table 9 shows
the odds of incorrectly assigned subjects to correctly assigned subjects in the minority class.
The odds are substantially larger than 1 in most conditions. This indicates that if the focus is
on using class assignment in subsequent analyses (e.g., post hoc class comparisons, use of class
assignment as predicted variable in a regression) then the overlap between classes should be
rather small.

As mentioned above, proportions correct assignment when pooled over classes with different
sizes are biased due to differences in a priori probabilities of correct assignment. An alternative
index that corrects for chance is the Hubert and Arabie Adjusted Rand Index (ARIHA, Hubert
& Arabie, 1985). In a large simulation study, Steinley (2004) devoloped a useful heuristic for
interpreting ARIHA values where “(a) values greater than 0.90 can be viewed as excellent
recovery, (b) values greater than 0.80 can be considered good recovery, (c) values greater than
0.65 can be considered moderate recovery, and (d) values less than 0.65 reflect poor recovery.”
ARIHA values in the current study were computed using the ARI function in the R (R
Development Core Team, 2008) package MCLUST version 3 (Banfield & Raftery, 1993;
Fraley & Raftery, 1999, 2002, 2003, 2006). See Steinley (2004) for the formula and description
of the ARIHA. ARIHA values are presented in Table 10.

The pattern of results in Table 10 is consistent with the average numbers of correct and incorrect
assignment in the cross-tabulation tables. As for proportions correct assignment, there are no
important differences in correct assignment for the correctly and incorrectly specified SEMM's,
hence only the ARIHA for the correctly specified SEMM are presented. Importantly, the
magnitudes of the ARIHA's in this study using Steinley's criteria mirror correct and incorrect
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assignment in the cross tabulation tables and indicate weak performance at best. For the
conditions in this study (e.g. mean differences between classes, etc.), the correct assignment
was moderate only for the largest Mahalanobis distance conditions with N ≥ 300 in blocks C
and D. The general pattern of correct assignment mirrored results concerning parameter
estimation. The ARIHA in imbalanced factor variance conditions (blocks C and D)
outperformed the ARIHA balanced factor variance conditions (blocks A and B), which is due
to the larger overlap of component distributions in the balanced variance condition. The general
pattern of better performance in larger sample sizes and larger Mahalanobis distances also
occurred for the ARIHA.

Additional Analyses
As indicated in the methods section, the first part of the simulation study is replicated with a
larger effect size between the class 1 and class 2 factor correlation matrices, and partially
replicated with binary versions of the manifest variables. The first part is accomplished by
increasing the magnitude of both of the regression coefficients in class 1 from .65 to .806 (see
Figure 1). The second part is carried out using dichotomized versions of the data in the N =
300, Mahalanobis distances of 1.0 and 1.5 conditions of block A. We begin with the results of
the larger effect size followed by results with for the binary data conditions.

Large Effect Size Replication—The main part of the study uses factor correlations that
are mainly small to medium according to Cohen. These are increased from to medium to large
in the larger effect size conditions. The model implied factor correlations for each class and
the difference between them are presented in Table 11. In what follows, we refer to the effect
sizes in the main and additional parts of the study as the small effect size conditions and large
effect size conditions, respectively.

Sample size calculations indicated that N = 100 was sufficient to find differences in correlations
between class one and class two for the large effect size conditions in blocks A and C. Samples
of N = 300 where sufficient to find differences in correlations for the small effect size conditions
in blocks A and C. For blocks B and D, sample sizes greater than N = 1000 were needed to
find differences in correlations for both the small and large effect size conditions. The
difference of the correlation difference between the large and small effect size conditions gives
a metric of effect size. These are .09 for cor(F1, F2), .10 for cor(F1, F3), and .16 for cor(F2,
F3). Given the sample size calculations, very large sample sizes would be needed to reliably
detect moderately sized differences in factor correlations.

When fitting the true SEMM model to generated data with the larger effect size, there is no
noticeable improvements in convergence rates or accuracy of parameter estimates.
Importantly, correct assignment is not better in this condition where classes have more
pronounced differences in the structural relations between factors. This is likely due to the fact
that the difference in effect sizes between the main part of the study and large effect size
replication had little impact on the overlap of the component distributions.

Results for Selected Conditions with Binary Data—As described above, the true
model SEMM123 was fit to dichotomized versions of the data found in the N = 300,
Mahalanobis distances of 1.0 and 1.5 conditions of block A using the larger effect size
conditions. Due to the long times required to fit models to binary data, the SEMM123 model
is fit to 30 data sets for each of these two conditions. The number of random starts is set to
2000 which is sufficient to replicate the likelihood for this particular model. The model is fitted
to the data using Mplus 5, and takes approximately 25 hours to fit for each data set.

The convergence rates are lower than for continuous counterparts. In addition to excluding
results from data sets in which the latent variable matrix was not positive definite, two data
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sets for each Mahalanobis distance have results with unacceptable parameter estimates for
variances for the third (terminal) factor in class 1. These are also excluded as unconverged.
The convergence rate for the MD=1.0 binary data is .57 (compare to .95 for continuous data),
and the convergence rate for the MD=1.5 data is .67 (compare to .95 for continuous data; see
Table 3).

Since the converge rates are low and a limited number of data sets are used, the average
parameter estimates are neither trustworthy or informative. Though computing power has
improved drastically in recent years, the long times needed to fit models to categorical data
make a larger simulations unpractical at the moment. The low convergence rates are indicative
of the difficulties when using categorical data rather than continuous data in complex mixture
models such as the SEMM used here.

Conclusions
The current study highlights both the promising flexibility of the SEMM and its limitations.
Following an illustration with one wave of data from the Notre Dame Longitudinal Study of
Aging, several aspects of SEMM analyses are further investigated in a simulation study. These
include the comparison of SEMMs with correctly and incorrectly specified structural relations
between factors, accuracy of parameter estimates of structural relations and factor variances,
and correct class assignment.

The illustration with the empirical data shows that SEMM analyses permit the detection of
classes that differ with respect to their within class covariance structure. However, differences
in model fit between alternative models with conceptually diverging interpretations are small.
Potential explanations include small sample size, class separation, and/or effect size. The
ordered categorical response format of the manifest variables in the illustration may attenuate
effects, and certainly limits the exploration of a larger set of alternative models due to
computation times.

The first two aims of the simulation study are to provide insight regarding the conditions under
which structural equation mixture modeling performs adequately, both with respect to choosing
the correct model, and with respect to estimates of the structural relations between factors. In
empirical settings, class specific factor variances and unbalanced class sizes may influence
performance in important ways. These effects are combined with differences in sample size,
class separation, effect size, and response format. The data are generated using model
parameters that are largely based on the estimates found in the empirical analysis.

Based on the BIC, the SEMM with the correctly specified structural model is chosen in most
settings. Regarding convergence and parameter estimates, the SEMM consistently performs
well when the sample size is ≥ 300 and when class separation is ≥ 1.5, and often performs well
when sample size is N = 100 but class separation is 2.0, or when class separation is .5 but
sample size is 1000. These ranges are relevant for equal class sizes. If class size is unbalanced,
the sample size of the minority class is obviously critical. In general, sample size has a
substantial effect on model performance, especially in cases where class separation is low. This
result can be regarded as encouraging since it might be more feasible to control sample size
than to increase class separation by designing conceptually useful items that have large mean
differences across classes but no floor or ceiling effects.

The study also provides evidence of potential trade-offs between mean differences between
classes and imbalanced factor variances. As illustrated with the settings in this study, class
differences in factor variance do not necessarily increase the overlap between the class specific
factor distributions, but can actually decrease this overlap. Smaller overlap obviously increases
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model performance. In case factor variance differences induce smaller overlap they can
counterbalance smaller mean differences between classes.

The replication of the simulation study with larger effect sizes shows that it is possible to detect
class differences based primarily on differences in factor covariance matrices. Hence, even if
classes have only small mean differences, it may still be possible to detect differences between
classes regarding their structural relations.

Limitations of SEMM's are evident when fitting models with binary rather than continuous
outcomes. Binary data drastically increase the computation times needed to estimate the
specified models. With 12 manifest variables and three factors, computation times reached up
to 25 hours. Depending on the number of random starting values needed to replicate the best
likelihood with different stating values, computation time is likely to increase even more when
manifest variables have more than two response categories. Due to this limitation, investigating
the effect of response format on detecting class differences in structural relations is not feasible
in the current simulation. Convergence rates are substantially lower for binary than for
continuous outcomes. Taken together, it might be advisable to limit structural equation mixture
modeling with several factors to subscale level data that have approximately normal
distributions. More research regarding response format is clearly needed.

The third aim of the simulation is to assess correct class assignment. Although the study shows
that the structure of the data within class can be adequately recovered in a wide variety of
empirically relevant settings, the quality of class assignment is generally poor for most of the
settings in this study. Compared to previous studies with less complex factor structures (e.g.,
single factor within class, see Lubke & Muthen, 2007), the current results indicate a worse
performance of more complex models. It is noteworthy that correct assignment is not better
for the SEMM than for the corresponding FMM, hence correctly specifying the structural
relations between factors does not improve class assignment. Especially in conditions with a
considerable difference in class size, the correct assignment in the minority class is worrisome.
In substantive research, the focus is often on the minority class representing a risk group.
Computing the odds of incorrectly assigned subjects versus correctly assigned subjects shows
that in some settings it is 17 times more likely to have incorrectly assigned subjects in the
minority class than correctly assigned subjects. One might argue that differences between
classes might be mainly quantitative, and that the incorrectly assigned subjects would have
scores on the underlying factor that are more similar to subjects in the minority class. However,
in the case of factors within class this will depend on the reliability of the observed items.
Incorrect assignment is at least partially due to the sign and size of an individual's error term.
The argument can not be applied to latent class models because variability within class is error
variance. It should be noted though that the current simulation focuses on correct assignment
when class specific distributions have considerable overlap. The results under these conditions
warrant caution to use class assignments in post hoc analyses. It is therefore advisable to obtain
an indication of the separation between classes and/or the overlap of component distributions
before carrying out such analyses. We are currently investigating the extent to which error rates
in class assignment affect post-hoc analyses.

In sum, the study provides evidence that hypotheses concerning the structural relations between
a small number of factors can be investigated in the mixture context if the number of classes
is small. Models with incorrectly specified structural relations can be rejected given sufficient
sample and effect size. The use of SEMM's to assign individuals to a given class is much more
limited. The settings of the simulation presented here (i.e., number of classes and factors,
measurement models) are based on the results of fitting a SEMM to an empirical data set, and
only factor means and variances, sample size, and class proportions are varied. Generalizability
of simulation results obviously depends on the chosen settings, and results may be different
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for larger models and/or substantially different settings (e.g., more than 2 classes). In light of
the fact that increasingly complex mixture are being proposed in the literature, applications of
a given model type to empirical data should be accompanied by an evaluation of model
performance with simulated data under relevant conditions.
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Appendix

Data generating parameter values
Factor loadings, error variances, and intercepts are class invariant:

Factor 1 loadings [1 .8 .8 .8 0 0 0 0 0 0 0 0]t

Factor 2 loadings [0 0 0 0 1 .8 .8 .8 0 0 0 0]t

Factor 3 loadings [0 0 0 0 0 0 0 0 1 .8 .8 .8]t

Error variances MVN(0, .5 * I12)

Intercepts are all 0

Factor variances class 1: 1, 1, 1 or 5, 5, 5

Factor variances class 2: 1, 1, 1 for all conditions

The factor covariance matrices within class are structured according to the structural models
and parameter values given in Figure 1.

Information criteria
All information criteria used in the present study are penalized log-likelihood functions with
the general form −2L + f(N)p where L is the loglikelihood of the estimated model with p free
parameters and f(N) is a function that may depend on the total sample size N (Sclove, 1987).
The BIC and the sample size adjusted BIC integrate N in different ways, and the penalty terms
are log(N)p for the BIC Schwarz, 1978 while the sample size adjusted BIC uses (N* = (N + 2)/
24) instead of N.

References
Agresti, A. Categorical data analysis. 2. Wiley-Interscience; 2002.
Arminger G, Stein P. Finite mixtures of covariance structure models with regressors - loglikelihood

function, minimum distance estimation, fit indices, and a complex example. Sociological Methods and
Research 1997;26:148–182.

Arminger G, Stein P, Wittenberg J. Mixtures of conditional mean- and covariance-structure models.
Psychometrika 1999;64:475–494.

Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993;49:803–
821.

Bartone PT, Ursano RJ, Wright KM, Ingraham LH. The impact of a military air disaster on the health of
assistance workers. a prospective study. Journal of Nervous and Mental Disease 1989;177:317–28.
[PubMed: 2723619]

Bauer D, Curran P. The integration of continuous and discrete latent variable models: Potential problems
and promising opportunities. Psychological Methods 2004;9:3–29. [PubMed: 15053717]

Bollen, KA. Structural equations with latent variables. 1. Wiley-Interscience; 1989.

Tueller and Lubke Page 18

Struct Equ Modeling. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Celeux G, Soromenho G. An entropy criterion for assessing the number of clusters in a mixture model.
Journal of Classification 1996;13:195–212.

Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. Journal of Health and Social
Behavior 1983;24:385–396. [PubMed: 6668417]

Dolan C, van der Maas H. Fitting multivariate normal finite mixtures subject to structural equation
modeling. Psychometrika 1998;63:227–253.

Dudewicz, EJ.; Mishra, S. Modern mathematical statistics. John Wiley & Sons, Inc.; New York, NY,
USA.: 1988.

Everitt, BS.; Hand, DJ. Finite mixture distributions. Chapman and Hall; New York: 1981.
Fraley C, Raftery AE. MCLUST: Software for model-based cluster analysis. Journal of Classification

1999;16:297–306.
Fraley C, Raftery AE. Model-based clustering, discriminant analysis and density estimation. Journal of

the American Statistical Association 2002;97:611–631.
Fraley C, Raftery AE. Enhanced software for model-based clustering, density estimation, and

discriminant analysis: MCLUST. Journal of Classification 2003;20:263–286.
Fraley, C.; Raftery, AE. MCLUST version 3 for R: Normal mixture modeling and model-based clustering

(Technical Report No 504). Department of Statistics: University of Washington; 2006 Sep.
Henson JM, Reise SP, Kim KH. Detecting mixtures from structural model differences using latent

variable mixture modeling: A comparison of relative model fit statistics. Structural Equation
Modeling: A Multidisciplinary Journal 2007;14:202–226.

Hosmer D. Comparison of iterative maximum likelihood estimates of parameters of a mixture of 2 normal
distributions under 3 different types of sample. Biometrics 1973;29:761–770.

Hubert L, Arabie P. Comparing partitions. Journal of Classification 1985;2:193–218.
Jedidi K, Jagpal HS, DeSarbo WS. Finite-mixture structural equation models for response-based

segmentation and unobserved heterogeneity. Marketing Science 1997a;16:39–59.
Jedidi K, Jagpal HS, DeSarbo WS. STEMM: A general finite mixture structural equation model. Journal

of Classification 1997b;14:23–50.
Jeffries NO. A note on‘testing the number of components in a normal mixture’. Biometrika 2003;90:991–

994.
Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika

2001;88:767–778.
Lubke GH, Muthén BO. Investigating population heterogeneity with factor mixture models.

Psychological Methods 2005;10:21–39. [PubMed: 15810867]
Lubke GH, Muthen BO. Performance of factor mixture models as a function of model size, covariate

effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal
2007;14:26–47.

Lubke GH, Neale MC. Distinguishing between latent classes and continuous factors: Resolution by
maximum likelihood. Multivariate Behavioral Research 2006;41:499–532.

Lubke GH, Neale MC. Distinguishing between latent classes and continuous factors: A follow-up
addressing categorical outcomes and class-invariance of model parameters. Multivariate Behavioral
Research. 2008 In Press.

McLachlan, G.; Peel, D. Finite mixture models. Wiley-Interscience; 2000.
Meredith W. Measurement invariance, factor-analysis and factorial invariance. Psychometrika

1993;58:525–543.
Millsap RE, Tein JY. Assessing factorial invariance in ordered-categorical measures. Multivariate

Behavioral Research 2004;39:479–515.
Mishra SN, Shah AK, Lefante JJ. Overlapping coefficient: the generalized t approach. Communications

in Statistics-Theory and Methods 1986;15:123–128.
Muthén BO, Asparouhov T. Latent variable analysis with categorical outcomes: Multiple-group and

growth modeling in mplus. 2002
Muthén BO, Muthén LK. Integrating person-centered and variable-centered analyses: Growth mixture

modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research
2000;24:882–891.

Tueller and Lubke Page 19

Struct Equ Modeling. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Muthén BO, Shedden K. Finite mixture modeling with mixture outcomes using the em algorithm.
Biometrics 1999;55:463–469. [PubMed: 11318201]

Muthén, LK.; Muthén, BO. Mplus version 4.21. Los Angeles, CA: Muthén & Muthén; 2006. Computer
program

Nagin DS, Land KC. Age, criminal careers, and population heterogeneity: Specification and estimation
of a nonparametric, mixed poisson model. Criminology 1993;31:327–362.

Nylund KL, Asparouhov T, Muthén BO. Deciding on the number of classes in latent class analysis and
growth mixture modeling: A monte carlo simulation study. Structural Equation Modeling
2007;14:535–569.

Pearson K. Contributions to the mathematical theory of evolution. Philosophical Transactions of the
Royal Society of London A 1894;185:71–110.

Pearson K. Contributions to the mathematical theory of evolution. ii. skew variation in homogeneous
material. Philosophical Transactions of the Royal Society of London A 1895;186:343–414.

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria:
2008.

Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978;6:461–464.
Sclove S. Application of model-selection criteria to some problems in multivariate-analysis.

Psychometrika 1987;52:333–343.
Steinley D. Properties of the hubert-arable adjusted rand index. Psychological Methods 2004;9:386–

39611. [PubMed: 15355155]
Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the condor experience.

Concurrency and Computation: Practice & Experience 2005;17:323–356.
Titterington, DM.; Smith, AFM.; Makov, UE. Statistical analysis of finite mixture distributions. Wiley;

New York: 1985.
Vermunt JK, Magidson J. Latent class models for classification. Computational Statistics and Data

Analysis 2003;41:531–537.
Wallace KA, Bisconti TL, Bergeman CS. The mediational effect of hardiness on social support and

optimal outcomes in later life. Basic and Applied Social Psychology 2001;23:267.
Weitzman, MS. Measures of overlap of income distributions of white and negro families in the united

states. US Bureau of the Census; 1970. for sale by the Supt. of Docs., US Govt. Print. Off.
Wood V, Wylie ML, Sheafor B. An analysis of a short self-report measure of life satisfaction: correlation

with rater judgments. Journal of Gerontology 1969;24:465–9. [PubMed: 5362358]
Yung YF. Finite mixtures in confirmatory factor-analysis models. Psychometrika 1997;62:297–330.

Tueller and Lubke Page 20

Struct Equ Modeling. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Path diagram for the data generating model (SEMM123) in class 1 and class 2. Regression
parameters are given on their corresponding paths. The four indicators per factor are excluded
for clarity.
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Figure 2.
Path diagram for the data generating model (SEMM231) between factors in class 1 and class
2. Factor indicators are excluded for clarity.
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Figure 3.
Class overlap for variance ratios of 1:1, 2:1, 5:1, and 10:1 with the larger variance in the first
class. Class proportions are equal. The 1:1 and 5:1 ratios are conditions in the current study,
and the 2:1 and 10:1 ratios are included to provide reference.
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Figure 4.
Two univariate normal distributions where μ1 = 1, μ2 = 0, , , and π1 = π2 = 0.5.
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Table 1
Model fit of the three SEMM's fitted to data of Notre Dame Longitudinal Study of Aging
Data

models likelihood number of parameters BIC

SEMM 1 -2657.519 79 5768.99

SEMM 2 -2656.329 79 5766.61

SEMM 3 -2656.311 78 5760.89

Note. Table entries are the likelihood value, the number of estimated parameters, and the BIC.
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Table 2
Study design matrix

var(FqC1) π1 = 0.50 π1 = 0.05

1 A B

5 C D

Where the blocks A, B, C, and D are structured as

Mahalanobis Distance

0.5 1.0 1.5 2.0

N = 100

N = 300

N = 1000

Note. π1 is the proportion of cases in the first class, N is the number of cases, and Var(FqC1) is the factor variance for all factors in the first class. In
the second class, π2 = 1 − π1, and Var(FqC2) = 1 for all conditions. For each cell in the lower table, 150 data sets were generated.
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Table 8
Proportion correct assignment for equal class proportions

var(FqC1) π1 = 0.50

1 0.59 0.67 0.74 0.80

0.59 0.67 0.75 0.83

0.61 0.70 0.78 0.85

5 0.74 0.79 0.85 0.90

0.81 0.84 0.87 0.91

0.82 0.85 0.88 0.91

Note. Table entries are proportion correct assignment averaged across data sets that converged when fitting the true model SEMM123. SEMM231
and FMM models had proportion correct tables with identical patterns and roughly the same proportion correct values for each cell.
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Table 9
Assignment to the minority class: Odds of incorrectly assigned subjects to correctly assigned
subjects

N MD=0.5 MD=1.0 MD=1.5 MD=2.0

Equal factor variances (var(FqC1) = 1)

100 17.79 19.47 14.41 8.88

300 15.45 6.76 4.75 1.54

1000 6.68 2.96 1.21 0.63

Unequal factor variances (var(FqC1) = 5)

100 3.82 3.91 4.78 4.57

300 0.83 0.35 0.43 0.38

1000 0.19 0.17 0.15 0.12

Note. Table entries are average odds of class 2 subjects who are incorrectly assigned to class 1 and class 1 subjects who are correctly assigned to class
1 for imbalanced class proportion conditions in blocks B (upper panel) and D(lower panel). Ideally, the values would be close to zero.
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Table 11
Model implied factor correlations and class differences in factor correlations for small and
large effect size simulations

Factor Class 1 Class 2 Difference

Main study

cor(F2, F3) 0.75 0.34 0.42

cor(F1, F3) 0.32 0.68 -0.36

cor(F1, F2) 0.54 0.30 0.24

Large effect size replication

cor(F2, F3) 0.91 0.34 0.58

cor(F1, F3) 0.41 0.68 -0.26

cor(F1, F2) 0.63 0.30 0.33

Note. Table entries are the model implied correlations based on the data generating model parameters. The differences between the main simulation
study and large effect size replication are .09 for cor(F1, F2), .10 for cor(F1, F3), and .16 for cor(F2, F3).
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