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Spike synchronization underlies information processing and stor-
age in the brain. But how can neurons synchronize in a noisy
network? By exploiting a high-speed (500–2,000 fps) multineuron
imaging technique and a large-scale synapse mapping method, we
directly compared spontaneous activity patterns and anatomical
connectivity in hippocampal CA3 networks ex vivo. As compared
to unconnected pairs, synaptically coupled neurons shared more
common presynaptic neurons, received more correlated excitatory
synaptic inputs, and emitted synchronized spikes with approxi-
mately 107 times higher probability. Importantly, common presyn-
aptic parents per se synchronized more than unshared upstream
neurons. Consistent with this, dynamic-clamp stimulation revealed
that common inputs alone could not account for the realistic de-
gree of synchronization unless presynaptic spikes synchronized
among common parents. On a macroscopic scale, network activity
was coordinated by a power-law scaling of synchronization, which
engaged varying sets of densely interwired (thus highly synchro-
nized) neuron groups. Thus, locally coherent activity converges on
specific cell assemblies, thereby yielding complex ensemble dy-
namics. These segmentally synchronized pulse packets may serve
as information modules that flow in associatively parallel net-
work channels.
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Synchronized spikes prevail in cortical networks (1, 2). Their
modulations are commonly found in relation to attention,

sensory processing, and motor behaviors (3–8) and are implied in
perceptual binding (9). From computational aspects, spike syn-
chronization is crucial in information propagation (10, 11). As
single synapses are weak and stochastic, spikes cannot propagate
to a downstream network unless they synchronize. Moreover,
synchronized spikes are known to induce long-lasting synaptic
plasticity, depending on their relative timings between pre-
synaptic and postsynaptic neurons (12, 13).
Spikes do not synchronize only between a pair of neurons but

also among a set of neurons, often yielding high-order complex
dynamics, as in cell assemblies (14–17), synfire chains (10, 18), and
neuronal avalanches (19). The complex dynamics usually emerge
through autoassociative recurrent networks in which neurons are
sparsely interconnected to constitute relatively small groups. Thus,
a neural correlation can report a local network state (20–22).
Independent studies have addressed the topology underlying

either “functional” (synchronous) or “anatomical” (synaptic)
connectivity among multiple neurons (23–34), but very little is
known about their relationship. In this work, we used high-speed
functional multineuron calcium imaging (fMCI), large-scale
synapse mapping, and multiple whole-cell and dynamic patch-
clamp recording techniques and directly compared spatiotem-
poral spike patterns with synaptic wiring architectures. We re-
port that CA3 networks ex vivo are nonrandomly woven to
facilitate local spike synchronization under globally coherent
inhibitory backgrounds.

Results
Strong Spike Synchronization Between Synaptically Connected
Neurons. In rat entorhino-hippocampal slice cultures, 104 pairs
of adjacent CA3 pyramidal cells (PCs) were randomly selected
for whole-cell recordings (Fig. 1A). The connectivity density
among CA3 PCs was 28.8%. This connection ratio is higher than
the connectivity (2–8%) reported in acute slice preparations (35,
36). In acute hippocampal slices, 75% to 90% of the axons of
CA3 pyramidal neurons are amputated even in 500-μm-thick
slices (37). Therefore, organotypically cultured ex vivo networks
are likely to self-restore their complexity to a realistic extent. In
support of this, we found that neither levels nor patterns of
spontaneous excitatory postsynaptic currents (sEPSCs) or in-
hibitory postsynaptic currents (sIPSCs) differed between ex vivo
and in vivo hippocampal neurons (Fig. S1). As the ex vivo re-
covery of slice cultures occurs without external inputs (unlike
normal development), this work will describe the “default” net-
work dynamics that emerge under disturbance-free conditions.
Of 104 PC pairs, we encountered 16 bidirectionally connected

pairs. Given the connection probability p and the total number of
pairs N, the statistically expected number of bidirectional pairs
would be Np2, i.e., 8.6 pairs. In our datasets, therefore, the
number of bidirectionally connected pairs was 1.9 times higher
than expected (P = 0.012) (30), suggesting that CA3 recurrent
networks are topologically biased to enhance local connectivity.
When the neuron pairs were held in current-clamp mode, we

sometimes found spontaneous spikes synchronized (Fig. 1B). To
quantify the synchrony level, we introduce the scalar measure S,
based on statistical salience of the observed number of syn-
chronized spikes relative to chance. Specifically, we counted all
synchronized spikes, i.e., any pairs of spikes that concurred in
two neurons within a given time lag. If neuroni and neuronj are
independent units that fire in a random manner, the probability
P(n) that they exhibit n synchronized spikes during the obser-
vation period t is given by the Poisson equation:

Pi; jðnÞ ¼
mn

i; j

n!
e−mi: j [1]

where mi,j is the expected number of synchronized spikes, i.e.,
fi × fj × t, and fi and fj denote the spike rates of neuroni and
neuronj, respectively. When spikes synchronize n times, the
probability �Pi;j (rareness) is given as follows:

�Pi; j ¼ ∑
∞

k¼n
Pi; jðkÞ ¼ 1− ∑

n− 1

k¼0
Pi; j

�
k
�

[2]

Then, we defined the surprise index (Si,j) as− log2�Pi; j (38).
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For extremely synchronized pairs with S > 100 bits, S is
denoted as 100 bits to avoid arithmetic precision problems in
computing floating-point numbers. Thus, S ranges between 0 and
100 bits, with higher S reporting stronger synchronization.
S varies as a function of time widows for synchrony detection.

It peaked at time windows of 10 to 50 ms (Fig. 1C). In accord
with this, cross-correlation histogram of spike timings in neuron
pairs (Fig. 1C Inset) showed a peak at 0 ms with an SD of 25 ms
(fitted to the Gaussian curve). We therefore selected the 10-ms
bin in the following analysis, unless otherwise specified.
Synaptically connected pairs were more synchronized than

uncoupled pairs (Fig. 1D); the mean S for synaptic pairs was
higher by 24 bits than that for uncoupled pairs, indicating that,
on average, synaptic pairs exhibited synchronized spikes with
a 1.7 × 107 (i.e., 224) times higher probability. Consistent with
this, the probability to find synaptic pairs increased with S (Fig.
S2). Therefore, the functional and anatomical connectivity is
reciprocally, if not perfectly, linked at the single-cell level.

Common Presynaptic Neurons Shared by Synaptically Connected
Neurons. To probe the synaptic wiring pattern among CA3 PCs,
we employed reverse optical trawling (ROTing), a new optical
mapping method (39). While EPSCs were recorded simulta-
neously from two randomly selected PCs, a small number of
nearby neurons were sequentially activated by iontophoretic
application of glutamate through a glass pipette that was slowly
moved to survey the surrounding network (Fig. 1E). Spikes of
glutamate-activated neurons were captured as somatic Ca2+

transients with high-speed fMCI (Fig. S3). Neurons that exhibi-
ted calcium transients immediately before EPSCs were statisti-
cally screened. With this procedure, we can identify 96% of
presynaptic cells projecting to the patch-clamped neurons (39).
Fig. 1 E–G shows an example of ROTing-identified synaptic
connections, where nine neurons were sequentially whole-cell
recorded in pair, and 66 neurons were imaged with fMCI.

In these synapse connection maps, we often found “common”
presynaptic neurons that projected to both of the two patched
neurons. The mean ratio of common presynaptic neurons to the
total presynaptic neurons that projected to at least one of the
patched neuron pair was 13.2± 2.5%. This proportion increased to
43.9 ± 20.2%, however, when the postsynaptic pairs were synap-
tically connected (Fig. 1H; n = 11 pairs). This suggests that syn-
aptic pairs receive more correlated inputs than nonsynaptic pairs.
To confirm this, we carried out targeted patch-clamp record-

ings from spontaneously synchronized PC pairs, which were
identified online by high-speed fMCI. After monitoring sponta-
neous spikes in current-clamp mode, sEPSCs and sIPSCs were
recorded in voltage-clamp mode at −90 mV and 0 mV, re-
spectively. As expected, these PC pairs received highly correlated
sEPSCs and sIPSCs (Fig. 2A Left). The cross-correlations peaked
sharply at time lags of less than 1 ms (Fig. 2A Right). The half
peak width in the cross-correlogram was 67.0 ± 56.1 ms for
sEPSCs and 54.7 ± 50.4 ms for sIPSCs.
As control experiments, we also targeted less synchronized

neuron pairs. In the low-S pairs, sEPSCs were only weakly cor-
related (Fig. 2B), whereas sIPSCs were still highly correlated
(Fig. 2B). Data are summarized in Fig. 2 C and D. The corre-
lation coefficients of sEPSCs correlated positively with S (r =
0.34, P < 0.01), whereas those of sIPSCs were always high, in-
dependent of S. These data imply that excitatory neurons are
specifically wired to ensure local synchronization and that in-
hibitory activity is globally coherent in CA3 networks.

Synchronized Inputs from Common Presynaptic Neurons. How effi-
ciently do common excitatory synaptic inputs produce synchro-
nous firing? With the dynamic-clamp technique, we injected
artificially generated “correlated” synaptic conductance patterns
into twoCA3PCs under pharmacological blockade of fast synaptic
transmission. The stimulus sweeps were constructed in silico from
spike trains of 200 Poisson-firing presynaptic neurons, in which
each spike was convolved with a unitary waveform of a fast excit-

Fig. 1. Linkage of spike synchronization and synaptic connectivity. (A) Biocytin reconstruction of highly synchronized PCs. (B) Spontaneous activity exhibited
by the neuron pairs shown in A. Dots indicate synchronized spike pairs. (C) (Upper) Cross-correlation histogram showing the spike-triggered distribution of
spikes emitted by another neuron (n = 56 pairs). (Lower) S peaked at time windows of 10 to 50 ms (n = 39 pairs). (D) Synaptically connected pairs displayed
significantly higher S than unconnected pairs (P = 0.032, Kolmogorov-Smirnov test). Data of unidirectional and bidirectional pairs were mixed, as there was no
statistical difference (P > 0.1). (E) Diagram of ROTing for synapse mapping. (Upper) Two postsynaptic neurons were voltage-clamped (blue), and their
presynaptic neurons were searched based on timings between EPSCs in the patched neurons and glutamate-evoked presynaptic calcium events (red). (Lower)
Representative synaptic responses found by ROTing. Postsynaptic synaptic currents were aligned at presynaptic calcium spike timings (60-ms jitters allowed;
gray). Presynaptic cell 38 projected to postsynaptic cell 1, whereas cell 39 projected to cells 1 and 2. The locations of these cells are shown in F. (F) Repre-
sentative synaptic connectivity, in which 63 connections were identified to project to nine patched neurons (color-filled circles). Color lines indicate synaptic
links to the correspondingly colored neurons. (G) Cells in E are circularly arranged. Arrows outside the circle indicate unidirectional (uni) or bidirectional (bi)
synaptic connections between simultaneously patched neurons. (H) Synaptically coupled neuron pairs were innervated by larger proportions of common
presynaptic neurons, compared with unconnected pairs (**P = 0.0043, Mann-Whitney U test; n = 5 unconnected pair vs. eight connected pairs).
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atory postsynaptic conductance. Correlated conductances were
generated by overlapping some of the 200 presynaptic spike trains
so that their correlation coefficients ranged from 0 to 1 (Fig. 2E).
When PC pairs were stimulated with these conductances, they
emitted spikes, some of whichwere found to synchronize (Fig. 2F).
Swas calculated from the spike series and plotted against the input
correlation coefficients. The neurons responded to more corre-
lated inputs with more synchronized spike outputs (Fig. 2G). The
input-output relationship was substantially weak, however, com-
pared with that observed during spontaneous activity (cf. Fig. 2C);
note that S was always less than 50 bits in the stimulation experi-
ments, whereas it often exceeded 50 bits even for weakly corre-
lated EPSCs in spontaneous activity.
This inconsistency between artificial and spontaneous synaptic

inputs suggests that naturally occurring EPSCs involve more
information than captured by simple cross-correlations, thereby
efficiently synchronizing postsynaptic neurons (40, 41). To seek
the underlying information, we examined the dynamics of
spontaneous firing activity of CA3 neuron populations. Using
high-speed fMCI, the spatiotemporal pattern of spontaneous
network activity was reconstructed with the millisecond resolu-
tion from 85 ± 25 neurons (n= 14 slices), ranging from 53 to 137
neurons (Fig. 3A and Movie S1). Within a given 10-ms period, on
average, only a small number of neurons (0.19 ± 0.61% of the
total cells; n = 14 slices) were active, whereas the network oc-
casionally exhibited large synchronous events that involved up to

approximately 50% neurons (Fig. 3A Lower). The frequency of
the synchrony sizes was approximated by a power-law distribu-
tion P(n) ≈ nα, where n denotes the synchrony size and P(n) the
probability of observing size-n synchrony (Fig. 3B; α = −2.6). A
peri-synchronization time histogram revealed that, in a synchro-
nous event, the network barraged spikes during a period of ap-
proximately ±20 ms (Fig. S4). During synchronization, CA1
networks showed high-frequency field oscillations (Fig. S5),
which closely resembled sharp-wave/ripples observed in the
hippocampus of quiescent or sleeping animals (42).
We computed S for all neuron pairs in a raster plot and drew

the S-based connectivity map (Fig. 3C). Synchronization was
sparse; S was 0 bits in 80.3 ± 17.9% pairs, whereas nonzero S
conformed to a log-normal Gaussian distribution (Fig. 3D). S did
not correlate with the physical cell-to-cell distance as a whole (r=
0.096, P > 0.1), but pairs with S > 50 bits were always located
within a distance of 200 μm (Fig. 3E). Note that closely spaced
spikes (>50 Hz firing) were hardly separated in fMCI data (Fig.
S6A) because Ca2+ transients had a long decay constant of ap-
proximately 500 ms (43). Therefore, fMCI tends to underestimate
S, whereas S obtained by fMCI was almost linear with electro-
physiologically obtained S (r = 0.77, P < 0.01; Fig. S6B).
After constructing the S maps, we conducted ROTing in the

same network to search common presynaptic neurons. The
common presynaptic pairs exhibited significantly higher S than
unshared pairs (Fig. 3F; P < 0.01, Kolmogorov-Smirnov test).
This suggests that common parents are more prone to synchro-
nize. In other words, inputs into common postsynaptic pairs will
be more correlated than “Poisson-correlated” inputs, which we
used in the dynamic-clamp experiments (Fig. 2E).
Given that network synchronization magnitudes were power-

law tailed, we now generated the synaptic conductance patterns
from power law-scaled presynaptic spike trains by keeping the
overall presynaptic firing rate the same as in the Poisson simu-
lation (Fig. 3G). Neuron pairs stimulated by the scaled pattern
conductances exhibited strongly synchronized spikes, sometimes
reaching an S of 100 bits (Fig. 3 H and I).

Ensemble Dynamics of Spontaneous Activity. Based on the matrices
of S obtained by fMCI, we constructed dendrograms using the
method of Ward, a hierarchical clustering algorithm (Fig. S7A).
It disclosed the “cliqueness” of synchronous neurons. We then
examined whether the S matrices included small-world attributes
(27). By setting various lower-limit thresholds on the S matrices,
we depicted the synchrony graphs as a function of the threshold
(Fig. S7B). For any threshold, the extracted graph exhibited the
“small-worldness” (Fig. S7 C–E).
Using the affinity propagation algorithm (44), the order of

neurons was sorted so that higher S pairs were more neighbored
in the matrix, and the renumbered neurons were clustered into
subgroups. In the representative data shown in Fig. 4A, 96
neurons were separated into 15 groups. On average, each movie
contained 16.1 ± 7.6 groups, and each group comprised 5.8 ± 4.1
neurons (n = 14 slices). This clustering was validated with
ROTing; the connection probability among within-group neu-
rons was 37.6 ± 17.8%, significantly higher than the across-group
connectivity (27.0 ± 8.6%, P = 0.04, Wilcoxon signed-rank test;
n = 5 slices; Fig. 4B).
Neurons within a group were sparsely distributed over the

imaged field (Fig. 4C). The distribution of the cell-to-cell dis-
tance between within-group neurons did not differ from that of
across-group neurons (Fig. 4D; P > 0.1, Kolmogorov-Smirnov
test; n = 14 slices), indicating no spatial bias of synchronous
spike patterns. Raster plots sorted along the groups demon-
strated that within-group neurons frequently exhibited synchro-
nized spikes (Fig. 4E Upper). Interestingly, the internal structure
of synchronization was dynamic, that is, different synchrony
events recruited different sets of neuron groups (Fig. 4E Lower).

Fig. 2. Correlated sEPSCs in synchronous neuron pairs. (A) sEPSCs (Upper)
and sIPSCs (Lower) recorded in a neuron pair with an S of 100. Blue and red
traces are parts of simultaneous voltage-clamp recordings from two pyra-
midal neurons. (B) In a neuron pair with an S of 4.0, sEPSCs were only weakly
uncorrelated, but sIPSCs were still strongly correlated. (C and D) Summary of
the relationship between S and the correlation coefficient of sEPSCs (C) (r =
0.34, P = 0.01; n = 56 pairs) and sIPSCs (D) (r = 0.14, P > 0.1; n = 55 pairs). (E)
With the dynamic-clamp technique, correlated excitatory synaptic con-
ductances were injected into two CA3 pyramidal neurons under the phar-
macological blockade of fast synaptic transmission. Two stimulation sweeps
(red and blue) were generated from partially overlapped Poisson spike
trains. (F) Spike patterns emitted by two PCs in response to correlated
conductance stimuli (correlation coefficient of 0.6). (G) Swas calculated from
spike responses and plotted against the correlation coefficients between the
injected conductances (n = 55 pairs).
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Information Flow from CA3 to CA1. Finally, we addressed how these
CA3 cell assembly activities are transferred to downstream CA1
networks. After sorting CA3 neurons based on S matrices, we

applied ROTing to probe the CA3-to-CA1 synaptic connectivity.
An example map is presented in Fig. 5A, which shows the pro-
jection pattern from 90 CA3 neurons to seven patch-clamped

Fig. 3. Heavy-tailed synchronization in spontaneously active networks. (A) Rastergram of spontaneous spikes in 96 neurons monitored by high-speed fMCI
(Upper). Time histogram of the percentage of coactivated cells to the total imaged neurons (Lower, 10-ms bin). (B) Power-law distributions in synchrony size
(n = 14 slices). (C) Anatomical distribution of 96 neurons imaged in A (Upper). To quantify the degree of pairwise synchronization, S was defined as a surprise
index of the probability that the observed number of synchronized spikes could occur under the Poisson process. Gray-scaled S between all pairs of 96 cells
was shown on the cell map (Lower). (D) Distribution of S (54,239 cell pairs from 14 slices). (E) Relationship between S and the physical distance between two
neurons (r = 0.096, P > 0.1). (F) Pairs of common presynaptic cells shared by any postsynaptic pairs exhibited higher S than the others (P < 0.01, Kolmogorov-
Smirnov test). (G) Stimulation sweeps were generated from power law–distributed spike trains. (H) Spike patterns in response to power law–scaled con-
ductance stimuli (correlation coefficient of 0.6). (I) S was plotted against the correlation coefficients of the scaled conductances (n = 66 pairs).

Fig. 4. Cell assembly dynamics in network synchrony. (A) Affinity propagation algorithm separated 96 neurons in Fig. 3A into 15 subgroups. Each color indicates
a single group. (B) ROTing was conducted after neuronal group classification. Connection probability is significantly higher for within-group pairs than across-
group pairs (P = 0.04, Wilcoxon signed-rank test; n = 5 slices). (C) Cell map of two representative groups found in A. (D) No significant difference in cumulative
distribution of the cell-to-cell distances betweenwithin-group pairs (black line) and across-group pairs (gray line; n = 14 slices). (E) Raster plot (Fig. 3A) was sorted
in the order of the groups defined in A. Five synchrony events are time-expanded (Lower). Different events consisted of different group sets.
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CA1 PCs. CA3 PC pairs that projected convergently to the same
CA1 PCs had statistically higher S than the other CA3 PC pairs
(Fig. 5B; P < 0.01, Kolmogorov-Smirnov test). Thus, synchro-
nous CA3 activity tends to converge on the same CA1 neurons.

Discussion
In this study, we used high-speed fMCI to capture the fine-scale
structure of spontaneous CA3 network activity and analyzed the
organization and generation of spike synchronization with the aid
of large-scale optical mapping and dynamic-clamp techniques.
We found that complex recruitments of highly synchronized cell
assemblies constitute large-scale network synchronization and
that the assemblies emerge through presynaptic synchronization.

Origin of Synchronization. More synchronized neuron pairs were
more likely to be synaptically linked. We do not think, however,
that this synaptic link is enough to synchronize these neurons,
because a single synapse is tooweak to depolarize beyond the spike
threshold. Rather, correlated synaptic inputs from multiple com-
mon presynaptic neurons (30–33, 45) are more plausibly causal of
spike synchronization. Two lines of evidence are in favor of this
hypothesis. First, ROTing revealed that synaptically coupled CA3
PC pairs shared numerically more presynaptic CA3 PCs. Second,
double whole-cell recordings of neuron pairs revealed that more
synchronized pairs received more correlated sEPSCs.
We also found that common parent PCs were strongly syn-

chronized. This indicates that these common parents are also
under the further-upstream innervation by common “grandpar-
ent” PCs. This suggests synchronous activity flow, that is, syn-
chronous pulse packets flow across densely connected neuron
groups in recurrent networks. This idea is supported by our dy-
namic clamp data showing that common presynaptic neurons
need to be synchronized to evoke a realistic level of postsynaptic
synchronization, although common inputs from randomly spik-
ing neurons can do neurons to some extent.
In the dynamic clamp experiments, however, we did not con-

sider the dendritic properties. Dendrites exhibit nonlinear exci-
tation through spatiotemporal input summation and dendritic
spikes. It is also possible that synchronized spikes result from
nonlinear dendritic computation with convergent inputs of syn-
chronous activity into specific dendritic branches. Research into
this possibility is under way in our laboratory with multiple
patch-clamp recordings targeting dendrites (46).

Cell Assemblies in Small-World Networks. Consistent with previous
reports showing that the functional and anatomical connectivity
among individual neurons exhibits small-world architectures (26,
27, 47, 48), the CA3 networks also included small-world topol-
ogy. The small-world network is theoretically believed to allow
fast information transfer with low wiring costs (49), the co-
existence of information segregation and integration (50), and
synchronization (51). Neurons within a small-world cluster,
classified by affinity propagation, were sparsely distributed in
space. In hippocampal place cell activity recorded by multiple
unit electrodes in vivo, it is also reported that synchronous cli-
ques are dispersed across the electrodes (17). Despite this ap-
parent randomness of neuron locations, within-group neurons
were preferentially interconnected. This may emerge from tar-
get-selection mechanisms, such as activity-dependent synaptic
plasticity. Moreover, synchronous CA3 neuron groups converged
onto the same CA1 neurons. Thus, the CA3-to-CA1 connectivity
forms relatively independent routes that carry CA3 ensemble
activities to specific CA1 neuron subsets (Fig. S8). Synchronous
modules may serve as endogenous building blocks that embody
the diversity and complexity of information processing in asso-
ciative and parallel networks.

Coherent Inhibitory Networks. In the rat neocortex, the axons of
inhibitory neurons highly arborize, twisting and turning, seem-
ingly rummaging among their postsynaptic targets (52). There-
fore, single interneurons may promiscuously provide nearby PCs
with correlated inhibitory inputs. Moreover, interneurons are
reciprocally connected through synaptic contacts and gap junc-
tion (53–55). Thus, their interplay may give rise to globally co-
herent inhibition of PC networks (56). Indeed we found that
sIPSCs were correlated between virtually all PC pairs. Inhibitory
inputs limit the window available for temporal summation and
increase the temporal precision of PC firing (57). They also
entrain network activity by interacting with intrinsic oscillatory
mechanisms of PCs (58). We thus speculate that interneurons
couple relatively independent PC subgroups and orchestrate
complex network synchronization.

Ex Vivo Data.Our data were obtained exclusively from organotypic
slice cultures, an ex vivo experimental network model, and hence
must be carefully extrapolated to other neuronal systems, such
mature brain networks in vivo. Nonetheless, it is still intriguing to
find that such spontaneously reorganized ex vivo networks show
highly nonrandom patterns of connectivity and activity. Our
findings thus describe a primary regime of how neuronal networks
intrinsically develop and operate in the “free-run” mode.

Materials and Methods
Experiments were performed with the approval of the animal experiment
ethics committee at the University of Tokyo (approval number 19-43, A21-6)
according to the University of Tokyo guidelines for the care and use of
laboratory animals.

Entorhino-hippocampal organotypic slices were prepared from 7-d-old
Wistar/ST rats (SLC). Experiments were performed on days 7 to 11 in vitro.
Patch-clamp recordings were carried out simultaneously from two to four PCs
with two Axopatch 700B dual amplifiers (Molecular Devices). Whole-cell
patch pipettes (4–6 MΩ) were filled with 135 mM K-gluconate, 4 mM KCl, 10
mM Hepes, 10 mM phosphocreatine, 4 mM MgATP, 0.3 mM NaGTP, and
0.2% biocytin. Dynamic-clamp stimulation was performed with a PCI-6024E
data acquisition board (National Instruments) under a real-time Linux-
environment.

For fMCI, slices were incubated with Oregon Green 488 BAPTA-1 AM at
37 °C for 1 h and imaged at 500 to 2,000 frames per s with a Nipkow-disk
confocal unit (CSUX-1; Yokogawa Electric), a high-speed back-illuminated
CCD camera (iXon DU860; Andor), and a water-immersion objective lens
(magnification ×16, 0.80 NA; Nikon). Spike timings were determined with an
automatic machine-learning algorithm. Spike train data used here are
available online at http://hippocampus.jp/data. Further details are provided
in SI Materials and Methods.

Fig. 5. Convergent projection from synchronized CA3 pairs to CA1 neurons.
(A) Representative wiring patterns between 91 CA3 and 7 CA1 neurons. For
illustration purpose, CA3 neurons were classified on their S matrix with the
Ward method. (B) CA3 neuron pairs that projected convergently to the same
CA1 neurons displayed significantly higher S than the others (P < 0.01,
Kolmogorov-Smirnov test; n = 4 slices).
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