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Purpose: To identify mutations in a Chinese family with congenital cataract and microcornea.
Methods: Detailed family history and clinical data were recorded. Genomic DNA was extracted from leukocytes of venous
blood of the patients and noncarriers in this family along with 100 normal individuals. All six exons of crystallin, beta A4
gene (CRYBA4) were amplified by PCR methods and direct sequencing.
Results: We identified a c.225G>T sequence change that led to an amino acid substitution G64W in the CRYBA4-induced
protein in two patients of this family; this nucleotide substitution was not detected in the other individuals.
Conclusions: A novel missense mutation in CRYBA4 was identified in our study. It expands the mutation spectrum of
CRYBA4 and provides useful information to the study of molecular pathogenesis of cataract and microcornea.

Congenital cataract can be defined as lens opacification
presenting at birth or developing shortly thereafter. The lens
alone may be involved, and this accounts for approximately
70% of congenital cataracts. Conversely, lens opacities may
be associated with other ocular anomalies, such as
microphthalmia, aniridia, other anterior chamber
developmental anomalies, or retinal degenerations, seen in
approximately 15% of case [1]. Congenital cataract is a
leading cause of childhood blindness worldwide and results
in about 10%–20% of children in developing countries to be
blind [2]. Worldwide, 20 million children under the age of 16
suffer from cataract, and among these, 200,000 (10%) are
severely visually impaired or blind. While this figure is
relatively low compared to the 17 million (40%) adults who
are blind caused by cataract [3-5].

Recently, more than 34 loci in the human genome have
been reported to be associated with congenital cataract, and
22 specific genes have detected mutations, including encoding
crystallins (crystallin, alpha A gene [CRYAA], crystallin,
alpha B gene [CRYAB], crystallin, beta A1 gene [CRYBA1],
crystallin, beta A4 gene [CRYBA4], crystallin, beta B1 gene
[CRYBB1], crystallin, beta B2 gene [CRYBB2], crystallin,
beta B3 gene [CRYBB3], crystallin, gamma C gene
[CRYGC], crystallin, gamma D gene [CRYGD], and
crystallin, gamma S gene [CRYGS] [6-14]), cytoskeletal
proteins (beaded filament structural protein 1, filensin gene
[BFSP1], and beaded filament structural protein 2, phakinin
gene [BFSP2] [15,16]), membrane proteins gap junction
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protein, alpha 3 gene (GJA3) and gap junction protein, alpha
8 gene (GJA8), major intrinsic protein of lens fiber gene
(MIP) and lens intrinsic membrane protein 2 gene (LIM2)
[17-20]), transcription factors (heat shock transcription factor
4 gene [HSF4], paired-like homeodomain 3 gene [PITX3], and
Maf-like protein gene [MAF] [21-23]), glucosaminyl (N-
acetyl) transferase 2 gene (GCNT2) [24], chromatin
modifying protein-4B gene (CHMP4B) [25], and
transmembrane protein 114 gene (TMEM114) [26].

We report a novel missense mutation in CRYBA4 after
analyzing a Chinese family with congenital cataract and
microcornea. This mutation was not observed in any of the
healthy family members.

METHODS
Clinical evaluations: A three-generation Chinese pedigree
that consists of 15 individuals, including two affected
individuals, provided the basis for the study. Nine family
members participated in the study (two affected and seven
unaffected individuals; Figure 1). Two patients (both male) in
this pedigree had congenital cataract and microcornea , and
had shown symptoms of vision decrease before two years old.
The proband was a 7-year-old boy who had a cataract
extraction in another hospital, which provided us with post-
operation photos (Figure 2). According to his medical records,
this patient has congenital nuclear cataract with microcornea.
The axial length of his eyes is 23.4 mm oculus dexter (OD)
and 24.2 mm oculus sinister (OS); the corneal diameter is
9.5 mm. His father also has congenital nuclear cataract (post
operation), and the axial length of his eyes is 24.6 mm (OD)
and 25.2 mm (OS); the corneal diameter is also 9.5 mm. The
corneal diameter and eye axial length of seven healthy
members of this family were normal (Table 1). None of the
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family members had any other ocular or systemic
abnormalities identified after a complete physical and
ophthalmologic examination. One hundred normal controls
(54 males, 46 females, age 2–42 years) were recruited from
Physical Examination Center of Harbin Medical University
the 2nd Affiliated Hospital, Harbin, Heilongjiang, China.

The family members were interviewed to obtain a
detailed medical, ophthalmic, and family history after
obtaining informed consent. This study was approved by the
Institutional Review Board of Harbin Medical University,
Harbin, China.
Molecular genetic studies: Peripheral blood samples (5 ml)
were taken from nine members (two affected and seven

unaffected individuals) of the family and 100 healthy controls,
and were preserved at -20 °C in EDTA, and we then used the
TIANamp Blood DNA kit (Tiangen Biltech Co. Ltd., Beijing,
China) to extract genomic DNA. All six exons of CRYBA4
were amplified by PCR using the primers listed in Table 2.
The PCR products were purified and sequenced by Shanghai
Invitrogen Biotechnology Co. LTD (Shanghai, China). The
data were compared with sequences from the NCBI GenBank
(CRYBA4: NM_001886), and the modeled structures were
built using Swiss-PdbViewer 4.0.1 (Torsten Schwede et
al.,Basel, Switzerland) [27].

RESULTS
In this family, two patients showed the same clinical
symptoms, congenital nuclear cataract and microcornea, and

Figure 1. Pedigree of a Chinese family
with congenital cataract and
microcornea. The proband (III:3) is
indicated by an arrow. Two members
(II:3 and III:3) in two generations were
affected with congenital cataract and
microcornea. Both of the two affected
members had operations for bilateral
congenital cataract.

Figure 2. Post-operation eye
photographs of the two patients with
congenital cataract and microcornea in
a Chinese family. There were two
patients in this family we studied with
congenital cataract and microcornea.
They had a cataract extraction in another
hospital, which provided us with post-
operation photos. A: Post-operation eye
photographs of the proband’s father is
shown. B: Post-operation eye
photographs of the proband is displayed.

TABLE 1. CORNEAL DIAMETER AND EYE AXIAL LENGTH OF NINE MEMBERS OF THE FAMILY.

Member Corneal diameter Eye axial length (OD) Eye axial length (OS)
III:3 9.5 mm 23.4 mm 24.2 mm
II:3 9.5 mm 24.6 mm 25.2 mm
I:1 11.6 mm 24.3 mm 24.7 mm
I:2 11.6 mm 23.9 mm 24.1 mm
II:2 11.8 mm 24.2 mm 25.1 mm
II:4 11.6 mm 24.7 mm 24.6 mm
II:5 11.5 mm 24.5 mm 24.1 mm
III:1 11.6 mm 24.4 mm 24.5 mm
III:2 11.5 mm 24.2 mm 24.7 mm

Two members of this family (II:3 and III:3) in two generations were affected with congenital cataract and microcornea. Other
seven members(I:1, I:2, II:2, II:4, II:5, III:1, and III:2) were not involved.
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we identified a new mutation (c.225G>T, Figure 3) in exon 4
after direct sequencing of CRYBA4. This mutation was not
detected in the healthy members of this family or in any of the
normal control subjects. The mutation leads to an amino acid
change (G64W). This substitution is located at a corner of the
modeled structure of CRYBA4, as shown in the modeled
structure (Figure 4 and Figure 5).

DISCUSSION
In this study, we identified a mutation (c.225G>T) in exon 4 of
CRYBA4. This mutation segregates within the proband and his
father (the two patients of this family) and was not detected
in normal members of this family or in 100 healthy controls.
We conclude that this sequence change results in the onset of
congenital cataract and microcornea in this family.

Three major classes of crystallins are found in the
mammalian lens [28]. They are α-crystallin (40% of total
crystalline protein), β-crystallin (35%), and γ-crystallin (25%)
[9]. The β- and γ-crystallins are members of a superfamily as
they share a common two-domain structure composed of four
“Greek key” motifs, two in the NH2- and two in the COOH-
terminal domain [29].The β-crystallins are major constituents
of the human lens and include three basic and four acidic
protein forms. Each subgroup is encoded by three genes
(CRYBA1,CRYBA2, and CRYBA4;CRYBB1,CRYBB2, and
CRYBB3) [30].The protein encoded by CRYBA4 (belonging
to the CRBA genes) contains 196 amino acids, and constitutes

Figure 4. The modeled structure of crystallin, beta A4 protein
(CRYBA4). The modeled structure of CRYBA4 was built using
special software (Swiss-PdbViewer 4.0.1 [39-41]). The mutation
described in this study leads to the replacement of glycine by
tryptophan at codon 64 (Gly64).The Gly64, located in the corner of
the modeled structure, may form such secondary structures as β-sheet
or β-turn.

TABLE 2. PRIMERS FOR MUTATIONAL SCREENING OF CRYBA4.

Exon Forward primer Reverse primer Product length (bp)
1 GTCCTTTCCCTCCCTGCTAA AGGATGAGGATGGCATTCAG 316
2 TAGCCCAGTCACTCCTGGAC CCTAGGATTCATGGGGACCT 238
3 TTTGCAATCCCTGCTTTACC CTTCAGGAGGGCACAACAGT 350
4 ACCCCTGAATGGTTGTGACT CTTGAAGTGGCGACATGAGA 350
5 CAAATGGCAAGGTTTCTGGT GTCCCTCAAATTCTGCCTGA 465
6 AGGGAATGGCATGATCAAAG GGCCTGAAGTAAATAGAAGAAAGG 633

Summary of the primers used for the amplification of CRYBA4  exons. Sequences are given in the 5′→3′direction.The primers
were designed on line using primer 3.0.

Figure 3. Sequence analysis of the
unaffected members and affected
members in the family with congenital
cataract and microcornea. A: The partial
sequence of CRYBA4 in a normal
individual is displayed. B: The
corresponding nucleotide sequence of
CRYBA4 in the proband is shown.
Sequencing results showed a
substitution of G→T in CRYBA4 (c.
225G>T), which led to replacement of
glycine by tryptophan at codon
64(G64W) in crystallin, beta A4
protein.
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approximately 5% of the total soluble proteins in the young
human lens [31].

β-Crystallins are expressed not only at the early
developmental stages of the eye lens but also after birth. The
temporal expression of crystallin genes vary in development.
Different CRYB proteins can be found in both prenatal and
postnatal developing lens; furthermore, they interact with
each other [32,33]. Previous studies found homozygous
changes in CRYBB2 that were associated with severe
microphthalmia and cataract and found an interaction of
CRYBB2–CRYBA4 monomers [34,35]. Human βA4-
crystallin readily oligomerizes with human βB1-crystallin, a
hetero-oligomer that can be purified [36].

To date, Billingsley et al. [9] have reported two mutations
(c.317T>C and c.242T>C) in exon 4 of CRYBA4 by genetic
analysis of a large Indian family with an autosomal dominant
cataract phenotype. It is worth noting that one of the two
mutations (c.242T>C) and the mutation reported in this study
(c.225G>T) are in a highly conserved area of CRYB exon 4
(Figure 6), which indicates that the sequence changes in this
area play an important role in the onset of congenital cataract.

The mutation described in this study leads to replacement
of glycine by tryptophan at codon 64. From the modeled

structure of CRYBA4 (Figure 4), which was built using
special software (Swiss-PdbViewer 4.0.1; Torsten Schwede
et al., Basel, Switzerland), we can report that this substitution
takes place at a corner of the backbone structure. Moreover,
previous studies support that glycine is often found in β-sheet
secondary structures and is the amino acid appearing most
frequently at position i+2 of β-turn [37,38]. Based on the
above, we surmise that glycine at codon 64 probably forms
similar secondary structures as β-sheet or β-turn. The
substitution may result in damage to forming normal
secondary structure during the CRYBA4 protein folding
process so that the structure of the protein has reduced stability
in the patient’s lens (Figure 4 and Figure 5). These series of
changes may lead to disturbance of the lens transparency and
functional integrity, resulting in cataract.

In the present study, we reported a novel missense
mutation in two patients with congenital cataract and
microcornea that come from the same Chinese family. This is
the first report linking mutations in CRYBA4 to
cataractogenesis and microcornea. Our findings expand the
mutation spectrum of CRYBA4 and provide useful
information in the study of molecular pathogenesis of
congenital cataract.

Figure 5. Portion of the crystallin, beta
A4 protein (CRYBA4) modeled
structure in the vicinity of residue 64.
The portion modeled structures of the
CRYBA4 in the vicinity of residue 64
were built using Swiss-PdbViewer 4.0.1
[39-41]). A: The normal modeled
structure of CRYBA4 is displayed. B:
The mutant modeled structure of
CRYBA4 is shown. Glycine (Gly) is
replaced by tryptophan (Trp) at codon
64. Modeled structures are shown by
element type, using a default standard
CPK (a popular color convention for
distinguishing atoms of different
chemical elements) scheme: n=blue,
O=red, C=white.

Figure 6. Interspecies sequence alignment of a portion of the CRYBA4 (crystallin, beta A4) amino acid sequence. The alignment data indicate
that glycine at position 64 (indicated by the red background) is highly conserved in CRYBA4 of different species.
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