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The explanation of higher neural processes requires an understand-
ing of the dynamics of complex, spiking neural networks. So far,
modeling studies have focused on networks with linear or sublinear
dendritic input summation. However, recent single-neuron experi-
ments have demonstrated strongly supralinear dendritic enhance-
ment of synchronous inputs. What are the implications of this
amplification for networks of neurons? Here, I show numerically
and analytically that such networks can generate intermittent,
strong increases of activity with high-frequency oscillations; the
models developed predict the shape of these events and the
oscillation frequency. As an example, for the hippocampal region
CA1, events with 200-Hz oscillations are predicted. I argue that
these dynamics provide a plausible explanation for experimentally
observed sharp-wave/ripple events. High-frequency oscillations can
involve the replay of spike patterns. The models suggest that these
patterns may reflect underlying network structures.
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During the last few years, experiments have shown that sev-
eral inputs that arrive simultaneously (or with a temporal

difference of at most few milliseconds) at a dendrite can co-
operatively trigger a dendritic spike mediated by voltage-gated
sodium channels (1–5). This spike generates a rapid de-
polarization in the soma, which has a rise time constant in the
submillisecond range and typically is larger than the sum of the
depolarizations the individual inputs would generate. If a so-
matic spike is generated by such a depolarization, this generation
happens with high temporal precision; variations in the somatic
spike response times are in the submillisecond range, as are the
differences between response times of different neurons (1, 3, 5).
Theoretical studies on active dendrites mainly considered single

neurons. Simulations of neuron models incorporating details of
channel spatial distribution and dendritic morphology showed
dendritic spike generation in agreement with experiments (1, 2, 4,
6). For neurons with comparatively slow NMDA receptor-de-
pendent dendritic spikes (7), which are largely insensitive to
temporal coincidence of inputs and generate somatic depolariza-
tions with rise times of tens of milliseconds, firing ratemodels have
been developed (6). Based on these models, the computational
abilities of simple circuits have been studied (7–9). In ref. 10,
networks of bursting neurons were examined, where the bursts can
be explained by slow dendritic spikes. Active dendrites generating
fast dendritic sodium spikes were studied in a two-neuron circuit
and in a simple feed-forward structure (11), and model neurons
incorporating such dendritic spikes were used as an output layer
in simulations of hippocampal network models (12).
This article considers the implications of supralinear den-

dritic interactions as mediated by fast dendritic spikes in larger
recurrent neural networks. How does a mechanism leading to
strong enhancement of synchronous input and to responses
with high temporal precision affect the dynamics of a neural
network with complex topology? First, I develop a method of
incorporating supralinear dendritic interactions in neural net-
work models that allows an analytical approach. The next sec-

tion shows that the networks generate events of transiently
enhanced activity and high-frequency oscillations, and yields
a quantitative understanding of these dynamics. Thereafter, I
introduce a more detailed network model to ensure that pre-
vious modeling assumptions are not essential for the generation
of such events and to gain insight into more detailed dynamical
properties. In particular, I highlight that the spiking activity can
reflect underlying network structure. Finally, I show that the
models’ dynamics provide a plausible explanation for sharp
wave/ripples (SPW/Rs) in the hippocampus.

Results
An Analytically Tractable Model (Model 1). The level of abstraction
appropriate for this study of recurrent neural networks with
complex topology is the level of integrate-and-fire neurons. These
models capture essential properties of cortical neurons but also
allow investigation of the underlying mechanisms of network dy-
namics without obscuring them by a many-variable, many-pa-
rameter single-neuron description (e.g., ref. 14). How can we
account for supralinear dendritic interactions in networks of sin-
gle-compartment neurons? The cooperative effects between
inputs occur for highly synchronous inputs (1–5). I model this
occurrence by allowing supralinear amplification for precisely
synchronous inputs (Methods). Accordingly, the differences in
conduction delays are neglected, so synchronous presynaptic
spiking can be amplified. For simplicity, I replace the steep rise of
the membrane potential following an amplification by a jump-like
rise, and I assume that nonamplified inputs also generate small
jumps in the postsynaptic potential and that all responses occur
at a delay τ after presynaptic spiking. Slow inputs are integrated in
a constant, suprathreshold input current I0, and slow internal
currents are neglected. In conventional models, the effects of
several simultaneous inputs are simply summed up linearly. I ac-
count for nonlinear amplification by applying a nonlinear function
σ to the sum of simultaneous excitatory inputs. Interestingly, this
dendritic modulation function can be obtained directly from ex-
perimental results (SI Text, Section C) (1, 2, 15, 16): σ has a sig-
moidal shape, it equals the identity for small argument, increases
steeply or in a jump-like manner above some threshold, and then
reaches the saturation level. I model this shape by a piecewise
linear function (Fig. 1B Inset) with parameters chosen according
to experimental data (1).
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Transient Propagation of Synchrony. In this section, I study the
evolution of synchronous activity in network model 1. A typical
ground state of the linear (σ equal to the identity) and the
nonlinear (σ sigmoidal) model is irregular asynchronous spiking
activity (Fig. 1 and Figs. S1 and S2) (17–19), which constitutes
a background activity. If external stimulation excites a group of g
′0 neurons to synchronous firing at time t0, a pulse of synchronous
spikes is generated, and synchronous spikes arrive at time t0 + τ
at all neurons postsynaptic to neurons in the initial group. A
subgroup of g′1 ≥ 0 of these neurons receives inputs that are
strong enough to raise the membrane potential above threshold
(suprathreshold excitation). Because of the infinitesimal rise
time of the membrane potential, these neurons send their spikes
immediately (and synchronously) at t0 + τ. Their spikes in turn
evoke a pulse of g′2 synchronous spikes at t0 + 2τ and so on:
Synchrony propagates through the recurrent network against
a background of irregular spiking activity.
In agreement with previous studies (20, 21), I find that in linearly

coupled networks the pulse size decays quickly, and the chain
extinguishes (Figs. S1 and S2 B and D). In networks with supra-
linear dendritic interactions, chains initiated by small groups,
about the size of spontaneously synchronized groups, also die out
quickly. With increasing group size, however, the number of
postsynaptic neurons receiving supralinearly enhanced inputs
increases strongly. For larger group sizes, there is a strong overall
amplification of the effect of excitation. A sufficiently large initial
group thus can excite a larger second group of neurons to syn-
chronous spiking, and subsequent synchronous pulses in the chain
can grow further. If a pulse is too large, however, it results in many
refractory neurons and in saturation of excitatory inputs to in-
dividual neurons, while inhibition still increases. The subsequent
pulses then are too small to be amplified, and the chain extin-
guishes (Fig. 1 and Fig. S2 A and C). This short-lived, enhanced
propagation of synchrony generates, in the presence of repeated
stimulation or intrinsic trigger mechanisms, a pattern of in-
termittent enhanced activity and high-frequency oscillations. It
relies on a sufficiently large ratio between excitation and inhibition.
If the ratio is too large, epileptic activity emerges (Fig. S2). For the

hippocampal region CA1, a delay time constant of τ ≈ 5 ms can be
determined by adding the axonal and synaptic delays and the la-
tencies of the dendritic spike and the somatic action potential
generation (SI Text, Section B) or can be inferred directly by taking
into account only the dendritic spike timing (1). This delay leads to
an oscillation frequency of ∼200 Hz.
For a quantitative understanding of chain evolution, we can

approximate it by a stationary discrete Markov process. The
transition matrix from the initial group size g′0 to the next group
size g′1 characterizes the chain evolution. In networks with
supralinear dendritic interactions, a range of group sizes exists
where amplification of group sizes is highly probable (Fig. 1B,
between G1 and G2). Such a range is absent in linearly coupled
networks (Fig. S1B). If a group becomes too large (larger than
G3), subsequent groups are small (smaller than G1), and the
chain dies out. This extinguishing is supported by a decrease of
background activity. I derived the transition matrices and the
mean response sizes numerically, analytically, and semianalyti-
cally (Methods), all with very similar results.

A Model with a Finite Interaction Window (Model 2). Are modeling
assumptions such as amplification only of precisely synchronous
activity, homogeneous delay distribution, or jump-like post-
synaptic responses essential for the generation of intermittent
high-frequency oscillations? A more detailed network model
shows that they are not. In a simple multicompartmental model,
we would describe the dendrite as a single compartment with
resistive coupling to the soma. If a sufficiently strong input arrived
at the dendrite, a dendritic spike would be elicited, and the
resulting depolarization would cause a current pulse in the so-
matic compartment. I use a single-compartment model and in-
clude this current pulse (Fig. 2). If the total strength of the
excitatory input, which arrives within a short time window Δt,
exceeds the threshold for dendritic spiking, a current pulse is
injected after a fixed delay (1–4). The neuron and network
parameters for this phenomenological model are chosen accord-
ing to experimental findings in CA1 (1–3, 5, 22) and neighboring
regions (Methods and SI Text, Sections B and C). In particular,
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Fig. 1. Random networks with supralinear dendritic interactions generate transiently increased activity and high-frequency oscillations with frequency 1/τ.
(A) A section of the dynamics of a supralinearly coupled network with a synchronous pulse of size g′0 = 45 generated at time t0 = 300 ms by external
stimulation. This pulse initiates a short-lived chain of propagating, enhanced synchrony. (Bottom) The spiking activity of 200 neurons. Spikes within the chain
are marked red. (Middle) The network’s spike rate (bin size 1 ms). (Top) The size of synchronous spike pulses within the chain. (B) The propagation of
synchrony can be understood quantitatively in Markovian approximation. The chain evolution is characterized by the transition matrix (gray shaded). The
dots indicate the mean response pulse sizes derived numerically (green), semianalytically (red), and analytically (blue). Between G1 and G2 a range with high
probability of amplification exists. The gray dashed line shows the evolution of the event in A. (Inset) The dendritic modulation function σ (black line)
mapping the peak excitatory postsynaptic potential (EPSP) expected from linear input summation to the effective peak EPSP.
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coupling delays are inhomogeneous, and recurrent connections of
the excitatory population are very sparse and show supralinear
dendritic interactions (1, 23).

Intermittent Increases of Activity with High-Frequency Oscillations.
Network model 2 generates irregular, asynchronous background
activity and, in irregular intervals, spontaneous increases of activity
with a duration of ∼50 ms. These events consist of several sub-
sequent pulses of highly synchronous spiking activity in the excit-
atory and inhibitory neuron populations (Fig. 3). Pulses in these
two populations have ∼5 ms temporal distance and are shifted in
time with respect to each other. Accordingly, the spectrogram of
the spike rates shows at events a maximum at ∼200 Hz. The oc-
currence of events and the frequency of the oscillations depend on
parameters such as the coupling strengths and the size of the in-
teraction window, but both occurrence and frequency remain re-
markably stable when the network parameters are varied within
the biologically plausible range (SI Text, Section B). Occasionally,
events with weak or undetectable oscillations occur. Also, events
can be evoked by stimulation, where the level of synchrony
depends on the width and amplitude of the stimulation. On in-

crease of excitation and decrease of inhibition, the activity
approaches a nearly uninterrupted series of events, and the size of
events grows, suggesting a possible transition from healthy events
to epileptiform activity (SI Text, Section B) (24).
The structural similarities tomodel 1 aswell as theprevalenceand

the timing of excitatory inputs and dendritic spikes during events
(Fig. 3 and Fig. S3) suggest that the events are based on subsequent
excitation of synchronous neuron groups caused by supralinearly
enhanced excitation by dendritic spikes. This suggestion is con-
firmed by the direct dependence of the interpulse intervals on the
timing properties of the dendritic spikes and by their insensitivity to
other parameters such as the delay of connections between the ex-
citatory and the inhibitory population or the response properties of
the inhibitory neurons (SI Text, Section B and Fig. S5).
The mechanism leading to events in model 2 can be described as

follows: Spontaneous fluctuations, slow, not too strong oscillations
in the network activity or external stimulation, lead to mildly en-
hanced synchronous spiking activity in the population of excitatory
neurons. This activity enhances dendritic spiking in postsynaptic
excitatory neurons. The dendritic spikes promote somatic spikes or
directly generate them with high temporal precision. Together with

Fig. 2. Supralinear dendritic enhancement of inputs within a finite temporal interaction window leads to spontaneous, intermittent increases in the network
activity. (A) Comparison of the depolarizations caused by several simultaneous inputs in a conventional neuron (black) and in a neuron with supralinear
dendritic interactions (model 2; green). (Inset) Modulation function σ. (B and C) The dynamics of a network incorporating supralinear dendritic interactions.
(B) The spike rate (bin size 1 ms) of the inhibitory (Upper) and of the excitatory (Lower) neuron population. (C) The spiking activity of 300 of the excitatory
neurons. The dynamics are characterized by irregular spiking interrupted by spontaneous, intermittent increases of activity involving both the inhibitory and
the excitatory neuron population. During such an event a larger fraction (about one third) of the neurons in the excitatory population sends a spike, and
almost every inhibitory neuron sends usually several spikes. The event around t = 1,400 ms is depicted in Fig. 3A.
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Fig. 3. Single events in the network dynamics of model 2 consist of several subsequent pulses of highly synchronous spiking activity with temporal distance
of about 5 ms. (A) An event in a random network. (Top and Middle) The spike rates (number of spikes per bin, all bin sizes 0.5 ms) of the inhibitory and of the
excitatory population, respectively. (Bottom) The spiking activity of the excitatory population. (B) An event generated by a network in which only the re-
current connections of a subpopulation of the excitatory neurons allow supralinear dendritic interactions. This subpopulation (spike rate of 500 neurons;
Bottom) and the inhibitory population (spike rate; Top) participate in events. Other excitatory neurons essentially do not participate (spike rate of 500
neurons; Middle). (C) An event in a network with a feed-forward structure in the excitatory population created by the presence of supralinear dendritic
interactions (group sizes: 350 neurons). (Upper) The event has the usual profile (rate of the excitatory population). (Lower) The spiking activity of the ex-
citatory population reflects the feed-forward structure in the underlying network. See main text and Fig. S4 for details.
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conventional inputs, they evoke a better synchronized, larger pulse
of response spikes in the excitatory population. This pulse then
evokes a third one, and so on. At first, because of nonlinearly en-
hanced feedback within the excitatory population, the increase of
activity is not sufficiently suppressed by increased activity in the in-
hibitory neurons, despite their faster response properties. The pulse
size and thus the overall activity increase. After larger pulses, how-
ever, a substantial fraction of excitatory neurons is refractory, and,
with time, the impacts of strong inhibition accumulate. Both effects
limit the pulse sizes, the inhibition finally dominates the excitation,
the overall activity decreases, and the event ends (Fig. S3).

Structured Networks. The spiking activity during events can reflect
underlying network structure. I demonstrate this ability by means
of twomodel 2-type networks (“network I” and “network II”) with
random topology. A single simplemodification introduces specific
structure: Only selected subsets of the existing couplings support
supralinear dendritic enhancement. Inputs from these couplings
to a neuron can cooperatively trigger dendritic spikes, whereas
other inputs to the neuron do not contribute to supralinear am-
plification; i.e. the neuron has several dendrites or several den-
dritic compartments. In network I, the recurrent couplings of
a subpopulation of the excitatory neurons are selected to allow
supralinear enhancement. Simulations show that this sub-
population supports the intermittent events, whereas other ex-
citatory neurons do not participate significantly. The spiking
activity during an event thus reflects the network structure (Fig.
3B and Fig. S4 A and B). In network II, a sequence of neuron
groups is chosen within the excitatory neuron population. The
couplings from one group to its successor are selected to support
supralinear enhancement, yielding a feed-forward structure that
is reflected by the spiking activity during events (Fig. 3C and Fig.
S4 C–F). The models thus suggest a simple explanation for replay
of spike patterns during high-frequency oscillations (25–27): The
network structure might have been modified in a previous learn-
ing phase to generate an experience-associated activity pattern
which then is replayed during the events. The activity-dependent
learning might have changed synaptic strengths or, as shown
above, have determined which inputs support supralinear ampli-
fication (5). The structure and plasticity of external inputs also are
likely to play an important role.

A Model for Sharp Wave/Ripples. For hippocampal region CA1
(and for regions which are similar with respect to their single-
neuron and network properties), the model predicts events of
increased activity with high-frequency oscillations of ∼200 Hz (SI
Text, Section B). Indeed, in CA1 and neighboring regions, SPW/
Rs, intermittent strong increases in network activity (sharp
waves) with high-frequency oscillations (ripples) of ∼200 Hz,
have been found (28–31). Does the model provide a plausible
explanation for SPW/Rs?
I first consider anatomical evidence and note that recurrent

excitatory connectivity in CA1 is mediated by axon-to-basal
dendrite synapses (23) and that these basal dendrites generate
the dendritic sodium spikes incorporated in the model (1). The
recurrent excitatory connectivity in CA1 is sparse but significant,
and individual couplings are strong (23). A comparison between
the number of inputs expected during SPW/Rs from the esti-
mated connectivity and those expected from CA3 afferents that
generate dendritic spikes (32) indicates that already global un-
structured connectivity might lead to dendritic spiking. Sparsity
is compensated by large numbers of neurons participating in
SPW/Rs. Anatomical findings and a comparison with neocortex
suggest a locally enhanced connectivity. Sparsity might further be
compensated by nonrandom connectivity (23) and other network
features (SI Text, Section C).
I now examine and compare the characteristics of events in the

model and of SPW/Rs. (i) They agree in the frequency of the high-

frequency oscillations. Ripples in in vitro slice preparations (30,
31, 33) generally have a higher oscillation frequency than those
detected in vivo (29, 34). The model suggests that this higher
oscillation frequency is caused by the reduction of longer-range
connections during slice preparation and suggests a decrease in
the oscillation frequency with increasing slice thickness (Fig. S6,
SI Text, Section B, Fig. S7). This, together with the broader delay
distribution in networks with long-range connections, also might
explain why there are only weak lower-frequency ripples (if any) in
the globally connected region CA3 in vivo (22, 29, 34), whereas
there are marked high-frequency ripples in thin-slice preparations
of CA3 (30, 31, 33). (ii) The events in themodel and SPW/Rs have
similar shape (rate profile) and duration. (iii) They both are as-
sociated with increased inputs to the excitatory and the inhibitory
neuron populations. (iv) The model predicts spiking in basal
dendrites of CA1 pyramidal neurons during SPW/Rs. So far, this
spiking has been observed in apical dendrites, which are more
easily accessible experimentally (32). (v) The firing characteristics
of the individual neuron populations agree: The excitatory neuron
population and the inhibitory neuron population show increased
activity. A larger fraction (but not all) of the neurons of the ex-
citatory population contributes usually one spike to an event.
Inhibitory neurons of the types participating during SPW/R
events fire at high frequency, often around 200 Hz (29, 35). (vi)
The phase of the oscillation of the inhibitory neuron population is
delayed with respect to the phase of the excitatory population. If
the interneuron parameters in the model are chosen to reproduce
the fast-response properties of participating interneurons (35,
36), even quantitative agreement can be achieved. In biological
neural networks, additional effects might promote synchronous
and early firing of interneurons (Fig. S5) (29, 37). (vii) During
SPW/Rs, patterns of spiking activity from previous learning pha-
ses are repeated (25–27). The model suggests that this repetition
might be explained by the reflection of underlying network
structure in the spiking activity. Further studies should consider
learning, different topologies, and the influence of plastic inputs
from CA3; such investigations might lead to an explicit model-
ing of the replay of spike patterns at the experimentally ob-
served frequencies.
Finally, I consider the pharmacological findings of direct im-

portance. (i) The fast recurrent excitatory interactions in the
regions considered are mediated by AMPA receptors. AMPA
antagonists abolish the SPW/R activity in both CA1 and in CA3
(30). Although SPW/R events usually are initiated in CA3, they
also are found in the functionally disconnected region CA1 (30,
31). This data indicates that the recurrent excitatory connectivity is
essential for their generation in both regions, as assumed in the
model. The model reproduces the behavior of the network dy-
namics under blocking of excitation (SI Text, Section B). (ii)
Blocking of GABAA-mediated inhibition can lead to large, epi-
leptiform events that have a shape similar to SPW/Rs and∼200-Hz
ripple frequency (30). Upon reduction of inhibition, the event size
increases in the model as well (SI Text, Section B). (iii) There is
experimental indication that SPW/Rs also depend on electrical
coupling (29–31). This dependence might be explained by elec-
trical synapses which increase the tendency of the neurons to
synchronize and compensate for sparse coupling (38, 39). The
application of gap junction blockers then should reduce the in-
cidence of SPW/Rs and the ripple strength but leave the oscillation
frequency invariant, as is observed in experiments (29–31). Under
certain conditions such as strong external chemical stimulation,
high-frequency oscillations and patterns similar to SPW/Rs can be
generated, which aremediated by electric couplings (31, 40–42). It
is unclear if similar mechanisms underlie native SPW/Rs; recent
experimental findings might indicate they do not (24, 43).
Taken together, the model is substantiated by hippocampal

anatomy and by data concerning nonlinear dendrites. Further,
the events in the model and SPW/Rs share essential properties,
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and the model is compatible with the neurophysiological findings
on SPW/Rs. It can thus be concluded that the model yields
a plausible explanation for SPW/Rs in the hippocampus.

Discussion
This article assesses the implications of supralinear dendritic
interactions as found in recent experiments (1–5) on the dy-
namics of complex, spiking neural networks. I develop a method
to incorporate supralinear dendritic interactions, such that the
network dynamics can be studied numerically and, despite the
high nonlinearity and complex network structure, even analyti-
cally. The proposed method is very general. It is restricted nei-
ther to neurons of the integrate-and-fire type nor to single-
compartment neurons, and it can be used to model other types of
nonlinear dendritic interactions. Also, electrical coupling is well
compatible with the studied concept of nonlinear integration.
The models show that networks incorporating fast dendritic
spikes can generate a robust emergent phenomenon: events of
intermittently enhanced activity with high-frequency oscillations.
The underlying mechanisms can be quantitatively understood,
and it can be shown that they are based on propagation of syn-
chrony. This mechanism is particularly remarkable, because in
networks of conventional neurons, propagation of synchrony is
difficult to realize and requires highly structured networks, es-
pecially if the networks are sparse (20, 21).
For hippocampal region CA1 and related regions, the models

predict the occurrence of phases of enhanced activity with high-
frequency oscillations of ∼200 Hz. This prediction agrees with
the prominent SPW/R pattern observed in these regions (28–31).
Two main modeling approaches for SPW/Rs have been proposed
so far. The first approach (here referred to as “model IN”),
assumes in its basic form that a sharp wave from CA3 excites
interneurons to oscillate (29, 44, 45). Their fast inhibitory con-
nections synchronize them (46), and the resulting periodic in-
hibition entrains the population of excitatory neurons to
oscillatory activity. The second approach (“model GJ”) is based
on the assumption that axo-axonal gap junctions connect the
pyramidal neurons of region CA1 to a sparse network (41, 42,
47). Simulations show that for coupling strengths in the physio-
logical range, spikes can pass from axon to axon. A depolarizing
sharp wave input from CA3 allows spontaneous axonal ectopic
spikes to propagate, to multiply in the axonal bulk, and to excite
pyramidal cells and interneurons after antidromic and ortho-
dromic propagation. This process leads to bursts of rhythmic
network activity (41, 42). The predicted axo-axonic gap junctions
have been found experimentally (38, 48), and they most likely
underlie high-frequency oscillations and patterns resembling
SPW/Rs which can be evoked in CA1 networks in vitro after
blocking of chemical transition (31, 40–42). This finding supports
model GJ as an explanation for native SPW/Rs.
Synchronization in model IN is mediated by recurrent in-

hibitory connectivity. In model GJ, an ectopic spike generates
a pulse of spikes in the axonal plexus. Its width depends on the
network topology. In my model, synchronization is mediated by
supralinear dendritic amplification, inhibition serving as a bal-
ancing mechanism (Figs. S5, S8 and S9). In model IN, the fre-
quency of oscillations depends on strengths and delays of
recurrent connectivity, external stimulation, and single-cell
properties. In model GJ, the period of the oscillations is ap-
proximately the product of the average mean path length in the
network and the time needed for spikes to cross between axons. In
my model, it depends on the timing properties of dendritic spikes
and the delays of excitatory-to-excitatory connections (SI Text,
Section B). Both model GJ and my model predict spikelets (32,
40). In model GJ, a spike in one axon induces a spike in a coupled
axon (“one:one” propagation). In a model proposed for cere-
bellar cortex (49), several synchronous spikes are necessary
(“many:one” nonlinearity), conceptually related to my model.

Both models IN and GJ suggest a more prominent role of struc-
tured input from CA3 during replay of spiking activity (25–27),
whereas the present model suggests an emphasis on recurrent
connectivity. The present model explains the overall increase of
activity associated with SPW/Rs and the oscillations by the same
phenomenon, enhanced propagation of synchrony. Further, it
suggests explanations for various phenomena associated with
SPW/Rs, in particular for the experimentally observed different
frequencies in different hippocampal regions and under different
experimental conditions. Given the current knowledge of SPW/
Rs, all three modeling approaches are biologically plausible;
combinations also are possible and should be investigated.
The contribution of the present work can be seen as threefold:

It introduces methods to incorporate supralinear dendritic
interactions in neural network models and to study their dynam-
ics, it shows that networks incorporating supralinear dendritic
interactions give rise to an interesting emergent pattern of activ-
ity, and it proposes a model for SPW/Rs in the hippocampus.
The study suggests a number of directions for future research.

The methods presented allow the investigation of the dynamics of
networks incorporating various types of dendritic nonlinearities in
various types of neurons and neuron models and might be applied
to networks coupled by gap junctions. For σ equaling the identity,
model 1 simplifies to a standard model which has been employed
to explain the dynamics of neural networks as well as of
earthquakes and of populations of flashing fireflies (14, 19, 50,
51). The proposed models thus might find straightforward ap-
plication in other fields. The models might apply to other kinds
of high-frequency oscillations in neural networks, e.g., to those
accompanying the P1/N1 complex in somatosensory cortex and
to pathological ripples (24) (SI Text, Section B). Several of the
models’ predictions can be directly tested experimentally, such as
the suggested relationship between slice thickness and oscillation
frequency and the occurrence of dendritic spikes. How does the
spiking dynamics during intermittent high-frequency oscillations
change the network structure? Answers to such questions might
shed light on the function of SPW/Rs and could change our view
of the role of CA1 and the other hippocampal regions in learning
and memory.

Methods
Network Models. Model 1. I consider networks of N current-based leaky in-
tegrate-and-fire neurons in the limit of short synaptic currents (14, 19, 50,
51). The networks have the topology of an Erdös-Rényi random graph, i.e.,
directed couplings are independently present with probability p0. An exist-
ing coupling is excitatory with probability pEx and inhibitory with probability
1 − pEx; in particular, there are no separate excitatory and inhibitory pop-
ulations. The neurons sending at time tf excitatory and inhibitory inputs to
neuron l are gathered in the sets MEx,l(f) and MIn,l(f), respectively. They in-
duce at tf + τ a jump-like response in neuron l’s membrane potential,

ΔVlðt f þ τÞ ¼ σ

 
∑

j∈MEx;lðfÞ
εlj

!
þ ∑

j∈MIn;lðfÞ
εlj; [1]

where εlj denotes the coupling strength from neuron j to neuron l. (Details
are given in SI Text, Section C.)
Model 2. I consider networks of N conductance-based leaky integrate-and-fire
neurons with 90% excitatory and 10% inhibitory neurons (22). Excitatory
and inhibitory interactions are mediated by AMPA and GABAA synapses,
respectively. If the excitatory input strength arriving at an excitatory neuron
within time window Δt is larger than a threshold gΘ, the generation of
a dendritic spike is initiated, which, after time τDS, generates a current pulse
at the soma. (Details are given in SI Text, Section C.) In ref. 13 I introduced
another network model with a degree of abstraction between models 1 and
2, which generates similar intermittent events. This result further empha-
sizes the robustness of the dynamical mechanisms.

Numerical Methods.Model 1.Network simulations were implemented in phase
representation using an event-based algorithm (51). Chains of propagating
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synchrony can be defined recursively as consisting of the spikes sent at time
t0 (initiation time) and of those generated by suprathreshold excitation
caused by a pulse within the chain. These pulses are sent at t0 + nτ (pulse size
g′n), n ∈ ℕ0. Spike times of background activity deviate at least slightly. Fig.
1B and Fig. S1B show the relative frequencies and the mean values of pulse
size g′1 for a preceding group of size g′0 (g′0 ∈ {1, . . ., 351}, 400 simulations for
each value) approximating the transition matrix (conditional probability)
P(g1 = g′1|g0 = g′0) and the mean response pulse sizes (conditional expecta-
tion) E(g1|g0 = g′0). Here, gn is the random variable describing the nth pulse
size. This transition matrix also is an approximation for later stages of
propagation and determines the chain evolution.
Model 2. Network simulations were implemented with a Runge-Kutta-fourth-
order method with fixed step sizes of 0.02 ms. Simulations and analyses were
implemented in programs written in C using the GNU scientific library, in R
and in Mathematica.

Analytical Methods. Model 1. The transition matrix P(g1 = g′1|g0 = g′0) and the
mean response pulse sizes E(g1|g0 = g′0) were computed analytically and
semianalytically. In the purely analytical approach, the probability distri-
bution of the membrane potentials P(V ) of the background activity is
derived in diffusion approximation (18). To eliminate resulting errors, I
determined P(V ) in the semianalytical approach numerically. Based on P(V )
and on the statistics of the underlying network and taking into account

the refractoriness of neurons that already have spiked, I derived the
probabilities that g′1 neurons respond to a pulse sent by g′0 neurons, i.e.,
the transition matrix, and the mean response sizes. For the detailed deri-
vation, see ref. 13. The transition matrix characterizes the chain evolution
under Markovian and stationarity assumptions. The validity of the
assumptions depends on the network parameters and was numerically
confirmed. The critical pulse sizes determining the evolution of larger
pulses are G1 and G2, the intersections of the interpolated conditional
expectations with the diagonal, i.e., Gα ≈ E(g1|g0 ≈ Gα), α ∈ {1, 2},
G2 >G1≫0 , and G3, given by G1 ≈ E(g1|g0 ≈ G3). Explicit computations were
implemented in Mathematica.
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