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Abstract
Rationale—Transcriptional profiling can detect subclinical heart disease and provide insight into
disease etiology and functional status. Current microarray-based methods are expensive and subject
to artifact.

Objective—To develop RNA sequencing methodologies using next generation massively parallel
platforms for high throughput comprehensive analysis of individual mouse cardiac transcriptomes.
To compare the results of sequencing- and array-based transcriptional profiling in the well-
characterized Gαq transgenic mouse hypertrophy/cardiomyopathy model.

Methods and Results—The techniques for preparation of individually bar-coded mouse heart
RNA libraries for Illumina Genome Analyzer II resequencing are described. RNA sequencing
showed that 234 high abundance transcripts (>60 copies/cell) comprised 55% of total cardiac mRNA.
Parallel transcriptional profiling of Gαq transgenic and non-transgenic hearts by Illumina RNA
sequencing and Affymetrix Mouse Gene 1.0 ST arrays revealed superior dynamic range for mRNA
expression and enhanced specificity for reporting low-abundance transcripts by RNA sequencing.
Differential mRNA expression in Gαq and non-transgenic hearts correlated well between
microarrays and RNA sequencing for highly abundant transcripts. RNA sequencing was superior to
arrays for accurately quantifying lower-abundance genes, which represented the majority of the
regulated genes in the Gαq transgenic model.

Conclusions—RNA sequencing is rapid, accurate, and sensitive for identifying both abundant and
rare cardiac transcripts, and has significant advantages in time- and cost-efficiencies over microarray
analysis.
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Introduction
Signaling factors that mediate cardiac hypertrophy and heart failure do so in large part by
altering gene expression. Accordingly, physiological hypertrophy, pathological hypertrophy
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and heart failure are associated with distinct transcriptional signatures in human disease and
experimental mouse models 1, 2. The ability to detect early changes in myocardial gene
expression is essential to understanding pathophysiological mechanisms in experimental
models, and is predicted to provide crucial diagnostic and prognostic information in human
heart disease 3.

We developed techniques for broad, accurate, and inexpensive characterization of individual
mouse cardiac transcriptional signatures using massively parallel resequencing of heart cDNA
libraries using the Illumina Genome Analyzer II. The digital readouts enable parallel
quantification and annotation of myocardial transcripts, including mRNAs expressed at levels
below 1 copy per cell. Here, we describe the components of a molecular and bioinformatic
“RNA sequencing pipeline” optimized for comparative evaluation of transcript signatures in
genetic mouse heart models. We compare transcriptional profiling by Illumina mRNA
sequencing with Affymetrix microarray RNA in mouse hearts with a well characterized
transcriptional signature of pathological hypertrophy, the Gαq transgenic mouse 4, 5, to
illustrate the advantages of RNA sequencing over array-based platforms.

Methods
Mouse models

Generation of the Gαq-40 transgenic mouse line has been described previously 4, 5. Four pairs
of 8 week old male nontransgenic FVB/N and Gαq-40 transgenic mouse hearts were used for
RNA sequencing studies. Echocardiographic and cardiac catheterization studies were
performed using standard methods 4, 6.

Preparation and quantification of total myocardial RNA
Total RNA was isolated from flash-frozen mouse hearts using Trizol (Invitrogen), as per the
manufacturer's directions, except that isopropyl alcohol precipitation of RNA was allowed to
proceed for 30 min at room temperature. RNA was quantified via NanoDrop or UV
spectrometer and integrity (28S:18S ratio) was assessed on 1% agarose.

Reverse transcription and preparation of cDNA
Preparation of cDNA fragments from poly(A)+ RNA was modified from a previously
described protocol 7. Four μg of total cardiac RNA was twice oligo(dT) selected using the
Dynabead mRNA purification system (Invitrogen). Two hundred ng of cardiac mRNA was
fragmented to ~200 nt by heating to 94 C for 2.5 min in 40 mmol/L Tris acetate pH 8.2, 100
mmol/L potassium acetate, 30 mmol/L magnesium acetate, and immediately chilled on ice.
After purification on Ambion NucAway columns, 100 ng of fragmented cardiac mRNA was
reverse-transcribed using random hexamers, followed by second-strand cDNA synthesis using
the Just cDNA double-stranded cDNA synthesis kit (Stratagene catalog #200453).

Construction of barcoded short-read libraries for Illumina sequencing
cDNAs were end-repaired using the End-It End-Repair kit (Epicentre Biotechnologies,
#ER0270) and 3′ A-overhangs added using 3′-5′ exo- Klenow polymerase (New England
Biolabs #M0212) and 0.2 mmol/L dATP. Illumina adapters with T-overhangs and customized
to include three nt ‘barcodes’ were ligated to the cDNA at 10:1 molar excess using the Promega
LigaFast kit (#M8221); different barcoded adapters were ligated to individual mouse heart
cDNAs. Following column-purification (Qiagen) to remove excess unligated adapter, DNA in
the 200-400 bp range was isolated via gel purification (Qiagen) on 2% low-melting agarose
and amplified with 11 cycles of Phusion polymerase (New England Biolabs #F531)-mediated
PCR (10 sec 98 C, 30 sec 65 C, 30 sec 72 C), using oligonucleotides complementary to Illumina
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sequencing adapters. Barcoded sequencing adapters and PCR oligonucleotides are described
in Supplemental Table IX. The final, amplified libraries were again column-purified and
quantified using PicoGreen (Quant-It, Invitrogen).

Sequencing and data processing
Four barcoded libraries were combined in equimolar (10 nmol/L) amounts and diluted to 4
pmol/L for cluster formation on a single Illumina Genome Analyzer II flowcell lane.
Basecalling of DNA clusters was performed using Illumina's processing pipeline software
(version 1.5) and 36-nt sequences, with quality scores, were obtained in Illumina's SCARF text
format. UNIX functions were used to sort the sequences according to barcode, remove the 4
barcoding nucleotides, and convert sequence data to FASTQ format (example shell script given
in Supplemental Methods). After barcode removal, the 32 base mRNA sequence reads were
mapped to transcripts annotated in NCBI release 37 of the mouse genome using the publicly
available packages Bowtie (release 0.12.0) (http://bowtie-bio.sourceforge.net/index.shtml) 8,
TopHat (release 1.0.12) (http://tophat.cbcb.umd.edu/) 9, and Cufflinks (release 0.7.0)
(http://cufflinks.cbcb.umd.edu/) 10. TopHat and Cufflinks map known and novel splice
junctions, use annotation files to compute which aligned sequences map to the known
transcriptome, and take into account transcript isoform diversity (alternative splicing).
Cufflinks may be used with gene annotation files to calculate overall gene expression in terms
of Reads Per Kb of exon per Million mapped reads (RPKM), a parameter previously defined
in 7. We used the default options supplied with these software packages in our analyses
(example shell script given in Supplemental Methods).

Annotation files in gtf format (http://mblab.wustl.edu/GTF22.html), including mRNAs, ESTs
and noncoding elements such as ribosomal RNAs and miRNA precursors, were downloaded
from Ensembl (ftp://ftp.ensembl.org/pub/current_gtf/mus_musculus/). We used the Cufflinks
module (above) with annotation files from which ESTs, rRNAs and miRNA precursors had
been manually removed, to focus on sequence reads mapping to coding genes. We analyzed
only those RNA elements that had expression signals in at least 2 of 4 biological replicates.

The gtf annotation files from Ensembl contain many separate transcripts (identified with ENST
labels) which contribute to the sequence defined for each gene (identified with ENSG labels).
In order to assess alternative splicing events, we used the Cufflinks module with these same
gtf annotation files, but forced calculation of RPKM values for separate transcripts (ENSTs)
rather than for entire genes (ENSGs) (example shell script given in Supplemental Methods).
The presence of alternatively spliced products was evaluated by manually examining Cufflinks
output files for ENST entries corresponding to an ENSG entry of interest.

Comparative analysis of RNA sequencing and microarray results
To compare gene expression data obtained with RNA sequencing to the most current
microarray technology, RNA from the same samples was analyzed on Affymetrix Mouse Gene
1.0 ST arrays at the Multiplexed Gene Analysis core of Washington University. Microarray
data were analyzed using Partek Genomics Suite v6.4 (Partek, St Louis, MO) as previously
described 11, 12; RNA sequencing data (gene symbols and RPKM values) were imported into
Partek and analyzed similarly. Biological Networks Gene Ontology (BiNGO; 13) was used to
assign genes into gene-ontology categories.

Reverse-transcription quantitative PCR
One microgram of total cardiac RNA was reverse-transcribed into cDNA using oligo-dT
priming (qScript Flex cDNA kit, Quanta Biosciences). One-twentieth of each preparation was
used for each individual qPCR, using TaqMan probes (Applied Biosystems), detailed in
Supplemental Methods.
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Statistical Methods
Paired and unpaired data were compared with Student's t-test. Multi-group comparisons used
Bonferroni correction. Correlation coefficients and linear regressions for comparison of
microarray and RNA sequencing data were calculated with GraphPad Prism (San Diego, CA).
P-values and false discovery rates for gene expression data were calculated using Partek
Genomics Suite 6.4 software (Partek, St Louis, MO). P value of <0.05 was defined as
significant unless indicated otherwise.

Results
RNA sequencing of the normal and pathological hypertrophied heart transcriptomes

Microarray profiling has been widely used in mouse studies, but is relatively expensive and
requires special equipment and expertise. Since our laboratory has found that high throughput
human DNA sequencing on next-generation massively parallel systems is fast, highly
reproducible between technical replicates, accurate, and inexpensive 14, we explored the utility
of deep mRNA sequencing in experimental mouse cardiac models. For initial proof-of-concept
studies, we RNA sequenced four pairs of 8 week old male nontransgenic FVB/N and Gαq
transgenic mouse hearts. Gαq is the essential signaling transducer of pressure overload
hypertrophy 15. Cardiac-specific overexpression of Gαq at 4-5 times endogenous levels
intrinsically activates pathological hypertrophy signaling in a manner that closely mimics
pressure overload in mice. Thus, Gαq transgenic mice exhibit cardiac hypertrophy, ventricular
enlargement, diminished ejection performance, and characteristic increased expression of fetal
cardiac genes 4, 6, 16-18. Figure 1 illustrates these features of the Gαq transgenic mouse model.
Previous analyses of mRNA expression in the cardiac Gαq transgenic model used RNA dot
blotting 4, 19-22 or Incyte microarrays 17, 18, neither of which provides a comprehensive
examination of gene expression. Thus, we compared array- and sequencing-based methods of
comprehensive transcriptome profiling in Gαq mouse hearts.

The few RNA sequencing studies published to date have typically used large numbers of
sequence reads to map the transcriptomes at very high resolution (e.g. 23, 24). Since one or
more sequencing lanes are devoted to a single sample, this can be very expensive. Furthermore,
this degree of resolution is not required for comparative analysis of transcriptomes in a case-
control study design (as with nontransgenic verses transgenic, or normal verses diseased). For
this reason, we developed procedures to individually DNA-barcode RNA sequence libraries
and pool multiple libraries into a single sequencing lane, and segregate the sequence data post
hoc according to barcode. To assess the efficacy of barcoding, library pooling, and sorting of
the sequence reads, we tracked a rare DNA marker polymorphism (SNP) in 24 sequencing
libraries individually barcoded, pooled, and sequenced in a single Illumina GA II lane. (The
marker SNP was present in two of the 24 sequencing libraries, as determined by Sanger
sequencing.) Deconvolution of the barcoded, pooled DNA sequence correctly identified both
libraries containing the marker SNP. To ensure that this technique was applicable to
quantitative analysis of transcriptome levels by RNA sequencing, we individually barcoded a
Gαq and a nontransgenic heart cDNA library, combined them, and resequenced them in a single
Illumina GA II lane. Here, high expression of the transgene (Gnaq) and other characteristic
molecular markers of this model (Myh7, Acta1) marked the Gαq library, which was correctly
classified as such according to barcode.

For comparative transcriptome profiling of Gαq and nontransgenic hearts, four barcoded
libraries were analyzed in a single sequencing lane. The total number of barcoded RNA
sequence reads from the eight cardiac libraries was 18.2 million, of which 10.5 million (57.8%)
aligned to NCBI release 37 of the mouse genome (Supplemental Table I). Using the criterion
that an RNA element must be detected in at least 2 of 4 biological replicates, these sequences
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mapped to 14,109 different annotated RNA elements (included noncoding RNAs and miR
precursors), of which 11,180 were coding mRNAs. The remaining sequences corresponded
largely to ribosomal and transfer RNA. 10,844 coding mRNAs were detected in nontransgenic
hearts, while 10,775 coding mRNAs were detected in Gαq hearts. 10,437 mRNAs were
common to both nontransgenic and Gαq hearts.

Gene expression values in nontransgenic hearts ranged from ~1 copy per cell (corresponding
to an RPKM value <3 7) for Casp8 (caspase 8) to 3873 copies per cell for mt-Co1
(mitochondrial cytochrome C oxidase subunit I) (Supplemental Table II), consistent with
myocardium being mitochondrial-rich 25 and having low rates of caspase-mediated apoptosis
26. The most abundant transcript in Gαq hearts (2,604 copies per cell) was Nppa encoding atrial
natriuretic factor, consistent with the cardiomyopathic phenotype of this model 4, 16, 27. Gαq
was the 24th-most abundant transcript in Gαq hearts, expressed at 574 copies per cell
(Supplemental Table III.) Complete gene expression data for each individual heart are in
Supplemental Table IV.

Recent PMAGE (polony multiplex analysis of gene expression) analysis indicated that
approximately 200 unique heart mRNAs were expressed at >60 copies/cell, and that this small
fraction (<1%) of the ~25,000 mouse gene transcripts comprised ~65% of total cardiac mRNA
28. Our RNA sequencing confirms this surprising observation, identifying 234 very high
abundance mRNAs expressed at or greater than 60 copies per cell, which comprised 55% of
the total myocardial mRNA complement of normal hearts (Supplemental Table II). In Gαq
hearts, 236 mRNAs were expressed at or greater than 60 copies per cell, representing 52% of
total myocardial mRNA. 206 of these 236 very high abundance Gαq heart mRNAs were among
the 234 very high abundance transcripts in nontransgenic hearts (88% concordance), indicating
a relatively modest impact of the hypertrophy gene expression program on the most prevalent
cardiac transcripts.

Gene-ontology analysis of the 234 most abundant cardiac mRNAs reveals a preponderance of
mitochondrial, transport, cytoskeletal, and contractile genes (Figure 2, Supplemental Table V).
Among the abundant transcripts, those differentially expressed in Gαq hearts were Nppb
(BNP), Acta1 (α-skeletal actin), Ankrd1, Atp2a2 (SERCA2a), Myom2, Mybpc3, Hspb6,
Idh3b, Pdha1, Hadha, Acadvl, Ndufv2, Acaa2, Fhl2, i.e. several members of the “fetal cardiac
gene program” that is non-specifically regulated in myocardial disease 29. Thus, quantitative
analysis of the cardiac transcriptome by RNA sequencing shows that a relatively few, highly
abundant cardiac transcripts encoding homeostatic genes account for the majority of cardiac
mRNAs, but that measuring the relative expression of these abundant transcripts provides little
insight into cardiac status 1.

RNA sequencing reveals greater depth of the normal and hypertrophy mRNA signature
To directly compare results of RNA sequencing and conventional microarray transcript
profiling of mouse hearts, we performed parallel microarray surveys of mRNA expression on
the same eight mouse cardiac RNA samples studied above using Affymetrix Mouse Gene 1.0
ST arrays with probe sets for 25,175 annotated genes. The arrays reported signals for all
~25,000 probe sets, compared to only 11,180 coding cardiac mRNAs to which RNA
sequencing reads were mapped. Thus, unfiltered array data generated “results” for 125% more
RNAs than were present by RNA sequencing. To determine the reason for this discrepancy,
expression levels of all mRNAs detected by either or both methods (~20,000 genes with
matching gene symbols between the array platform and RNA sequencing gene annotation files)
were compared for each of the eight hearts (Figure 3; Supplemental Figure I). The correlation
between mRNA expression levels reported by array and RNA sequencing was generally good
(Spearman correlation coefficient, r = 0.811 ± 0.006, mean ± SEM, n=8 hearts). However, the
regression lines do not go through the y-axis origin, but rather intercept the y-axis (microarray
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data) at ~5. Also, the slopes of the regression lines are significantly less than one (0.74±0.011,
P=1×10−6), indicating compression of expression values by microarray analysis. Finally, a
number of mRNAs for which RNA sequencing showed no reads (Illumina sequencing values
(x-axis) of 0) were reproducibly indicated as highly expressed by the microarray studies
(Affymetrix array value (y-axis) of ~6 to ~12; circumscribed in red on Figure 3). These types
of problems have been attributed to background hybridization and false positive hybridization
on microarrays 23. Indeed, background hybridization on microarrays complicates establishing
the correct threshold for mRNA detection 11, 30, 31. In our own data set, if we use the y-axis
value at the regression line x-axis intercept to establish a threshold value for the microarray
data, then hundreds of low abundance mRNAs (851 in the nontransgenic sample and 757 in
the Gαq sample shown in Figure 3 [red boxes]) detected by RNA sequencing would be
incorrectly filtered. Thus, unfiltered microarray data report expression levels for mRNAs that
are not really there (vertical ovals on Figure 2), but correcting for this problem by increasing
the threshold for mRNAs calling eliminates genuine low abundance mRNAs within the
hybridization noise (horizontal squares in Figure 3).

Case-control design and “fold-expression” reporting does not correct the limitations of
microarray-based mRNA profiling

We considered that non-specific microarray hybridization signals in a case-control comparison
might cancel each other out when the data are reported as the “fold-change”, rather than as
absolute transcript expression values. Accordingly, we compared the results of our microarray
and RNA sequencing data expressed as fold-regulation between Gq and non-transgenic mouse
hearts. Microarray analysis of Gαq transgenic heart mRNA identified 841 differentially
expressed transcripts (FDR<0.03, P<0.001, fold-change ≥1.3; 382 upregulated and 459
downregulated) (Supplemental Table VI). At the same P-value cutoff and fold-change
threshold, RNA sequencing identified differential expression of only 125 genes; 77 upregulated
and 48 downregulated (Supplemental Tables VI and VII). Of the 752 genes reported as
differentially regulated by microarrays, but not by RNA sequencing, 45 were not detected in
any hearts by RNA sequencing, and the vast majority (n=674) were present at or less than 20
copies per cell, i.e. in the group where we had shown that microarrays provide the least
confident data. Unfortunately, one of the disadvantages of the “fold-change” analytical
approach is that these critical absolute expression data are not evident, making it difficult to
assess the validity of individual results as a function of absolute mRNA levels.

To better understand the striking disparities between microarray and RNA-sequencing based
differential mRNA profiling, we plotted the fold expression values provided either by
microarray or RNA sequencing of only the regulated mRNAs (i.e. those whose Gαq/
nontransgenic expression was P<0.001 by RNA sequencing), stratified by mRNA abundance
in normal hearts. Thus, three individual regression lines were generated, separately reporting
fold mRNA expression change in Gαq hearts for very high abundance transcripts (>60 copies/
cell, n=14), common transcripts (20-60 copies/cell, n=17), and low abundance transcripts (<20
copies/cell, n=94) (Figure 4). The correlation of “fold-regulation” between RNA sequencing
and microarray data was good for the very high abundance and common mRNAs (Pearson
r2=0.92 and 0.96, respectively), but was suboptimal for low abundance mRNAs, even though
there were more data points in this group (r2=0.74). Furthermore, the slopes of all three linear
regressions were very shallow (0.49-0.63), again reflecting a compressed range of expression
data for microarray results in comparison to RNA sequencing.

Quantification of mRNA counts by RNA sequencing is critically dependent upon correct
assignment of sequence reads to their proper genes, i.e. on accurate annotation. Thus, mis-
identification might explain some discrepancies between RNA sequencing and microarrays.
To assess this possibility, we performed directed RT-qPCR for ten transcripts representing a
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range of absolute expression values and relative regulation in Gαq and nontransgenic hearts
(Figure 5), and compared the results to those we obtained on the same RNA samples by
sequencing and arrays (Table 1). When all three methods reliably detected mRNAs in both
experimental groups, the increase in mRNA content in Gαq vs nontransgenic hearts, described
as “fold-expression”, was similar between RT-qPCR and RNA sequencing, but these values
were compressed by microarray (Table 1). These data suggest that mis-identification of
sequence reads is not responsible for differences in fold-expression reported from RNA
sequencing and microarrays. However, RNA sequencing detected transcripts from both Gαq
and nontransgenic hearts for only five mRNAs, and RT-qPCR was either below the threshold
for accuracy (Ct ≥35) or could not detect a further four transcripts. On the other hand, RT-
qPCR and microarrays agreed for detection of Tuba1a, which was not observed by RNA
sequencing. This single instance likely represents a mis-annotation artifact. We also examined
the degree of inter-sample variability in the three assay techniques, comparing expression of
genes in Table 1 between the 4 nontransgenic, or the 4 Gαq, biological replicates. RT-qPCR
exhibited the greatest variance, with the lower-abundance genes recording higher variation.
RNA sequencing had less variance, and microarrays showed the least variance (due to data
range compression). In short, RNA sequencing has less variance than RT-qPCR without the
data compression inherent in microarrays.

The utility of RNA sequencing is to derive greater understanding of gene regulation pathways
in normal and diseased tissue. We used Ingenuity Pathways Analysis software
(http://www.ingenuity.com) to examine possible signaling relationships between the regulated
genes in Gαq hearts (Figure 4, Supplemental Table VII). Seventy-two of 77 Gαq-upregulated
genes and 42 of 48 Gαq-downregulated genes were assigned to signaling networks
(Supplemental Table VIII). Interestingly, separating the data into low- and high- abundance
transcripts generated networks with a distinctly different focus (Figure 6 and Supplemental
Table VIII). The most intriguing networks focused on cellular growth/proliferation and on cell
death. A signaling pathway involving members of these two networks suggests relationships
between Gnaq, Rcan (regulator of calcineurin), Nfatc2, and Abra (actin-binding Rho activating
protein), as well as signals involving the EGF receptor and the MAP kinase family (Figure 6).

Discussion
Here, we describe methods for RNA sequencing and transcript analysis in mouse cardiac
models, and demonstrate that RNA sequencing has advantages for quantitative analysis of
cardiac-expressed transcripts in normal and hypertrophied mouse hearts.

The idea that transcriptional signatures can provide information into the nature and/or cause
of cardiac disease is decades old, but has yet to completely fulfill its promise. The Nidal-Ginard
and Chien laboratories were among the first to describe prototypical transcriptional changes
in heart disease 29, 32. There followed the description of a handful of “fetal genes” whose
expression was strikingly increased in cardiac hypertrophy and/or failure 33-35. Measures of
these few transcripts by Northern blotting, and more recently real-time quantitative PCR,
became standard as early markers of cardiac pathology 1, 2. In-depth analysis of the
transcriptome has revealed specific transcriptional signatures for physiological versus
pathological hypertrophy, and for early versus late heart failure 3.

RNA sequencing takes advantage of massively parallel next generation DNA sequencing
platforms that are increasingly available at academic institutions and industry. After
development, optimization, and implementation of these techniques, preparation of bar-coded
cDNA sequencing libraries from cardiac RNA took one individual 3 days to complete, the
Illumina sequencing took 2 days, and sequence alignment and initial analysis were completed
over a 2 day period. The total cost for sequencing eight mouse heart mRNA libraries (two
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Illumina GA II sequencing lanes) was $2100, including reagents and instrument time. By
comparison, the Core turnover for Affymetrix microarray results was 2 weeks, at a cost of
$3600 for eight cardiac mRNA profiles. Most importantly, RNA sequencing provided accurate
quantitative digital data on lower abundance transcripts where most of the gene regulation was
found, but that were measured less reliably on microarrays.

The arrays appear to be reporting changes in relative gene expression for large numbers of
mRNAs that are expressed at absolute levels below those that are optimal for array-based
measurements, 20 copies per cell. In contrast, RNA sequencing appeared exquisitely sensitive
to changes in the abundance of these rare transcripts, as 94 of the 125 Gαq-regulated mRNAs
reported by this technique were present at less than 20 copies per cell in the control,
nontransgenic hearts. Thus, the major disparity between the microarray transcriptional
profiling and RNA sequencing occurs with mRNAs expressed at low levels: microarrays
falsely reported regulation of the rare transcripts, but also failed to detect changes in almost
one quarter (36 of 125) of significantly regulated low abundance mRNAs. We do note that
whole-organ transcriptomes, such as we have studied here, are not cell-type specific and thus
some low abundance mRNAs (especially at or below 1 copy/cell) may not originate from
cardiac myocytes. However, cardiac myocyte-specific transgenesis in mouse hearts can
provide cell-autonomous data in the in vivo context, and even after physiological modeling,
that is not possible with cultured cells. This is especially important since elucidation of new
signaling pathways from RNA sequencing studies will likely involve transcripts expressed at
lower abundance, in accordance with our observation that high- and low-abundance Gαq-
regulated transcripts generated different signaling networks.

Another potential advantage of RNA sequencing over traditional microarrays is the ability to
easily identify alternatively spliced transcripts. While the newer generation of Affymetrix
microarrays utilizes probesets that cover multiple exons of a gene, the limited ability of array
hybridization techniques to provide quantitative information on gene or exon expression
complicates non-biased identification and quantification of alternatively spliced isoforms. In
addition, the Tophat/Cufflinks analytical software we employ provide the ability to detect both
known and novel splicing events via aligning sequence reads to the entire genome, whereas
microarrays are limited by the probesets placed on the arrays. While this aspect of RNA
sequencing was not the focus of the current studies, we explored the potential of this application
for several cardiac-expressed genes known to undergo alternative splicing: Both transcripts for
Atp2a2 (SERCA2) 36, both cardiac-expressed transcripts of the creatine transporter Slc6a8
37, three of five known splice forms of Cacna1c (Cav1.2) 38, three of five alternative transcripts
of Ank2 (ankyrin B) 39, and both transcripts of Bnip3l (Nix) 18 were detected, although we
failed to observe alternative splicing of Ccrk 40 that is expressed at less than 1 copy per cell.
These findings suggest that RNA sequencing can readily detect alternative splicing events, but
that more sequencing reads may be required to detect rare alternately spliced isoforms.

Unbiased transcriptional profiling of mouse cardiac models has increasingly been used to
identify the impact of molecular perturbations on heart development, adaptation, and function,
and to define specific molecular mediators of these effects 41. The potential for RNA
sequencing to detect subtle regulated events is great, but the technology is relatively new, the
creation and bar-coding of libraries is unfamiliar to many laboratories, and the analytical
platforms can be challenging. Here, we describe an RNA-sequencing pipeline that, once it is
implemented, is essentially turn-key in its operation. Although RNA sequencing is the de-facto
“gold standard” technique for identifying and quantifying transcripts, to our knowledge it has
not been applied to profiling of mouse cardiac genes, and so we were careful to compare the
results of RNA sequencing to microarray profiling in the well-characterized Gαq model of
cardiomyopathy. We found that Illumina RNA sequencing is rapid, accurate, highly sensitive
for identifying both abundant and rare transcripts, and has significant advantages in time- and
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cost-efficiencies over Affymetrix microarray analysis. We expect that these advantages will
not only be similar with any massively parallel RNA sequencing platform, but that the relative
benefits of RNA sequencing over microarrays will continue to increase as the technology
advances.

Novelty and Significance

What is known?

• Accurate, unbiased gene transcription profiling is necessary for understanding
disease mechanisms and can assist in determining diagnosis and prognosis.

• Large-scale transcriptional profiling has been performed using microarrays for
several years, but expense, limited dynamic range and background correction
remain problematic.

What new information does this article contribute?

• Next-generation (high-throughput) sequencing of RNA was compared to
microarray analysis in a case-control design, using the established Gq-
overexpression mouse model of heart failure.

• DNA-barcoding of individual heart samples permits multiple samples to be
sequenced simultaneously, bringing the cost of RNA sequencing below that of
microarrays.

• RNA sequencing provides quantitative gene expression data and reveals a greater
dynamic range of gene regulation.

• RNA sequencing offers insight into regulation of low-abundance genes that
microarrays cannot.

Summary

RNA profiling offers detailed insight into critical transcriptional regulatory mechanisms in
health and disease. The value of transcriptional profiling is affected by the accuracy of the
data and the sensitivity to detect changes in expression of uncommon mRNAs. RNA
sequencing using massively parallel next generation platforms has the potential to enhance
accuracy and depth of transcriptional signatures. We compared cardiac gene expression
profiling using RNA sequencing and the current state-of-the art microarrays, applying both
platforms to analysis of mRNA expression in the Gq-overexpression mouse model of
cardiac hypertrophy. We describe how to individually DNA barcode RNA sequencing
libraries from individual hearts for batch sequencing that reduces cost while providing
digital mRNA expression data at or below the level of 1 RNA copy per cell. We found that
RNA sequencing and microarrays provided comparable data on regulation of high-
abundance genes, but that RNA sequencing was superior for detection and quantitation of
low-abundance genes, which represent the majority of regulated genes in the Gaq model.
The widespread implementation of RNA sequencing in disease studies should enhance
diagnostic and prognostic profiling, facilitating a more detailed description of signaling
mechanisms involving low-abundance genes that were previously missed with microarray.
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Non-standard abbreviations and acronyms

Ct cycle threshold

CV coefficient of variation

Ntg non-transgenic

PMAGE polony multiplex analysis of gene expression

RPKM reads per kilobase of exon per million mapped reads

RT-qPCR reverse transcription quantitative polymerase chain reaction

SAGE serial analysis of gene expression

TG transgenic
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Figure 1. Phenotype of the adult Gαq-40 transgenic heart
(A) Formalin-fixed intact hearts (upper panel) and four-chamber views (lower panel). (B)
Representative M-mode echocardiograms. (C) Response to graded infusion of dobutamine
during cardiac catheterization (mean ± SEM, n=3 each genotype). (D) Representative RT-
qPCR fluorescence curves for ntg and Gαq cardiac gene expression (dotted line indicates Ct).
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Figure 2. Gene ontology (GO) analysis of highly expressed genes in nontransgenic mouse heart
The 234 highest-expressing genes in nontransgenic mouse hearts (≥60 copies per cell) were
classified into 15 GO categories using BiNGO 50. Size of the pie slice corresponds to the
number of matches to a given GO category (shown at the edge of each slice). A total of 360
matches were made to the 15 categories shown. Classification of each gene is given in
Supplemental Table III.
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Figure 3. Correspondence of gene expression determined by RNA sequencing vs microarray, for
individual hearts
Gene expression determined by RNA sequencing (Illumina) is plotted against gene expression
determined by microarrays (Affymetrix). Values shown are log2(RPKM+1) for RNA
sequencing (x-axis) and log2(Affymetrix signal units+1) for microarrays. A value of 1 was
added to both RPKM and Affymetrix signal units to avoid taking the log of 0. Red circles
highlight genes reported to be expressed by microarrays, but not by RNA sequencing. Red
boxes show genes expressed below a typical cutoff level for microarray analysis. One
nontransgenic heart and one Gq heart are shown; plots are representative of those for all 8
hearts (shown in Supplemental Figure I).
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Figure 4. Fold-changes in gene expression determined by RNA sequencing vs microarray, in Gq-
overexpressing compared to normal hearts
Fold-change in gene expression determined by RNA sequencing (Illumina) is plotted against
fold-change in gene expression determined by microarrays (Affymetrix), using a log2 scale,
for the 125 significantly regulated genes defined in Table 1. Red squares denote genes
expressed at or above 60 copies/cell in nontransgenic hearts, blue triangles denote genes
expressed between 20-60 copies/cell, and green circles denote genes expressed at or less than
20 copies/cell. Inset: comparison of fold-changes in all genes detected using RNA sequencing
and microarrays, regardless of significance.
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Figure 5. Comparison of gene expression by microarray, RNA sequencing and RT-qPCR
(A) Gene expression in nontransgenic hearts, determined by RNA sequencing, plotted against
gene expression determined by microarrays. Values shown are log2(RPKM+1) for RNA
sequencing (x-axis) and log2(Affymetrix signal units+1) for microarrays. Light gray, all
expressed genes with regression line as in Figure 3. Red squares, genes regulated by both arrays
and sequencing; blue triangles, genes regulated on arrays but poorly detected by sequencing;
green circle, highly expressed on arrays but not detected by sequencing. (B) Representative
TaqMan qPCR traces for genes shown in (A). Dotted line = fluorescence threshold for Ct
determination.
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Figure 6. Signaling networks of Gαq-regulated transcripts
Ingenuity Pathways Analysis software (http://www.ingenuity.com) was used to depict
potential signaling pathways between (A) high-abundance and (B) low-abundance, Gαq-
regulated gene products. Lines with arrowheads, molecule acts on a target; lines without
arrowheads, binding only. Solid lines, direct interaction; dotted lines, indirect interaction. Blue
background, high-abundance genes; green background, low-abundance genes; white
background, member of signaling pathway but not regulated in Gαq hearts.
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