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Abstract
This article offers reflections on the development of the Rubin Causal Model (RCM) that were
stimulated by the impressive discussions of the RCM and Don Campbell's superb contributions to
the practical problems of drawing causal inferences written by Will Shadish and by Steve West and
Felix Thoemmes. It is not a rejoinder in any real sense, but more of a sequence of clarifications of
parts of the RCM combined with some possibly interesting personal historical comments, which I
do not think can be found elsewhere. Of particular interest in the technical content, I think, are the
extended discussions of SUTVA, the explication of the variety of definitions of causal estimands,
and the discussion of the assignment mechanism.
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I thank the editor, Scott Maxwell, for the opportunity to discuss these very thoughtful, well-
written and scholarly articles (Shadish – S, and West and Thoemmes – WT) comparing Don
Campbell's perspective on causal inference and my framework, sometimes referred to as the
Rubin Causal Model (RCM – Holland 1986) for a sequence of papers written in the 1970's
(Rubin, 1974, 1975, 1976, 1977, 1978, 1979, 1980). I agree with essentially all of the points
made by S and WT. But, to go point by point would make for very dull and laborious writing
and reading – I tried! I have written, edited, and discarded many versions of this discussion
before settling on the current version, which also benefits from careful readings and helpful
comments from S, WT, the editor, and an anonymous reviewer.

This version includes some more personal comments and some previously unwritten history
that I hope will interest readers. As suggested by my title, this document consists of reflections
and clarifications stimulated by the S and WT comments, rather than a direct discussion of
their contributions. I begin with some general brief comments on the compatibility of
Campbell's and my perspectives on causal inference. Second, I offer some historical comments
regarding my introduction to Campbell himself and my earlier introduction to his work via my
PhD advisor at Harvard University, the renowned statistician, William (Bill) G. Cochran.
Third, I give a cursory summary of the early evolution of the RCM's use of potential outcomes,
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and I give a further explication of SUTVA (the Stable Unit-Treatment Value Assumption) and
describe how it drives the distinction between causal and descriptive statements; more
discussion of SUTVA is desired, as S and WT suggest, and I provide that here. Fourth, I offer
a description of the variety of definitions of causal effects allowed in the RCM, a point
sometimes missed. Fifth, I offer some historical comments involving Cochran and Jerzy
Neyman, and the non-use of potential outcomes to define causal effects outside of randomized
experiments until Rubin (1974). Sixth, I summarize the definition of the assignment mechanism
and indicate how it leads naturally to extensions of classical randomization-based methods of
inference, including to propensity score methods (Rosenbaum and Rubin, 1983a). I then very
briefly discuss model-based (Bayesian) posterior predictive causal inference as proposed in
Rubin (1975, 1978). I conclude with some comments on how the discussions by S and WT
have generated an even greater respect for Campbell's contributions to causal inference.

Complementary Perspectives
S and WT are far more capable than I am at summarizing Campbell's contributions, but I agree
that Campbell's focus was on “threats to validity” and practical advice for avoiding or
compensating for them through creative study designs. I believe that many of these threats can
be summarized by the simple statement they lead to “nonignorable treatment
assignment” (Rubin, 1978) or ignorable but still “confounded treatment assignment”
mechanisms (Rubin, 1990a), both of which are formal mathematical concepts within the RCM,
whose definitions are provided later in this commentary. S and WT are certainly correct that
my focus was on finding the precise mathematical assumptions under which various designs
and analyses led to valid estimation of causal effects, especially in the face of real world
complications such as unplanned missing data or noncompliance with assigned treatment. By
“valid estimation” I mean assertions having the statistical properties claimed for them, not
necessarily unbiased point estimation in Neyman's technical sense (described here
subsequently).

Of course, having precise mathematical concepts without accompanying advice about their
real world propriety or advice for ways to make the mathematical assumptions more plausible
is not all that helpful in practice, and this is exactly why Campbell's and my perspectives are,
in broad generality, complementary not competitive. I tried to give advice in my technical
academic papers in the 1970's, but it was impossible at that stage in my career to have as much
wisdom as the much more experienced Campbell (I hope, and think, that I've done much better
in this regard in my real-world consulting work and more recently in my publications). The
advantage of the mathematical formalism is that it is context-free, and so generalizes across
all fields. But focusing only on the formalism has the undeniable limitation that it is essentially
impossible to give sage and general context-free advice.

And S and WT are clearly correct in stating that Campbell provided far more advice on topics
such as construct validity than I did – I was virtually silent on that topic in my earlier statistical
publications, except to some extent through my discussions of SUTVA, as I briefly address
later here, and in my more recent work on noncompliance (e.g., Angrist, Imbens and Rubin,
1996; Mealli and Rubin, 2002a) and, more generally, on problems related to principal
stratification (Frangakis and Rubin, 2002). For example, my work on “Censoring Due To
Death” is relevant to this issue, and discussed abstractly in Rubin (2006a) and in the job-training
context in Zhang, Rubin, and Mealli (2008) in Zhang, Rubin, and Mealli (2009)). Even more
relevant to education and psychology are Mealli and Rubin (2002b) and Jin and Rubin
(2009). Some might even consider that my early willingness and eagerness to confront causal
inference in observational studies, and to consider the associated sensitivity of inference to
assumptions, as in Rubin (1973a, b) or Rosenbaum and Rubin (1983b), revealed a deep concern
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with aspects of construct validity, and a desire to provide guidance and advice for how to think
about these assumptions.

My Introduction to Don Campbell
His Work

My memory of my first introduction to Don Campbell's work on causality was through Bill
Cochran in the late 1960's. Bill not only referred to Campbell and Stanley (1966) in his class
on observational studies, but he also seemed to know Campbell fairly well personally. He
clearly greatly admired Campbell's common sense and his tremendous practical contributions.
He did, however, alert me that when Campbell tried to do more “mathy” sorts of things, he
could, at times, be off-target in Bill's view. Campbell (1988, e.g., page 20), in an
autobiographical chapter, commented on his own mathematical limitations.

The Man Himself
I personally met Campbell only a few times, all after I was employed at The Educational Testing
Services (ETS) in Princeton, New Jersey. We first met sometime around 1971 or 1972 when
I was involved in an observational study of some educational intervention on which Campbell
was an advisor; Cook (2008) and Campbell (1988) offer much more complete historical
pictures of Campbell's work at this time than I can. Since my Ph.D. thesis was on matched
sampling in observational studies under Cochran, I thought that I understood the general
context fairly well, and so I was asked by ETS to visit Campbell at Northwestern University
in Evanston, Illinois, which is, incidentally, where I grew up. I remember sitting in his office
with, I believe, one or two current students or perhaps junior faculty. The topic of matching
arose, and my memory is that Campbell referred to it as “sin itself” because of “regression to
the mean issues” when matching on fallible test scores rather than “true” scores. I was
flabbergasted! But I recently realized that I misunderstood the context for Campbell's comment,
which is accurately expressed in Campbell and Erlebacher (1970).

Subsequently, I had repeated disagreements with a variety of people about the following point:
If treatment assignments are based on a fallible test score, I argued, then matching on the fallible
scores is the correct thing to do, not matching on the hypothetical true scores, even if we had
them available for matching. At that time, not everyone seemed convinced, so I finally wrote
what I thought was a quite obvious paper (Rubin, 1977) showing this formally. This article
generalized previous more specific results of David Cox, Art Goldberger, and others cited in
that article, which treated the regression discontinuity design (Thistlethwaite and Campbell,
1960) as a special case of “assignment to treatment group on the basis of a covariate”. Of
course, the situation with an unobserved covariate used for treatment assignment is far more
complex, and that situation, coupled with the naïve view that matching can fix all problems
with non-randomized studies, appears to have been the context for Campbell's comment on
matching.

Campbell and I met a couple more times at various advisory committees we both attended; all
were cordial. My lasting impression of Don Campbell was that of a very smart and sharp
intellectual, but also a true gentleman, with an intense interest in addressing real problems with
wisdom – very much like Cochran himself, but with less technical/mathematical knowledge
but more exposure to the intricate problems that arise when doing research on possible
interventions with human subjects, especially in psychology and education, but also in
medicine.
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The Early Evolution of the RCM
My introduction to formal causal inference was Cochran's course at Harvard on Classical
Experimental Design, Statistics 140, which I took in the Spring of 1969. This was an extremely
fortunate occurrence for me in that I learned the importance of clear thinking about causal
inference in the context of the design of randomized experiments, rather than in the generally
confused context of regression models, or path analyses, or various pictures, which even then
appeared to be the standard approaches to the analysis of nonrandomized/observational data
for causal effects. In classical experimental design, there was a clear separation between the
object of inference - which I now like to call “The Science”, and what we do to learn about the
Science - randomly assign treatments to units.

Perhaps due to my physics background1, it seemed to me to make no sense to discuss statistical
methods and estimators without first having a clear concept of what we are attempting to
estimate, which, I agree with S, was a limitation of Campbell's framework. Nevertheless,
Campbell is not alone when implicitly, rather than explicitly, defining what he was trying to
estimate. A non-trivial amount of statistical discussion (confused and confusing to me) eschews
the explicit definition of estimands; see, for example, Holland and Rubin (1983) on the previous
literature concerning Lord's paradox; Rubin (1994) and the issue of “definitional bias” (Efron,
1994); and Rubin (2004,2005) on direct and indirect causal effects. My attitude is that it is
critical to define quantities carefully before trying to estimate them. A specific example of this
attitude is the discussion by Mealli and Rubin (2003) of what we considered to be a confused
description of “direct and indirect” causal effects attacked by regression models based on
implausible underlying assumptions.

The Science
In the context of causal inference, the Science is a matrix where the rows represent N units,
which are physical objects at a particular point in time (e.g., students today), and the columns
represent covariates and potential outcomes. The units could be the same physical object at
different points in time or different physical objects at the same point in time, or a mixture of
both.

Consider the simple case with one covariate, X (e.g., pretest score), which cannot be affected
by which of two treatments (e.g., a new educational program and a standard educational
program) each unit receives, and one outcome Y (e.g., post-test score), which can be affected
by which treatment each unit receives. Each row of the Science, indexed by i = 1,…,N, is
written as (Xi, Yi(1), Yi(0)), where Xi is the covariate value for unit i, Yi(1) is the value of Y for
unit i if unit i receives treatment 1 (the new treatment, indicated by Wi = 1), and Yi(0) is the
value of Y for unit i if unit i receives treatment 0 (the standard or control treatment indicated
by Wi = 0). In this simple case, the Science is the N × 3 matrix

(1)

where X, Y(1), and Y(0) are all N-component column vectors. The generalization to
multicomponent X and Y, and to more than two treatments, is conceptually obvious.

1I entered Princeton University in 1961 in a program designed by the physicist John Wheeler, a Nobel Laureate commonly credited with
inventing the term “black hole”, to get a few of us PhDs in physics five years after entering as freshman – to the best of my knowledge,
no one succeeded.
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SUTVA
This representation of the Science is adequate under the “Stable Unit Treatment Value
Assumption” (SUTVA, Rubin, 1980): For a specific unit, say i, and the treatment that unit i
receives, Wi, SUTVA asserts that the value of Yi(Wi) is stable (i.e., determined). SUTVA rules
out hidden versions of treatments (i.e., there are no unrepresented treatments) as well as
interference between units (i.e., unit i's value of Yi(Wi) cannot be affected by the treatments
the other units receive). Both aspects of SUTVA deserve some more commentary.

In the interest of clarity, I'll use an example that I've used since 1974. Consider a study of the
effectiveness of aspirin versus placebo on the intensity of headache pain in two hours. With
only one unit, say ME, if there is only one aspirin tablet and only one placebo tablet available,
then there are no hidden versions of treatments. If there are two aspirin tablets available for
me, and one is strong and the other weak, and the science represents only two treatments, aspirin
and placebo, then there is a hidden treatment: Y(aspirin) is not stable because it will depend on
which aspirin tablet is chosen. If I specified that I randomly chose one of the two aspirin tablets,
then the value is stable, although it then has a probability distribution. But if I do not specify
how I select the aspirin tablet, SUTVA is generally violated unless the Science is represented
by three treatments. The “generally” is there in the previous sentence because if Y simply were
an indicator for some reduction in headache pain, then arguably both the weak and strong
aspirin tablets would result in some reduction, thereby allowing SUTVA to be satisfied.

The no interference aspect of SUTVA is more obvious in that it simply states that, in this
example of a study of aspirin tablets, my potential outcomes cannot be affected by which tablets
the other units receive. Moreover, SUTVA only need hold for the values of W = (W1, …,
WN)T being contemplated in the real or hypothetical study. For example, perhaps only 5% of
the units will be assigned to the new treatment, a special on-site job-training program, and the
rest will be assigned to a control program consisting only of at-home reading materials; this
might be done to avoid the interference between units that could occur from flooding local
markets with better trained individuals. Then, in this example, SUTVA need hold only for

vectors W such that .2

The definition of SUTVA forces the distinction between causal statements and descriptive
statements, as I argued in Rubin (1986), which expanded on the same argument in Rubin
(1975, p. 234). For example, is the statement “She did well on that literature test because she
is a girl” causal or merely descriptive? If W = 0 means that this unit remains a girl and W = 1
means that this unit is “converted” to a boy, the factual Y(0) is well defined and observed, but
the counterfactual Y(1) appears to be hopelessly ill-defined and, therefore, unstable. Does the
hypothetical “converted to a boy” mean an at birth sex-change operation, or does it mean
massive hormone injections at puberty, or does it mean cross-dressing from two years of age,
etc.? Only if all such contemplated hypothetical interventions can be argued to have the same
hypothetical Y(1), will the “no hidden versions of treatments” requirement of SUTVA be
appropriate for this unit. If not, either each possible intervention for effecting a female to male
conversion must be explicated and represented by a different W with a corresponding different
Y(W) to avoid hidden versions of treatments, and a consequential violation of SUTVA, or the
specific hypothetical intervention to convert her to a boy must be described with enough detail

2More generally, each of the N units can be exposed to one of K treatments as indicated by Wi, i = 1, …, N, where each Wi can take
values in the set W. Thus the vector W = (W1, …, WN)T takes values in a set W*, which is a subset of the product set WK. In our current
example, W = (0, 1), K = {0, 1} × {0, 1} × ⋯ × {0, 1}, and * = {W∣Wi = 0 or 1, and ΣWi = 0.05 · N}. In the general case, the ith
unit has potential outcomes Yi(W), W ∈ W* because in general the ith unit's potential outcomes could depend on all the units' treatment
assignments. The no interference assumption is that Yi(W1) = Yi(W2) for all W1, W2 ∈ W* such that the ith component of W1, Wi1, is
the same as the ith component of W2, Wi2, and therefore Yi(W) can be unambiguously written as Yi(Wi).

Rubin Page 5

Psychol Methods. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to convince us that Y(1) would be stable. Notice that SUTVA could hold for some outcome
variables but not for others, as mentioned earlier in the context of the aspirin example.

An example of a legitimate causal statement involving an immutable characteristic, such as
gender or race, occurs when the unit is a resume of a job applicant sent to a prospective
employer, and the treatments are the names attached to the resume, either an obviously Anglo-
Saxon name (W = 0), or an obviously African-American name (W = 1), where Y is an indicator
of an invitation to apply for the job after receipt of the resume (Bertrand and Mullainathan,
2004).

Definitions of Unit-level Causal Effects and Population-level Causal Effects
The causal effect of treatment 1 versus treatment 0 for the ith unit is a comparison of the
corresponding potential outcomes for that unit: Yi(1) versus Yi(0) (e.g., their difference or their
ratio). The “fundamental problem facing inference for causal effects” (Rubin, 1978) is that
only one of the potential outcomes can ever be observed for each unit, the one corresponding
to the actual assignment, and so unit-level causal effects must be inferred and can never be
exactly known. After the assignment of treatments, only one of a unit's potential outcomes can
be observed – the rest are missing.

However, this missingness in the potential outcomes does not mean that unit-level causal
effects cannot be validly estimated unless assumed constant, as sometimes is asserted. Unit-
level causal effects can be predicted, although in general not perfectly, with the help of
covariates, as developed in Rubin (1978) from the Bayesian perspective, and very briefly
discussed here toward the end, and can, in randomized experiments, be unbiasedly estimated
from Neyman's (1923) perspective, briefly discussed shortly, if we include the random
sampling of the unit (for which an unbiased estimate is desired), from all those units with the
same value of X, as part of the expectation operator for calculating bias. Of course, estimation
of unit-level causal effects from either the Bayesian or Neymanian perspective will generally
be imprecise relative to the estimation of population or subpopulation causal effects because
predictions of summaries are usually more precise than individual predictions.

Population or subpopulation causal effects are comparisons of the potential outcomes under
treatment 1 versus treatment 0 on a common set of units. To illustrate a population-level causal
effect, the average causal effect of W = 1 versus of W = 0 is the average value of Yi(1) minus
the average value of Yi(0) across all N units. To illustrate a subpopulation-level causal effect,
the median unit-level causal effect of W = 1 versus W = 0 on Y for units who are female, as
indicated by Xi, is the median value of Yi(1) - Yi(0) across all females. Both of these “typical”
causal effects are summaries of unit-level causal effects.

Some causal effects, however, are not summaries of unit-level causal effects, although they
still must be defined by comparisons of the ordered sets of Yi(1) values and Yi(0) values on a
common set of units. For example, the causal effect of W = 1 versus W = 0 for the median Y
for units with Yi(1) > Yi(0) is the median value of Yi(1) for the set of units with Yi(1) > Yi(0)
minus the median Yi(0) for the set of units with Yi(1) > Yi(0). This example involves the idea
of principal stratification (Frangakis and Rubin, 2002) because it uses the potential outcomes
themselves to define a stratum of units where the causal effect is desired; principal stratification
is a substantial generalization of the idea underlying instrumental variables, as discussed, for
example, in Angrist, Imbens, and Rubin (1996).

Although average causal effects are common estimands in much of social science, in some
fields, it is also common that the causal estimands are not summaries of individual unit-level
causal effects, for instance, in epidemiology. For example, the units are people in a specific
region of a country, where Wi = 1 indicates that unit i is vaccinated for influenza and Wi = 0
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indicates that unit i is not vaccinated. The binary outcome Yi indicates whether or not unit i got
influenza within one month after the choice to vaccinate or not. The “risk ratio” in the entire
population of not vaccinating everyone to vaccinating everyone is the disease rate under Wi =
0 divided by disease rate under Wi = 1:

(2)

In this example, SUTVA must be carefully considered; if every unit gets vaccinated except
unit 1, its chance for getting flu may be lower than if no unit got vaccinated.

Some causal estimands even involve the treatment assignment indicator. For example, in some
settings, especially common when creating matched samples (e.g., Rubin, 2006b), we may
want to estimate the effect of treatment versus control on those units who received treatment.
Two prominent examples come to mind. The first involves the effect on earnings of serving in
the military when drafted following a lottery, and the attendant issue of whether society should
compensate those who served for possible lost wages (Angrist, 1990). The second example
involves the effect on health care costs of smoking cigarettes for those who chose to smoke
because of misconduct of the tobacco industry (Rubin, 2000).

The reason for providing these different examples of definitions of causal effects is to
emphasize that there is no reason to focus solely on the average causal effect, although this
quantity is especially easy to estimate unbiasedly using standard statistical tools in randomized
experiments under simple assumptions. This generality of possible causal estimands was
always present in the RCM Framework, as stated in Rubin (1974, p. 690). Also, there is no
need to assume anything about the constancy of unit-level causal effects, although, once again,
this assumption simplifies estimation.

Neyman (1923), Cochran (1965), and Neyman a Half-Century Later
The potential outcome notation, originally due to Neyman in 1923 (see Neyman, 1990, the
introduction to that article by Speed, 1990, and the discussion by Rubin, 1990b), in the context
of randomized experiments and randomization-based inference, was extremely important and
clarifying, and it dominated formal statistical discussions in the context of randomized
experiments (for example, see the classic text by Kempthorne 1952, and the earlier and later
references cited in Rubin, 1990b).

Although I learned about that notation in Cochran's Statistics 140 (not knowing about the then
recondite source, Neyman, 1923), that notation was entirely limited to inference about average
causal effects in randomized experiments; for example, Cochran's course on observational
studies never mentioned it, and instead used the “observed outcomes” notation described just
below. I know of no reference that used the potential outcomes notation in discussions of causal
inference outside this restricted context until I did so in Rubin (1974). Even in 1970, I found
the lack of use of this marvelous notation in non-randomized studies most surprising.

Everyone, including my statistical heroes, such as Cochran, could simultaneously use the
potential outcomes notation when discussing randomized experiments and the inadequate
“observed outcomes” notation when discussing causal inference in non-randomized studies.
The observed outcome notation replaces Yi(1) and Yi(0) with the observed value,
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(3)

where Yobs = (Yobs,1, …, Yobs,N)T; for completeness, let Ymis = (Ymis,1, …, Ymis,N)T, where
Ymis,i = WiYi(0) + (1 − Wi)Yi(1). This notation entangles the Science (Yi(1), Yi(0)) and what we
do to learn about the Science (the Wi). Using this notation, it even becomes impossible to state
formally the major benefit of randomization, as we see later. For a specific example, Cochran's
(1965) paper on observational studies, read at the Royal Statistical Society, used this observed-
outcome notation, as did (I believe) all the papers that he cited (e.g., written by famous authors,
such as Doll, Dorn, Hill, etc.), with Wi used as an indicator (in regressions) for treatment
received.

I vaguely remember asking Cochran about this use of the observed outcome notation when we
were writing Cochran and Rubin (1973) in 1971, and his reply was to the effect that everyone
“did” observational studies that way, and he never thought of trying to use the potential
outcomes notation in a non-randomized study. In fact, the last section of Cochran (1965) is
entitled “The Step from Association to Causation”, and it is very “Campbellesque” – full of
sage advice, but all words. Associations were all that could really be formally estimated in a
nonrandomized study, so the advice was to examine associations among observed variables,
and make informed, wise assessments concerning which of the observed associations might
reflect a causal mechanism.

Furthermore, when I was visiting the Department of Statistics at Berkeley in the mid-1970's,
where Neyman was Professor Emeritus, I asked him why no one ever used the potential
outcomes notation from randomized experiments to define causal effects more generally,
noting that my article, Rubin (1974), was (by my reading) the first to do so. I did not know
then that Neyman invented the notation, and I did not find that out until 1989, when I was asked
to write a discussion (Rubin, 1990b) of the previously unpublished, at least in English, Neyman
(1923). Nevertheless, in Rubin (1990a – written in 1987, I believe) I attributed the use of his
mode of inference in randomized experiments using that notation to Neyman (1934), which
concerned the analogous unbiased estimation and repeated sampling inference in sample
surveys3. Somewhat remarkably in hindsight, at this meeting in the mid 1970's, Neyman never
mentioned that he invented the notation, and his reply to my question about why it was not
used outside experiments was to the effect that defining causal effects in non-randomized
settings was too speculative, and in such settings, statisticians should stick with statements
concerning descriptions and associations. Neyman is even quoted in his biography by Reid
(1982; page 45) as saying “…without randomization an experiment has little value irrespective
of the subsequent treatment.” Cochran was a bit more lenient toward the use of observational
studies to try to infer causality, as he admitted it to me, saying something like, “That's why the
consumers of statistics, such as doctors, ask us to analyze their observational data”.

The Assignment Mechanism
In contrast to Neyman's “conservative” attitude towards causal inference outside randomized
experiments, an attitude that was totally dominant in the field of statistics at the time, as was
Berkeley's version of mathematical statistics, I saw randomization as just one way to create
missing and observed data in the potential outcomes. There are many other “processes for

3It is extremely interesting to note that the American psychologist and philosopher, Charles Sanders Peirce appears to have anticipated,
in the late 19th Century, Neyman's concept of unbiased estimation when using simple random samples and appears to have even thought
of randomization as a physical process to be implemented in practice (Peirce, 1931). I owe Keith O'Rourke and Steven Stigler the credit
for this scholarship.
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creating missing data”, as I called them in Rubin (1976), that could be used, which were called
“assignment mechanisms” in Rubin (1978) in the context of causal inference.

Definition of the Assignment Mechanism
The assignment mechanism gives the probability of each vector of assignments, W, given the
Science:

(4)

Before Rubin (1975), there were written descriptions of assignment mechanisms, such as
(obviously) randomized ones, and nonrandomized ones (e.g., Roy, 1951), but to the best of my
knowledge, there was no formal mathematical statement or notation showing the possible
dependence of treatment assignments on the potential outcomes.

I regard the formal statement of the assignment mechanism as an important contribution, and
not at all obvious except from a formal “missing data perspective”. It states that probability of
something that we “do now”, that is, select the treatment assignment vector, W, can depend,
not only on things that we observe now, X, and Yobs in a sequential experiment, but moreover
on other things that will never even be realized, Ymis. Yet as a formal probability statement, it
is mathematically coherent, and I believe is the key to clear conceptual understanding of the
benefit of randomization.

The crucial bridge to understanding the assignment mechanism's possible dependence on
values of the potential outcomes is to think of unobserved – to the analyst of the data – covariates
U that are associated with the future potential outcomes and are used by the assigner of
treatments, hypothetical or real, in addition to X. Thus, the assigner of treatments uses X and
U to make decisions in some possibly stochastic way, but given X and U, the assigner does
not use Y(1) or Y(0), so that

(5)

But when this expression is averaged over the values of U for fixed values of X, Y(1), Y(0) to
calculate the assignment mechanism, the result yields dependence on Y(1), Y(0). For example,
suppose Wi = 0 indicates a standard educational treatment and Wi = 1 indicates a new
educational treatment, and U is the teacher's assessment of the students' future performances
under the standard treatment, and U is used in addition to X (=observed test scores) to assign
students to the new versus standard treatment. Then, depending on the accuracy of the teacher's
assessments, U is very predictive of Y(0), and the assignment mechanism then depends on X
and Y(0).

The assignment mechanism is unconfounded (with the potential outcomes, Rubin, 1990a) if:

(6)

that is, if treatment assignments are (stochastically) determined by observed covariates. An
unconfounded assignment mechanism is probabilistic if all the unit-level probabilities, the
propensity scores (Rosenbaum and Rubin, 1983),
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(7)

are between 0 and 1,

(8)

so that all units have a chance of receiving each of the treatments.

An unconfounded probabilistic assignment mechanism is called strongly ignorable in
Rosenbaum and Rubin (1983), a stronger version of an ignorable assignment mechanism
(Rubin, 1978), defined by

(9)

which is especially important for Bayesian inference, because everything on the right side of
the equal sign is observed (ignoring issues such as sampling units from a population and
unintended missing data). Ignorable but confounded assignment mechanisms arise in
sequential experiments, for example, when the apparently more successful treatment, based on
results from earlier units, is assigned with higher probability to future units.

Classical randomized experiments are special cases of strongly ignorable assignment
mechanisms (similar to regular designs in Imbens and Rubin, 2010), that often have symmetries
and multiple treatments, such as a 2 × 2 factorial with the same number of units in each of the
four treatment conditions. To return to an earlier point, we cannot even formally state the
unconfoundedness benefit of randomized experiments using the observed outcome notation.
If we try to do so using Yobs = (Yobs,1,…, Yobs,N)T, and write

(10)

we are asserting that the new versus control treatment does not affect Y, that is, Yi(1) = Yi(0)
for all i. To repeat: Using the observed outcome notation entangles the Science (Yi(1), Yi(0),
Xi) and the assignments (Wi) – bad! Yet the reduction to the observed outcome notation is
exactly what regression approaches, path analyses, directed acyclic graphs (DAGs), etc.
essentially compel us to do. For an example of the confusion that regression approaches create,
see Holland and Rubin (1983) on Lord's paradox or the discussion by Mealli and Rubin
(2003) on the effects of wealth on health and vice-versa. For an example of the bad practical
advice that the DAG approaches can stimulate, see Rubin's (2009) response to letters in
Statistics in Medicine.

Distinguish Between the Science and the Assignment Mechanism
Using the potential outcomes notation in the RCM maintains the critical distinction between
what we are trying to estimate, the Science, and what we do to learn about it, the assignment
mechanism, whether the latter is actually randomized, or hypothetically randomized, or self-
selection, etc. It is no surprise that magnificent statisticians who eschewed the potential
outcomes notation in observational studies, or even in randomized experiments, got wrong
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answers in relatively complicated situations – even the great R. A. Fisher was not immune
when discussing direct and indirect effects in randomized experiments (Rubin, 2005)!

Because this distinction (between the Science and the assignment mechanism) is maintained
in the RCM, extensions of classical methods of inference in classical randomized experiments,
due to Fisher (1925) and Neyman (1923), are natural within the RCM framework. These
methods, and the extensions beyond classical randomized experiments, are now briefly
discussed. The text by Imbens and Rubin (2010) has several chapters on such extensions.

Causal Inference Based Solely on the Assignment Mechanism
Both Fisher and Neyman proposed methods of causal inference based solely on the
randomization distribution of statistics induced by a classical randomized assignment
mechanism. And both of these could be extended to strongly ignorable, or even to some
nonignorable, assignment mechanisms in what I regard as fairly natural ways.

Fisher's Exact p-values for Sharp Null Hypotheses
Fisher's method was essentially a stochastic proof by contradiction. First, assume what you
want to prove is wrong, here that means assuming that the new and control treatments are
identical

(11)

Under this assumption, there are no missing values in the Science for the units in this
experiment; thus, the value of every statistic, such as the difference in the mean Yi(1) for those
assigned Wi = 1, , and the mean Yi(0) for those assigned Wi = 0, , is known, not only for
the observed W but for all possible W. The Fisher proposal is to locate  in the distribution
of possible  under the randomized assignment mechanism, and see how extreme the
observed value is relative to the possible values. The proportion as extreme or more extreme
gives the significance level (or p-value) associated with H0, as assessed for the observed data
by the statistic , and the definition of extremeness.

Extensions of Fisher's Method
Notice, however, that Fisher's method can be applied with any sharp null hypothesis (e.g.,
Yi(1) = exp(Yi(0)), as pointed out in Rubin, 1974, p. 694) and even with nonignorable
assignment mechanisms if they are fully specified in their dependence on the potential
outcomes, because all potential outcomes are known, and thus so are all possible values of all
statistics for all assignment vectors W, as are all probabilities of each assignment. Instead of
simply counting the proportion of possible statistics that are as extreme or more extreme than
the observed statistic, however, now we must take a weighted proportion, where the weights
reflect the probability of each vector of treatment assignments. Bayesian extensions of this
method were proposed in Rubin (1984) and further extended by others (e.g., Gelman, Meng,
and Stern, 1996), and are called posterior predictive p-values.

Neyman's Randomization-Based Estimates and Confidence Intervals
Neyman (1923) showed that, in a completely randomized experiment,  is unbiased
(averaging over all randomizations) for the average causal effect, and he showed that the usual
estimate of the standard error of  is conservative unless additivity holds, that is, unless
Yi(1) - Yi(0) = constant for all i. These results led Neyman to propose a large-sample interval
estimate for the average causal effect, which he later (Neyman, 1934) called a “confidence
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interval”, which he defined to have at least its nominal coverage, to reflect, I believe, the
generally conservative asymptotic estimation of the standard error in experiments.

Neyman's approach, despite its asymptotic nature, became the standard one in much of statistics
and applied fields, leading to such things as tables of expected mean squares in ANOVAs (e.g.,
see Green and Tukey, 1960). Neyman's approach, which essentially involved repeated
sampling evaluations of the operating characteristics of statistics, has advantages over Fisher's
in that it can deal with random sampling of units from a population and with alternative
hypotheses that were not sharp null hypothesis, which Fisher's approach required. This latter
difference led to a sharp attack by Fisher (1935) on Neyman at a Royal Statistical Society
meeting (Neyman, 1935) even though Neyman's presentation was complimentary about
Fisher's contributions. Fisher's approach has the obvious advantage over Neyman's in not
requiring large samples for the exactness of its probabilistic statements.

Extensions of Neyman's Approach
Neyman's approach “works”, in the sense that the bias of various statistics and the coverage
of various interval estimates can be evaluated, even for nonignorable assignment mechanisms,
but rarely can one derive exactly unbiased estimates (e.g., the standard instrumental variables
estimate generally has infinite bias for all finite samples) or asymptotically useful interval
estimates (e.g., randomly choosing the interval (-∞, ∞) 95% of the time, and any point the other
5% of the time, is an exact 95% confidence interval for all sample sizes and all data sets, but
it is not very useful!) Nevertheless, the essential idea behind Neyman's approach, repeated
sampling evaluations, today remains the basis for much statistical work; for example, it still
dominates sample survey practice. In fact, much of the theory behind propensity score methods,
which are really generalizations of Neyman's approach, rests on the fact that an unconfounded
probabilistic assignment mechanism very generally can be written as proportional to the
product of the propensity scores for all W that have positive probability.

A Final Comment on Fisher's and Neyman's Methods
Notice that a key feature of both Fisher's and Neyman's approaches is that the Science is treated
as fixed but unknown, yet is the object of inference, and the vector of treatment assignments,
W, is the only random variable (except for a sampling indicator, which can be incorporated in
Neyman's approach). Also, realize that the concepts created by these methods, p-values,
significance levels, unbiased estimation, confidence coverage, all defined originally by
averaging over the randomization distribution, remain fundamental today. These fundamental
ideas with the Science fixed cannot be clearly represented by graphs or paths, which are wedded
to the observed outcome notation, and these other approaches do not create a clear distinction
between the Science and the assignment mechanism; for example, see Rubin (2004), the
discussion by Lauritzen (2004), and the rejoinder, and the previously mentioned exchange of
letters in Statistics in Medicine (Rubin, 2009). To borrow Don Campbell's expression, I believe
that the greatest threat to the validity of causal inference is ignoring the distinction between
the Science and what we do to learn about the Science, the assignment mechanism – a
fundamental lesson learned from classical experimental design, but often forgotten. My reading
of Campbell's work on causal inference indicates that he was keenly aware of this distinction.

Formal Limitations of the RCM Without Its Bayesian Component
In a formal sense, however, Fisher's and Neyman's approaches rarely addressed the real reasons
we conduct studies – to learn about which interventions should be applied to future units, for
example, which educational programs are most likely to succeed next year. Fisher's p-values
for sharp null hypothesis only formally work for the units actually exposed to one treatment
or the other, and leave generalizations informal. And Neyman's approach only works for
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populations from which the units in the study have been sampled in some probabilistic way,
and we never are fortunate enough to have a random sample of units from the future. Thus,
given any real study, even a perfect randomized experiment, in order to inform future decisions,
we must rely on subjective judgments, as I argued in Rubin (1974), and making such subjective
judgments rest on a more formal basis is important, I believe.

Thus, to me, the third leg of the RCM, which derives the Bayesian posterior predictive
distribution of the missing potential outcomes, although optional, is critical. That is, the first
leg is using potential outcomes to define causal effects no matter how we try to learn about
them: First define the Science. The second leg is to describe the process by which some potential
outcomes will be revealed: Second, posit an assignment mechanism. The third leg is placing
a probability distribution on the Science to allow formal probability statements about the causal
effects, not only in the past, but also in the future: Third, incorporate scientific understanding
in a model for the Science. That is, the Bayesian approach directs us to condition on all observed
quantities and predict, in a stochastic way, the missing potential outcomes of all units, past and
future, and thereby make informed decisions, based on explicitly stated assumptions, about
which interventions look most promising for future application.

Final Comments
In conclusion, reading S and WT helped me to appreciate, much more than before, the vast
contributions made by Don Campbell and his associates to many practical aspects of causal
inference, and how these contributions complement my work and that of my associates. Don
Campbell's contributions focused on real life problems from a deep but common-sense
perspective that led to clear guidance for causal inference. I hope that my reflections and
clarifications written here concerning the RCM, and the few historical comments that I have
noted here about the evolution of the RCM, combined with the S and WT target articles and
the other discussions of them, create an interesting and informative package for the readers of
Psychological Methods.
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