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Abstract: Independent component analysis (ICA) utilizing prior information, also called semiblind ICA,
has demonstrated considerable promise in the analysis of functional magnetic resonance imaging (fMRI).
So far, temporal information about fMRI has been used in temporal ICA or spatial ICA as additional con-
straints to improve estimation of task-related components. Considering that prior information about spa-
tial patterns is also available, a semiblind spatial ICA algorithm utilizing the spatial information was
proposed within the framework of constrained ICA with fixed-point learning. The proposed approach was
first tested with synthetic fMRI-like data, and then was applied to real fMRI data from 11 subjects perform-
ing a visuomotor task. Three components of interest including two task-related components and the
“default mode” component were automatically extracted, and atlas-defined masks were used as the spatial
constraints. The default mode network, a set of regions that appear correlated in particular in the absence
of tasks or external stimuli and is of increasing interest in fMRI studies, was found to be greatly improved
when incorporating spatial prior information. Results from simulation and real fMRI data demonstrate
that the proposed algorithm can improve ICA performance compared to a different semiblind ICA algo-
rithm and a standard blind ICA algorithm. Hum Brain Mapp 31:1076-1088,2010.  ©2009 Wiley-Liss, Inc.
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INTRODUCTION

Independent component analysis (ICA) consists of
recovering a set of maximally independent sources from
their observed mixtures without knowledge of the source
signals and the mixing parameters [Cardoso, 1998;
Cichocki and Amari, 2003; Hyvérinen et al.,, 2001]. Func-
tional magnetic resonance imaging (fMRI) is a widely used
brain imaging technique which is based upon the hemody-
namic response resulting from neuronal activity. Since the
hemodynamic response and its connection to neuronal ac-
tivity are not fully understood, ICA has become a useful
approach for identifying either spatially independent
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components (spatial ICA) or temporally independent com-
ponents (temporal ICA) from fMRI data [Calhoun and
Adali, 2006; De Martino et al., 2007; Mckeown et al., 1998].

In practice, spatial or temporal information about fMRI
data is often available to provide additional constraints on
the estimation of the sources or the mixing matrix. For
example, the default mode network (a set of regions that
appear correlated in particular in the absence of tasks or
external stimuli) is of great interest [Beckmann et al., 2005;
Calhoun et al., 2008a; Garrity et al., 2007; Greicius et al.,
2003; McKiernan et al., 2003; Raichle et al., 2001], and its
spatial pattern has been consistently identified in multiple
papers [Beckmann et al., 2005; Biswal and Ulmer, 1999;
Cordes et al., 2000; Damoiseaux et al., 2006; Garrity et al.,
2007]. In addition, temporal information about the brain
activation model for fMRI is also available [Calhoun et al.,
2005; Lu and Rajapakse, 2005]. Recent work has suggested
that incorporating prior information into the estimation
process, also called semiblind ICA, can improve the poten-
tial of ICA as a method for fMRI analysis [Calhoun et al.,
2005; Lu and Rajapakse, 2005].

Depending upon which type of independence is
assumed and what constraints are used, semiblind ICA
algorithms can be classified into four categories: (1) Tempo-
ral semiblind temporal ICA, in which temporal independ-
ence is assumed and temporal constraints on the sources
are used. The ICA with reference (ICA-R) algorithm pro-
posed by Lu and Rajapakse is such an algorithm [Lu and
Rajapakse, 2005]. (2) Spatial semiblind temporal ICA, in
which temporal independence is assumed and spatial con-
straints on the mixing matrix are incorporated. The semi-
blind source separation algorithm proposed by Hesse and
James [Hesse and James, 2006] can be used for this pur-
pose. (3) Temporal semiblind spatial ICA, in which spatial
independence is assumed and temporal constraints on the
mixing matrix are used. The semiblind ICA algorithm pro-
posed by Calhoun et al. belongs to this category [Calhoun
et al., 2005]. (4) Spatial semiblind spatial ICA, in which spa-
tial independence is assumed and spatial constraints are
applied to the sources, has not yet been proposed or
applied to fMRI data despite the available spatial informa-
tion mentioned above. Among the four categories, the spa-
tial semiblind spatial ICA and the temporal semiblind
temporal ICA are closely related, e.g., the ICA-R algorithm,
originally proposed for temporal semiblind temporal ICA,
can also be used to perform spatial semiblind spatial ICA.
However, the ICA-R algorithm incorporates Newton-like
learning (i.e., uses a Newton optimization method with a
learning rate) [Lu and Rajapakse, 2005] which has two
drawbacks: (1) sensitivity to the learning rate and initializa-
tion of the weight vectors; (2) the need for matrix inversion
and second derivatives. As such, this article develops an
improved semiblind algorithm in this category for analyz-
ing fMRI data and also presents the application of spatial
semiblind spatial ICA to fMRI data.

Among various schemes for developing semiblind ICA
algorithms, constrained ICA [Lu and Rajapakse, 2000] has

two attractive advantages: (1) automatic extraction of
desired components in a predefined order, and (2) a signif-
icant decrease in computational load [Lu and Rajapakse,
2003, 2005]. Therefore, the proposed algorithm was devel-
oped within the framework of constrained ICA. To utilize
spatial constraints but avoid the limitations of Newton-like
learning (e.g., sensitivity to the learning rate and initializa-
tion), a new contrast function was introduced, and then
optimized according to the Kuhn-Tucker conditions [Luen-
berger, 1969]. An efficient fixed-point algorithm was then
derived. The main contribution of this paper is that it pro-
vides a new way to utilize available spatial information
and is the first application of spatial semiblind spatial ICA
to fMRI. By utilizing spatial information, the proposed
approach enables more robust estimation of consistently
identified spatial networks such as the default mode net-
work (for which we don’t have temporal priors), which is
of increasing interest in fMRI studies and is an important
network for schizophrenia [Garrity et al., 2007] and Alz-
heimer’s disease [Greicius et al., 2004]. Our results indicate
that, e.g., the default mode network is not detected as
accurately for the ICA approaches which do not utilize
prior information.

CONSTRAINED ICA

The ICA model, as typically applied to fMRI data,
assumes the observed vector x = [x1,x,,...xx]T to be a lin-
ear mixture of the source vector s = [s1,5,, ...s5p]" (N > M)
by an N x M mixing matrix A, i.e., x = As. Standard blind
ICA aims to find an M x N unmixing matrix W such that
the output vector y = [y1,15, .. .yM]T = Wx provides esti-
mates of all M source signals. Standard blind ICA has
some problems such as output ambiguity [Cardoso, 1998;
Cichocki and Amari, 2003; Hyvarinen et al., 2001] which
can be solved by utilizing prior information about the
sources or the mixing matrix.

Constrained ICA, proposed by Lu and Rajapakse [Lu
and Rajapakse, 2000], is a general framework to incorpo-
rate available prior information about the sources into
standard blind ICA. The prior information is added to the
contrast function of a standard blind ICA algorithm in the
form of inequality constraints and equality constraints.
Specifically, constrained ICA is modeled as the following
constrained optimization problem [Lu and Rajapakse,
2000, 2005]:

maximize

J(y)

g(y: W) <0and/or h(y: W) =0 1)

subject to

where J(y) denotes the contrast function of a standard
blind ICA algorithm, g(y:W)=[gi1(y: W), %(y: W),

., gp(y:W)]T includes p inequality constraints, and
h(y: W) = [lu(y : W), la(y : W), ..., ly(y : W)]" includes g
equality constraints.
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The ICA-R algorithm is a semiblind algorithm devel-
oped in the framework of constrained ICA [Lu and Raja-
pakse, 2005], in which J(y) is the L-unit contrast function
of a standard blind ICA algorithm [Hyvérinen, 1998]:

L
Jv) =>_J:) @)
i=1
and
J(yi) ~ plE{G(yi)} — E{G(v)}]* 3)

where p is a positive constant, v is a Gaussian variable
with zero mean and unit variance, and G(-) is a nonqua-
dratic function. The ICA-R algorithm used L inequality
constraints g(y : W) and L equality constraints h(y : W) to
constrain J(y) in (1), and then the Lagrange multiplier
method was utilized to give a Newton-like learning algo-
rithm [Lu and Rajapakse, 2005].

PROPOSED APPROACH

We aim to provide a spatial semiblind spatial ICA algo-
rithm within the framework of constrained ICA. Assuming
the total number of source signals is M, the spatial infor-
mation about L (1 < L < M, i.e., a subset of all of the sour-
ces) sources of interest is available. The proposed
approach will automatically extract only the L desired
sources from the mixtures in a predefined order instead of
estimating all of the M source signals as standard blind
ICA usually does. Specifically, L reference signals ry,...,r,
are constructed from the spatial information about the L
sources of interest, and a closeness measure &(y;1;)
between an extracted signal y; and a reference signal r; (i
=1,...,L) is defined to constrain W learning. As a result,
only L weight vectors wy,..., wy (L rows of the unmixing
matrix W) will be found to give yq,...,y. (ie, y; = Wx),
the order of which is the same as that of r4,...,r.

The proposed algorithm is specifically formulated in the
framework of constrained ICA as follows

[
N

maximize J(y) 2 J(yi) @
subject to  g(y : W) <0
where g(y: W) = [g1(y1: W1),82(y2 : W2), ..., g(yr : wi)]"

includes L inequality constraints for incorporating spatial
information, gi(y; : w;) = e(y;, 1) — & <0(i=1,...,L), and
&; is a threshold distinguishing one desired output y; from
the others.

Compared with the model (1) of constrained ICA, we
omitted the equality constraint h(y : W) which is included
to ensure the contrast function J(y) and the weight vector

w are bounded, e.g., h(y: W) = E{yz} — 1 =0 [Lu and
Rajapakse, 2000, 2005]. Alternatively, we used the follow-
ing constraint:

E{(wix) (wjx)T} = WiCW]T = 9;j ®)

where C = E{xx"} is the covariance of the mixed signals X,
d;j equals 1 when i = j and equals 0 when i # j. After data
whitening, we have C = E{xx’} = I and then get a simpli-
fied constraint from Eq. (5) as:

W,'W]T = 61‘/‘ (6)
Considering Egs. (4) and (6), we introduce a new con-
trast function for the proposed approach as follows

L(W) = L(W, ) + F([|W|*) @)

where L(W,p) is an augmented Lagrangian function from
Eq. (4) after transforming g(y : W) into equality constraint
with slack variables:

L
1
L(W,p) =]J(y) - Zz—y_[maxz{uf +7i8i(yi : wi), 0} — 7] (8)
i—1 <l
p = [ug,...,u]" includes L positive Lagrange multipliers
for the constraint g(y : W), v = [vy, ... ]! includes L posi-
tive penalty parameters, and F(||W|?) is a penalty term
corresponding to the constraint in Eq. (6):

L

F(IWI?) = =% ) (wiw —1) ©)

i=1

where X; (i = 1,...,L) is a positive Lagrangian coefficient.

To avoid the limitations of Newton-like learning, we
find the maximum of Eq. (7) according to the Kuhn-Tucker
conditions as:

VuL(W) = VW L(W.p) + Vo F(W[?) =0 (10)
Considering Egs. (8) and (9), we have
1
(M)W = (p)E{G,(Wx)x"} — 5 (i E{g, (y : W)x'} (1)

where L = [\, ..., 0], p = :I:[pl,...,pL]T includes L con-
stants the signs of which are coincident with E{G(y;)} —
E{G(vy)}, G4(Wx), and g, (y : W) are the first derivatives of
G(Wx) and g(y : W) with respect to y, (-) denotes a diago-
nal matrix, the diagonal elements of which are given by
the vector inside (e.g., &, p, p).

For simplicity, the effect of A in Eq. (11) is omitted
by scaling p and p on the right side of the equation
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Figure I.
Ten fMRI-like source images s|—s| and the corresponding time courses tc,—tc .

[Hyvérinen, 1997]. Thus a fixed-point learning algorithm is
obtained as follows:

W(E) = ()E{G, Wk~ D0x") — 3 (m)E(g) (y - Wik — D)<'}

wi(k) :w,-(k)/ wilw;(0)T,i=1,... L (12)

where p and p denote the scaled p and p, and are learned
by the following rules (y denotes the scaled v):

p=E{G(y)} - E{G(V)} (13)
Ak +1) = max{0, &(k) + (7)g(y : W)}

At each iteration step, the weight vectors are decorre-
lated to prevent different components from converging to
the same solution [Hyvérinen, 1997; Hyvérinen et al.,
2001]:

W= WWw'") 1w (14)

In summary, Egs. (12)—(14) form the proposed algo-
rithm. Compared with the ICA-R algorithm with Newton-
like learning, the proposed algorithm has no learning rate.
It is also insensitive to initialization of the weight vectors
due to fixed-point learning. Since the equality constraints
are omitted, the matrix inversion and the second deriva-
tives are not needed, the computational complexity of the
proposed algorithm is largely decreased compared with
ICA-R.

SIMULATION AND RESULTS

To evaluate the performance of the proposed approach
through simulations, we used the simulated fMRI-like
dataset including eight sources at http://mlsp.umbc.edu/
simulated_fmri_data.html, and replaced the task-related
source with three new source images to mimic three real
fMRI components of interest (two task-related components
and one default mode component).

Noiseless and Noisy fMRI-Like Data

Figure 1 shows the ten fMRI-like source images (s1—s10,
60 x 60, a value of “1” is colored white and a value of
“0” is colored black) and the corresponding time courses
(tci—tcyp, 100-point). Specifically, s; and s, simulated two
task-related sources, s; simulated default mode source, sy
and sg simulated two transiently task-related sources, ss,
Se, Sy, So, and sjp simulated five artifact-related sources.
The time courses tc; and tc, were two model time courses
generated by convolving a temporal model of the on-off
task with the default SPM canonical hemodynamic
response function [available at: http://www. fil.ion.ucl.
ac.uk/spm/; Correa et al., 2007] and tcz simulated the
default mode time course. By mixing the 10 source images
with the 10 time courses, we obtained a noiseless mixture
simulating 100 scans of a single slice of fMRI data. To
examine the robustness of the proposed approach, we
also added Gaussian noise to the mixture with three lev-
els of SNR (dB), which were 5 dB, 0 dB, and —5 dB,
respectively.
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Figure 2.
Three partially correct references r|—r3 for s,—s;.
Preprocessing of fMRI-Like Data
and ICA Analysis

The fMRI-like mixtures were reduced by principal com-
ponent analysis (PCA) before performing ICA. Assuming
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Images and time courses automatically extracted by the pro-
posed algorithm (a) and ICA-R (b) using the spatial references
ri—rs, or selected from the estimates by Infomax (c) from noisy
mixtures with SNR = 0 dB.

that the number of sources is unknown without loss of
generality, our criterion for determining the number is
that at least 99.9% of the total variance of the mixed sig-
nals is retained after PCA reduction. This will ensure all
the informative components are included. As a result, the
fMRI-like mixtures were reduced to 10 dimensions to
retain 100% of the variance.

One standard blind ICA algorithm Infomax [Bell and
Sejnowski, 1995], which appears to have the best perform-
ance among several ICA algorithms including fastICA,
JADE, and EVD for fMRI analysis [Correa et al., 2007],
and the semiblind algorithm ICA-R are included for com-
parison. For the Infomax algorithm, the learning rate was
set to be 0.001. For the proposed algorithm and ICA-R, we
used G(y;) = exp(—yiz/Z), e(y;,r) = —Elyi}, and &; was ini-
tialized with a small value (e.g., &; = 0.01) and then gradu-
ally increased to help the algorithm converge to the global
maximum [Lu and Rajapakse, 2005]. An actual scheme
could be &; = k&;, where k can be either the number of iter-
ation or a constant (e.g., k = 100). We here applied the
scheme &; = 100;. However, through our simulations we
found the algorithm was insensitive to the &; update
scheme. As ICA-R is sensitive to the learning rate, we
selected it through extensive simulations utilizing different
values. The results showed that ICA-R had consistent per-
formance with a moderate learning rate (such as 0.01) but
had less consistent performance with large values (such as
1 and 0.1) or with small ones (such as 0.001), we thus used
a fixed learning rate 0.01.

Automatic Extraction of Sources of Interest

Assuming that s, s;, and s; were three sources of inter-
est. We generated three partially correct references ri—r3
for s;-s3 since prior information is usually not perfect. The
accuracy of the reference can be defined as the normalized
correlations of the references with the sources as the close-
ness measure &(y;,1;) = —E{y;r;} is used. Figure 2 shows the

60

(a) Anincorrect ry 39
reference

(b) Proposed Ya

0 30 60
4
L

(c) ICA-R Vi 30|

0 30 60 0 50

Figure 4.
An incorrect reference ry (a) and its corresponding image and
time course extracted by the proposed algorithm (b) and ICA-R
(c) from noiseless mixtures by using four different spatial refer-
ences ry, ry, r3, and ry4.
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three spatial references r-r3 (the accuracy of r-r; is
93.8%, 93.8%, and 93.5%, respectively). Next, we used the
proposed algorithm and ICA-R to automatically extract s;—
s3 by utilizing three references r;—r3 from the noiseless and
noisy mixtures, respectively, but selected three corre-
sponding signals from 10 estimates of Infomax using r,-73.

To save space, we only show the results for a noisy case
SNR = 0 dB in Figure 3. The proposed algorithm and
ICA-R automatically extracted three images (denoted as y;)
and the time courses (denoted as %cl-), as shown in Figure
3a,b. Figure 3c shows three selected images and the time
courses estimated by Infomax. Compared with the three
original sources s;—s; and the time courses tc;—tcs in Figure
1, we can see that all of the three ICA algorithms achieved
good separation.

In addition, we generated an incorrect reference ry (see
Fig. 4a) to show what effect the use of prior information
would have if the expected components did not actually
exist in the data. For recognition, we used a noiseless mix-
ture of sy, Sy, S3, S4, S, S7, Sg, and Sy, from which four com-
ponents were extracted by using the four different spatial
references ry, 15, 13, and 4. Figure 4b,c show the image y4
and time course fc, extracted by the proposed algorithm
and ICA-R corresponding to the incorrect reference r,. We
can see that the extracted images were actually mixtures
of the original sources, and the extracted time courses
were also noisy mixtures of the original time courses. This
demonstrates that the proposed algorithm and ICA-R do
not generate artificial sources as a result of incorrect refer-
ences. Note that the three images and time courses corre-
sponding to rq-r3 are much similar to those in Figure 3a,b
but without noises (since the mixture is noiseless).

To quantitatively compare the estimation quality of the
three ICA algorithms, we computed the following signal-
to-noise ratio (SNR) for the recovered sources:

02

(15)
where 6° is the variance (power) of a source signal, mse
denotes the mean square error between a source signal
and its estimate (i.e., mse is the noise power). Figure 5
includes the results for the noiseless and noisy conditions.
It can be found that the proposed algorithm has higher av-
erage SNR than ICA-R and Infomax, while ICA-R has
higher average SNR than Infomax. This demonstrates that
the proposed approach can further improve ICA perform-
ance by utilizing spatial prior information. We also exam-
ined how inaccurate the spatial reference could be, i.e., the
effect of the reference accuracy on the estimation perform-
ance. Specifically, we compared the proposed approach
with ICA-R by using three spatial references r,—r; with ac-
curacy of 100%, 56%, and 38% under noiseless condition
and three noise levels (SNR = 5, 0, —5 dB). Figure 6 shows
the results, in which the SNR for Infomax in Figure 5 is
also listed for comparison. We can see that the two semi-
blind algorithms achieve increased SNR with increased ac-

curacy of references, and they have higher SNR than
Infomax under noiseless and noisy conditions when the
accuracy is above 56%. Compared with ICA-R, the pro-
posed algorithm significantly increased SNR when the ac-
curacy of spatial reference was further increased and the
noisy level for mixture was further decreased. Note that
standard ICA outperforms the two semiblind algorithms
when the spatial references are too rough, e.g.,, when the
accuracy is 38%, Infomax is better than the proposed
approach and ICA-R in the noiseless case, but at the noise
levels typical of fMRI performs at a similar level to the
proposed approach (refer to Fig. 6c¢).

ANALYSIS OF REAL FMRI DATA
AND RESULTS

Once the correctness of the proposed approach was con-
firmed by the simulation results, we applied it to real
fMRI data from 11 subjects performing a visuo-motor task
to automatically extract components of interest.

Participants

Participants were recruited via advertisements, presenta-
tions at local universities, and by word-of-mouth. Eleven
right-handed participants with normal vision (five females,
six males, average age 30 years) participated in the study.
Participants provided written informed consent for a pro-
tocol approved by the Hartford Hospital Institutional
Review Board.

Visuomotor Paradigms

A visuo-motor task performed by the subjects involved
two identical but spatially offset, periodic, visual stimuli,
shifted by 20 s from one another. The visual stimuli were
projected via an LCD projector onto a rear-projection
screen subtending approximately 25 degrees of visual
field, visible via a mirror attached to the MRI head coil.
The stimuli consisted of an 8Hz reversing checker board
pattern presented for 15 s in the right visual hemifield, fol-
lowed by 5 s of an asterisk fixation, followed by 15 s of
checkerboard presented to the left visual hemifield, fol-
lowed by 20 s of asterisk fixation. The 55 s set of events
was repeated four times for a total of 220 s. The motor
stimuli consisted of participants touching their thumb to
each of their four fingers sequentially, back and forth, at a
self-paced rate using the hand on the same side on which
the visual stimulus is presented.

Imaging Parameters

Scans were acquired at the Olin Neuropsychiatry
Research Center at the Institute of Living on a Siemens
Allegra 3T dedicated head scanner equipped with a
40mT/m gradients and a standard quadrature head coil.
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The functional scans were acquired using gradient-echo
planar imaging with the following parameters (repeat
time, TR = 1.50 s; echo time, TE = 27 ms, field of view =
24 cm, acquisition matrix = 64 x 64, flip angle = 60
degrees, slice thickness = 4 mm, gap = 1 mm, 29 slices,
ascending acquisition). Six “dummy” scans were per-
formed at the beginning to allow for longitudinal equilib-
rium, after which the paradigm was automatically
triggered to start by the scanner.

Preprocessing of fMRI Data

The fMRI data were preprocessed using SPM2. Images
were realigned using INRIalign—a motion correction algo-
rithm unbiased by the local signal changes [Freire and
Mangin, 2001; Freire et al., 2001]. Data were spatially nor-
malized into the standard Montreal Neurological Institute
(MNI) space [Friston et al., 1995], spatially smoothed with
an 8 x 8 x 8 mm® full width at half-maximum Gaussian
kernel. The data (originally acquired at 3.75 x 3.75 x 5
mm?®) were slightly resampled to 3 x 3 x 5 mm?, resulting
in 53 x 63 x 29 voxels.

The number of informative components (i.e., the total
number of the sources M) included in each of 11 subjects
of fMRI data was estimated according to the Akaike infor-
mation criterion [Akaike, 1974; Li et al., 2007], respectively.
With the above-mentioned criterion retaining 99.9% of the
total variance, the estimated number M ranged from 14 to
20. We thus utilized the maximum number M = 20 as the
final one. The fMRI data from each of the 11 subjects were
then reduced by PCA to 20 dimensions.

Automatic Extraction of Components of Interest

Since the right and left task-related components and the
default mode component are signals of interest and their
spatial information is available, we focus on extracting the
three components (i.e., L = 3) out of 20 source signals with
the three ICA algorithms, in which the same functions and
parameters as above were used. We constructed the spatial
references from the available atlases including Brodmann
areas (BAs) and functional areas using WFU_PickAtlas
[Lancaster et al., 1997, 2000; Maldjian et al., 2003], a tool

that allows the user to create masks by selecting different
areas of the brain. The labels were selected using the MNI
atlases within the WFU_PickAtlas tool. Specifically, the
two reference masks for the right and left task-related
components include BAs 1, 2, 3 (somatosensory area), BA
4 (primary motor area), BA 6 (secondary motor area), BA
17 (primary visual area), and BAs 18, 19 (secondary visual
areas); the default mode reference is formed by BA 7 (pos-
terior parietal cortex), BA 10 (anterior cingulate), BA 39
(occipitoparietal junction), Precuneus, and Posterior cingu-
lated [Correa et al., 2007]. Figure 7 shows three created ref-
erence masks, which were smoothed with the same
smoothing kernel used for the fMRI data.

With the three spatial references, the proposed algo-
rithm and ICA-R automatically extracted the two task-
related components and the default mode component
from each of 11 subjects in the same order as that of the
three references. In contrast, the three desired components
needed to be selected out of 20 estimates by Infomax
based on the three spatial references. Since the estimation
consistency for multiple subjects can demonstrate the
robustness of an ICA algorithm to individual subject dif-
ferences, we performed a voxel-wise one sample t-test on
each of the three estimated components over the 11 sub-
jects (the individual subject components were first normal-
ized to unit standard deviation), and then thresholded
each of the t-maps (voxel values are t-values) at a false
discovery rate (FDR) corrected g < 0.01 [Genovese et al.,
2002]. Figure 8 shows the estimated t-maps. We see that
the proposed approach and Infomax obtain quite similar
results for the right and left task-related t-maps but ICA-R
fails to reach significance. This is mainly caused by the
sensitivity of Newton-like learning to learning rate and ini-
tialization. Since we used a fixed learning rate and random
initialization of the weight vectors, ICA-R occasionally
failed to extract the expected signals for several subjects.
Table I presents the normalized spatial correlations of the
three reference masks with the three estimated f-maps for
each of 11 subjects by the three ICA algorithms. We high-
lighted the very low correlations in bold black, which
mean that the corresponding component was not found or
was very noisy. We can see that ICA-R did not find the
right task-related component from subject 5 and 9, and the

Figure 5.
Comparison of SNR (dB), defined in Eq. (I5), for estimates of s, s;, and s3 by the proposed
approach, ICA-R (using three partially correct references r—r3), and Infomax under noiseless
condition and three noise levels (SNR = 5, 0, —5 dB). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 6.

Comparison of SNR (dB), defined in Eq. (15), for estimates of
s, Sy, and s3 by the proposed approach and ICA-R by using
three spatial references r—r;3 with accuracy of 100% (a), 56%
(b), and 38% (c) under noiseless condition and three noise lev-

els (SNR =5, 0, —5 dB). The SNR (dB) for Infomax in Figure 5
is also listed for comparison. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

¢ 1083



¢ Lin et al. ¢

(a) Right task-related (b) Left task-related (¢) Default mode

Figure 7.
Three spatial reference masks corresponding to right task-related component (a), left task-
related component (b), and default mode component (c).

LA

¥

‘\i,d‘r

'l
(a)Proposed

(b)ICA-R

(c)Infomax

Right task-related Left task-related Default mode

Figure 8.
The estimated right and left task-related t-maps and default mode t-maps by the proposed algo-
rithm (a), ICA-R (b), and Infomax (c) (thresholded at FDR corrected g < 0.01).
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TABLE I. Normalized spatial correlations of three
reference masks with three estimated t-maps for each
of 11 subjects by three ICA algorithms

TABLE Il. Comparison of the number of signal voxels
(vox,) and the number of noise voxels (vox,) for three t-
maps estimated by three ICA algorithms

Proposed  ICA-R  Infomax Proposed ICA-R Infomax
Right task-related ~ Subject 1 0.46 0.46 0.39 Right task-related VOXs 1739 0 1978
mask and Subject 2 0.54 0.54 0.48 VOX;, 245 0 916
11 t-maps Subject 3 0.53 0.52 0.47 Left task-related VOX; 2178 0 1515
Subject 4 0.43 0.43 0.36 VOXj, 338 0 492
Subject 5 0.53 0.23 0.46 Default mode VOXs 4397 7339 2
Subject 6 0.54 0.50 0.50 VOXy, 77 753 0
Subject 7 0.49 0.49 0.43
Subject 8 0.56 0.56 0.46
Subject 9 0.44 0.27 0.37 corresponding masks, denoted as voxg), the number of
Subject 10 0.56 0.56 0.44 noise voxels (voxels which do not overlap with the corre-
Subject 11 043 043 0.26 sponding masks, denoted as vox,), and correspondingly
Left talik-re;ated guﬁ!mii gig gig ggg defined a new SNR since we know nothing about the
mask an ubjec . . . : .
11 f-maps Subject 3 055 055 0.49 source signals needed by Eq. (15):
Sweas 0% 02 0u
ubject . B . 2 2
Sub}ect 6 0.52 0.52 0.46 SNR (dB) =10logy ;t" ; g (16)
Subject 7 0.56 0.12 0.48 . =
Subject 8 0.53 0.49 041 , ,
Subject 9 0.44 0.43 037 where f(t;) denotes the t-value of a signal voxel (noise
Subject 10 0.52 0.52 0.42 voxel). Note that the number of activated voxels should be
Subject 11 0.41 0.41 0.30 evaluated together with SNR because some noise voxels
Default mode Subject 1 0.58 0.58 0.35 are included in the estimated maps. Table II and Table III
mask and Subject 2 0.54 0.54 0.23 record the results. We see that, among the three ICA algo-
11 t-maps Subject 3 0.58 0.58 0.30 rithms, the proposed algorithm did not always produce
Sub]:eCt 4 0.57 0.57 0.37 the maximal number of activated voxels, but always gave
Subject 5 0.63 0.63 0.51 the lowest number of noise voxels and the highest SNR,
Subject 6 0.56 0.56 0.30 . . .
Subject 7 0.56 0.56 0.41 e.g., the percentage of the noise voxels included in the
) default mode t-map is 1.72% for the proposed algorithm
Subject 8 057 0.57 0.31 : N p prop 8
Subject 9 0.45 0.45 0.25 but is 9.31% for ICA-R (refer to Table II).
Subject 10 0.57 0.56 0.26 To present a more fair comparison, we also compared
Subject 11 0.61 0.61 0.41 the three ICA approaches when excluding the failed cases

left one from subject 1, 5, and 7. Note that the spatial cor-
relation is a rough index to tell the correctness and the
quality of the estimations, the same correlation values for
different algorithms do not mean the estimated f-maps are
the same.

The largest difference for constrained ICA and standard
blind ICA occurs for the default mode network. The pro-
posed algorithm and ICA-R show activated regions con-
sistent with the default mode reference in Figure 7c,
whereas Infomax was significant for only several voxels of
the default mode areas (other voxels become visible if a
much lower threshold such as g < 0.1 was used, but the
variability from subject to subject was much higher than
the proposed algorithm and ICA-R). From Table I we also
see that Infomax failed to find the default mode compo-
nent for three subjects and the other spatial correlations
were also lower than the proposed approach and ICA-R.

To further evaluate the three t-maps, we computed the
number of signal voxels (voxels which overlap with the

in Table I. Table IV shows the results. We see that the
number of activated voxels becomes much lower than that
in Table II while the SNR increases a little compared to
that in Table III (this is reasonable since the percentage of
the noise voxels in Table IV decreases a little compared
with that in Table II), the two constrained ICA algorithms
have better SNR than Infomax, and the proposed approach
always provides a higher SNR than ICA-R and a compara-
ble number of activated voxels to the largest number of
voxels. These results further confirm the advantages of the
proposed approach over ICA-R separately from the New-
ton-like learning problem.

TABLE Ill. Comparison of SNR (dB), defined in Eq. (16),
for three t-maps estimated by three ICA algorithms

Proposed (dB) ICA-R (dB) Infomax (dB)
Right task-related 16.07 void 10.97
Left task-related 15.28 void 12.34
Default mode 24.10 16.44 void
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TABLE IV. Comparison of the number of signal voxels (vox,), the number of noise voxels (vox,), and SNR (dB)
defined in Eq. (16) for three t-maps estimated by three ICA algorithms excluding the failed cases of ICA-R

in Table |
Proposed ICA-R Infomax
VOX; VOXy, SNR (dB) VOX; VOXy, SNR (dB) VOX; VOXy, SNR (dB)
Right task-related 620 61 17.27 516 66 15.73 884 381 11.15
Left task-related 695 57 17.75 342 57 14.82 273 60 13.93

To evaluate the quality of the estimated time courses,
we obtained the average time courses over the 11 subjects
after normalizing the individual time courses to zero mean
and unit variance. Figure 9a,b show the right and left task-
related average time courses estimated by the proposed
algorithm (solid), ICA-R (dash-dot), and Infomax (dotted).
We see that the three ICA algorithms obtain quite similar
results to the two model time courses tc; and tc, (see Fig.
1). The difference is that the proposed algorithm has the
lowest amplitudes during the alternate stimuli (e.g. left for
the right task-related component, or vice versa), and hence
has the least crosstalk between the right and left tasks, and
thus the lowest number of noise voxels in the t-maps (see
Table II). In addition, we compared the standard devia-
tions of the individual default mode time course estimated
by the three ICA algorithms over the 11 subjects. Figure 10
shows the average time courses (thick lines) and the error
bound (dotted lines). It can be seen that the proposed
algorithm and ICA-R have lower deviation (dotted lines)
than Infomax. As a result, the two semiblind ICA algo-
rithms produced more significant f-maps than Infomax
(see Fig. 8).

Finally, we compared the average one-component esti-
mation time for the three ICA algorithms to quantitatively
compare the computational complexity of the proposed
algorithm with the other two algorithms. The results are
0.68 s, 2.79 s, and 11.13 s, respectively. That is, the speed
of our method is at least four times faster than ICA-R and

(a) Right
task-related

60 100

(b) Left
task-related

1 i
100 120

(solid: Proposed, dash-dot: ICA-R, dotted: Infomax)

Figure 9.
The right (a) and left (b) task-related average time courses esti-
mated by the proposed algorithm (solid), ICA-R (dash-dot), and
Infomax (dotted).

16 times faster than Infomax. Therefore, the proposed
algorithm considerably reduces the computational load
due to fixed-point learning. This is especially valuable for
time sensitive applications, like real-time ICA of fMRI
data, or when analyzing large data sets, such as in group
analyses.

DISCUSSION AND CONCLUSIONS

We have developed an efficient semiblind spatial ICA
algorithm utilizing spatial information within the frame-
work of constrained ICA with fixed-point learning. Results
for synthetic data and real fMRI data show that the pro-
posed algorithm has improved SNR, robustness, and
speed compared to the ICA-R algorithm with Newton-like
learning and to the standard blind ICA algorithm Infomax
by virtue of using spatial prior information.

The default mode component is of increasing interest in
fMRI studies. We know that the group ICA algorithm
[Calhoun et al., 2001] provides a way to reliably estimate
the default mode maps by utilizing a large amount of

(a) Proposed

(b) ICA-R

(c) Infomax

Figure 10.
The average time courses (thick lines) and the error bound
(dotted lines) for default mode component estimated by the
proposed algorithm (a), ICA-R (b), and Infomax (c). [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

* 1086



¢ Semiblind Spatial ICA of fMRI

information from a group of subjects [Correa et al., 2007].
However, if one is interested in performing ICA separately
for each subject, reliable detection of the default mode net-
work decreases. It is likely that noise and the fact that less
data are being used to estimate the components are caus-
ing the problem. The proposed algorithm and ICA-R were
found to detect a significantly improved default mode
component from a small amount of data from a single
subject due to the use of spatial prior information.

The use of temporal priors for a semiblind ICA is justi-
fied when consistently or transiently task-related compo-
nents are of major interest compared with nontask related
components. The use of spatial information can be justified
in the same way since we are interested in identifying a
well-described network, but do not know its exact form
(analogous to the case of transiently task-related time
courses). In this case, this well-described network can be
used as a spatial constraint; our approach can then be
directly used to improve results. The spatial reference can
be generated in other ways as well. For example, it can be
derived from a network consistently identified from some
other data (such as a component produced by ICA). In our
experience, even the transiently task-related components
show fairly consistent spatial patterns, hence making this
information available for a spatial reference. The use of
spatial priors is also possible for resting-state fMRI studies
(for which we do not have temporal priors) due to the
presence of commonly occurring spatial networks such as
the default mode network. Because of consistency of the
spatial patterns across subjects, data sets, and different
fMRI tasks [Calhoun et al., 2008a,b; Franco et al., 2009], it
is straightforward to generate spatial references which
have high accuracy for spatial semiblind spatial ICA to
improve performance.

In summary, we have presented the first application of
spatial constraints within spatial ICA to fMRI data. Results
indicate a significant improvement can be obtained over
standard blind ICA approaches. In addition we have pre-
sented an improved semiblind ICA algorithm which is ro-
bust to initial conditions and computationally efficient.
Given the increasing interest in identifying temporally
coherent networks with consistent spatial patterns (such as
default mode), the approach we present has wide applic-
ability to study healthy as well as diseased brain.
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APPENDIX

Derivation of Eq. (11) from Egs. (8) and (9)
For clarity, the Eq. (8) can be rewritten as:

L(W,p) = J(y) - C(y: W,n) (A1)

L
where  Cly : W, ) = 2 s max{p; + 7igi(yi : wi), 0} — 1.

i=1
The gradient of L(W,pn) is given by [Lu and Rajapakse,
2005]:

VWL(W, ) = E{VyJ(y)x"} = E{V,C(y : W.p)x"}  (A2)
where  VyJ(y) = [T, (¥). ], (¥) - ], ()], and ] (y) =
2p(E{G(y1)} — E{G(V)})G},(wix). Let p; = p(E{G(y:)}

EIGM)), we have [,(y) = 2p,G}, (W) V,Cly:W.p) =
Gy (y: W), Cl(y : W,p), ... Cy (y: Wop)]", C) (y: W,p) =
max{p; + v;gi(yi : wi), 0}sgnw; +v;gi(yi : wi)lgy, (vi : wi), and

1, w+vigi(yi :wi) >0
sgnw; + vigi(yi : wi)] = {0: ﬁﬁgigi :Wzg <0

we have C', (y : W, p) = 1; §'y, (v; : wy) in which p; = max
{1 + vigi(yi - w;),0}. Hence, (A2) becomes

VuL(W. ) = 2() E{G)(Wx)x"} — (W E{g)(y : W)x"} (A3)

From the Eq. (9), the gradient of F(|W|®) can be
expressed as:

VwF([W[?) = —2(,)W (A4)
where zv%vp(kuz) = [VzwlF(HWHZ), Vw, F(|W|P), K,
Vaw F(IWIHT,  Vw,F(||[W[?*) = —2)w;. Substituting (A3)

and (A4) into the Eq. (10), we can obtain the Eq. (11).
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