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Abstract
Several novel and established knowledge-based discriminatory function formulations and
reference state derivations have been evaluated to identify parameter sets capable of distinguishing
native and near-native biomolecular interactions from incorrect ones. We developed the r·m·r
function, a novel atomic level radial distribution function with mean reference state that averages
over all pairwise atom types from a reduced atom type composition, using experimentally
determined intermolecular complexes in the Cambridge Structural Database (CSD) and the Protein
Data Bank (PDB) as the information sources. We demonstrate that r·m·r had the best
discriminatory accuracy and power for protein-small molecule and protein-DNA interactions,
regardless of whether the native complex was included or excluded from the test set. The superior
performance of the r·m·r discriminatory function compared to seventeen alternative functions
evaluated on publicly available test sets for protein-small molecule and protein-DNA interactions
indicated that the function was not over optimized through back testing on a single class of
biomolecular interactions. The initial success of the reduced composition and superior
performance with the CSD as the distribution set over the PDB implies that further improvements
and generality of the function are possible by deriving probabilities from subsets of the CSD,
using structures that consist of only the atom types to be considered for given biomolecular
interactions. The method is available as a web server module at
http://protinfo.compbio.washington.edu.
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Introduction
Protein structures are useful for understanding, predicting, modulating, and designing
biomolecular interactions, as the intermolecular geometric and chemical complementarity is
the essence of binding. Given molecular structures, computational methods can be
successfully used to evaluate intermolecular interactions and serve as a complementary tool
to experimental investigation.

A structure guided computational approach to evaluating biomolecular interactions generally
consists of three steps: (a) conformational sampling of the intermolecular rotational,
translational, and torsion angle degrees of freedom, (b) scoring the resulting interactions
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with a discriminatory function to identify native and near-native complexes from a set of
incorrect conformations, and (c) relative affinity ranking of interactions to distinguish
between strong, weak, and non-binders. Here, we focus on development and evaluation of a
novel atomic level discriminatory function to identify native and near-native interactions and
guide the rotational, translational, and torsion angle conformational sampling requirements
for biomolecular interactions. Additionally, accurate discrimination of native and near-
native biomolecular interactions from incorrect conformations is critical since a failure at
this step may lead to erroneous relative affinity ranking of interactions and eventually
propagate into experimental investigation that is not well guided.

A variety of physics-based, empirical, and knowledge-based functions have been used to
discriminate native and near-native complexes from a set of incorrect conformations [1].
Knowledge-based functions have proven to be particularly successful at correctly
identifying a variety of biomolecular interactions, including protein structure prediction [2],
protein-small molecule [3], protein-DNA [4], and protein-protein complexes [5]. Despite
previous successes with these discriminatory functions, generalized parameter sets have not
been demonstrated to be highly accurate across a diverse set of biomolecular interactions.
Therefore, we have evaluated several novel and established discriminatory function
formulations and reference state derivations, which are crucial to the performance of
knowledge-based functions, to identify unifying parameter sets applicable to multiple types
of biomolecular interactions. The following methods for scoring biomolecular interactions
have been successfully applied herein to independent protein-small molecule and protein-
DNA test sets. We demonstrate that the methods have not been over optimized for a single
class of biomolecular interactions, suggesting suitability for additional molecular interaction
types (e.g., protein-protein, protein-RNA, protein-metal ion, DNA-small molecule, and
RNA-small molecule interactions).

Methods
Discriminatory function formulation

We developed an atomic level knowledge-based discriminatory function, using
experimentally determined interactions as the source of information (refer to the Reference
state derivation section below), for the identification of native and near-native
intermolecular complexes from a set of ‘decoy’ conformations. Following the approach of
[2], a score S was calculated for each conformation solely using a set of intermolecular

atomic distances { }, where  is the distance between atoms i and j, of types a and b,
respectively:

(1)

Accordingly, the score was calculated as a function of the probability  of observing
a distance r for each intermolecular pair ij of atom types ab in a correct intermolecular
binding mode C, relative to the probability P(rij) of seeing any two atom types from the
reference state (i.e., prior distribution) at the same distance. This discriminatory function
formulation resembles the net potential of mean force derived from the inverse Boltzmann
principle [2,6,7], which is obtained by subtracting the mean force of the reference state from
the mean force of the total system to remove all forces that are common to all intermolecular
atomic pair interactions. A key assumption here is that experimental data from which the
potentials of mean force are derived are representative of the thermodynamic equilibrium of
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the interaction types being evaluated. The ability of the discriminatory function to identify
native and near-native intermolecular complexes from a set of decoys is therefore dependent
on the calculation of probabilities that are representative of the energetics of the system
under investigation. To identify the representation that would provide the maximum
discrimination, these probabilities were calculated and evaluated in the form of normalized
frequency distribution functions and radial distribution functions.

Normalized frequency distribution functions—Based on the number of atoms Ns
located within each discretized spherical shell, the conditional probability was calculated as
a normalized frequency distribution function according to the following:

(2)

The reference state was calculated in the form of either a mean normalized frequency
distribution function averaged over all n unique ab pairs in equation (3) or a cumulative
normalized frequency distribution function for all unique ab pairs in equation (4):

(3)

(4)

Radial distribution functions—The radial distribution function g(r) is defined such that
multiplication by the bulk density ρ is equal to the observed density of atoms of type b
within a distance bin r + Δr given there is an atom of type a at the origin [8, pg. 197]. The
function g(r) can be thought of as a factor that, when multiplied by the bulk density, gives a
local density about the central atom. The bulk density is ρ = N/V, where N is the total
number of atoms in the spherical volume element V. The local densities are determined for
each radial bin by the number of atoms Ns located within each discretized spherical shell of
volume Vs with thickness Δr, where:

(5)

(6)

The shell volume therefore reduces to the familiar 4πr2Δr for small Δr; however, equation
(6) was used as it is applicable for all bin sizes Δr.

For any distance r between atoms of type ab, the conditional probability in the form of a
radial distribution function is:
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(7)

The reference state was calculated in the form of either a mean radial distribution function
averaged over all n unique ab pairs in equation (8) or a cumulative radial distribution
function for all unique ab pairs in equation (9):

(8)

(9)

The difference between the normalized frequency distribution functions and the radial
distribution functions is that the latter account for changes in observed frequencies related to
the radial increase in shell volume.

Reference state derivation
Distributions—The probabilities P(rab|C) and P (r) for all combinations of atom types
were derived from pairwise atom-atom distances of experimentally determined small
molecule crystal structures in the Cambridge Structural Database (CSD) [9]. For each
molecule with complete solved density as queried using ConQuest [10], symmetry
equivalent molecules were generated to a minimum distance of 15 Å from the central
molecule with the CCP4 molecular-graphics package [11]. This ‘CSD distribution set’ was
used to score the protein-small molecule and protein-DNA test sets.

To evaluate the effect of distribution set source data on discriminatory ability, pairwise
atom-atom distance distributions between protein and DNA molecules were calculated from
protein-DNA complexes in the Protein Data Bank (PDB) [12], excluding those with greater
than thirty percent identity and those complexes evaluated in the protein-DNA test set. This
‘PDB distribution set’ was used to score the protein-DNA test set, with the scoring results
being compared to those from the CSD distribution set.

Composition—Each of the distribution sets was composed in two forms to derive the
reference state. The ‘complete’ composition includes all distances within rcutoff from all
atom types present in the selected distribution set. The ‘reduced’ composition includes only
distances within rcutoff from atoms of type a paired with atoms of type b in the selected
distribution set for each molecule in the given biomolecular complex to be evaluated.

Implementation
Atom typing—The discerned atom types and accompanying algorithm were adapted from
the program IDATM [13] as implemented in UCSF Chimera [14].

Distance range searching—To score intermolecular complexes, all intermolecular
heavy atom pairs located at a distance r within the range of 0 < r ≤ rcutoff were identified. A
grid hash data structure was utilized for rapid identification of satisfactory pairs between
stationary and mobile structures. Accordingly, as the numbered stationary heavy atom
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coordinates were read, a greatest integer function (i.e., floor function) was applied to the
coordinates, thereby assigning the heavy atom number as a value to a ‘base’ gridpoint key.
The heavy atom number was also assigned as a value to all other gridpoint keys within rcutoff
+ 1 of the ‘base’ gridpoint key. The mobile molecular coordinates were then read and
floored, with the resulting coordinates being used as the key to lookup all stationary heavy
atom number values within rcutoff of the mobile atoms.

Motivation for and incorporation of a steric repulsion term—There was a lack of
observed atom type pairs at certain distance bins. Occasionally, this arose from atom type
pairs being inadequately represented in the selected distribution set. However, in the present
work this resulted most frequently from certain interatomic distances being sterically
inaccessible for each atom type pair. Knowledge-based functions with a formulation such as
equation (1) often assign a value of 0 to the score for such distance bins. Alternatively, a
score of 5 (i.e., a strongly disfavored interaction) was assigned to penalize interatomic
distances less than the sum of the van der Waals radii minus 0.6 Å that lacked observed
atom type pairs in such bins from the selected distribution set. The van der Waals radii were
taken from [15]. Only heavy atoms were considered here. However, implementations
including hydrogen could utilize the hydrogen radius of [16], which more accurately
represents the nonbonded contact distances observed in crystal structures. Radii that are not
available in either of these publications were assigned a value of 2 Å.

Evaluation of discriminatory functions implemented herein
Parameters—The discriminatory function parameters evaluated are summarized in Table
1. For each parameter set, each distance cutoff from the set rcutoff = {4, 5, 6, …, 15} Å was
evaluated with a bin size Δr of 0.1 Å.

Metrics—To evaluate the ability of various discriminatory function parameter sets to
distinguish native and near-native intermolecular complexes from non-native conformations,
the heavy atom root mean square deviation (RMSD) and standard score, or z-score, were
calculated.

The RMSD was used to measure the average distance between the native and decoy
conformations of the mobile molecule. Due to uncertainty in experimentally determined
atomic coordinates, ‘accurate’ discrimination was defined as the lowest scoring
intermolecular conformation having an RMSD of less than 0.5 Å from the native
conformation. The percent accuracy over all intermolecular complexes in each test set was
calculated for each parameter set.

The z-score was used to indicate how many standard deviations the native and nearest-native
intermolecular complex scores were above or below the mean score. Consequently, a lower
(i.e., more negative) z-score was indicative of the ability of the discriminatory function to
more significantly distinguish native and near-native complexes from non-native
conformations. The mean native and nearest-native z-scores over all intermolecular
complexes in each test set were calculated for each parameter set.

Test sets
Protein-small molecule test set: The publicly available test set [17] published by [18] was
used to evaluate the performance of the present function on protein-small molecule decoy
discrimination. The test set consisted of 100 crystallographically determined complexes
available in the PDB [12], each containing a decoy set of 100 additional small molecule
conformations generated using AutoDock [19]. In addition to evaluating various parameter

Bernard and Samudrala Page 5

Proteins. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sets of the present discriminatory function, this test set enabled direct comparison to sixteen
additional functions [3,18,20,21].

Protein-DNA test set: The publicly available test set [22] published by [4] was used to
evaluate the performance of the present function on protein-DNA decoy discrimination. The
test set consisted of 45 crystallographically determined complexes available in the PDB
[12], each containing a decoy set of 10000 additional intermolecular conformations
generated using FTDock [23]. We used this test set to evaluate the effect of distribution set
source data (i.e., interatomic distance distributions in the CSD versus the PDB) on
discriminatory ability. Additionally, this test set was selected to evaluate discriminatory
function performance and parameter selection on multiple types of molecular interactions
(i.e., protein-small molecule and protein-DNA) to ensure that the function was not over
optimized through back testing on a single class of biomolecular interactions.

Results and Discussion
Evaluation of protein-small molecule interactions

The protein-small molecule test set was used to evaluate discriminatory accuracy and power
of various parameter sets, and ensure that the chosen set performs comparably to existing
functions.

Accuracy of protein-small molecule interactions—One objective of the present
work is to identify parameter sets that have the highest accuracy for identifying protein-
small molecule complexes within 0.5 Å RMSD of native. Accordingly, accuracies of the
eight evaluated parameter sets have been plotted in Figure 1 as a function of cutoff length.

The radial distribution function with mean reference state, reduced composition, and 6 Å
cutoff (r·m·r·6) is the most accurate parameter set for protein-small molecule interactions,
narrowly outperforming the normalized frequency form. For each parameter set, the general
trend is for accuracy to decrease at cutoff lengths beyond 6 Å. At the shorter cutoff lengths
of 4 to 6 Å, the next best performing sets consist of cumulative reference states and
complete compositions. This is closely followed by cumulative reference states and reduced
compositions. The parameter sets consisting of mean reference states and complete
compositions have very poor accuracy, as an averaging over all atom type pairs, including
those not present in the biomolecular complex being evaluated, substantially reduces
discriminatory ability.

Comparison to alternative discriminatory functions—The success rates of the
r·m·r·6 discriminatory function for several RMSD criteria are compared to other published
discriminatory functions in Table 2. Interestingly, less than half of the discriminatory
functions perform better than simple steric complementarity with the Lennard-Jones
potential. The r·m·r·6 function outperforms these other functions, with DrugScoreCSD

coming in close behind. The major difference between these two functions is that the
reduced reference state composition of the r·m·r·6 function includes only the atom type pairs
present in the given intermolecular complex, whereas the DrugScoreCSD composition
includes C, H, O, S, P, N, F, Cl, Br, I, Ca, Fe, and Zn atoms regardless of the atom types
present in the complex being evaluated [3].

Rationale for improved accuracy of the r·m·r function
Distribution function: The radial distribution functions are generally more accurate than
their normalized frequency counterparts, presumably due to the subtle effect of radial
increase in shell volume on observed distribution frequencies and accompanying scores.
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Reference state: Applying a mean reference state averaged over all unique atom type pairs,
rather than a cumulative reference state, accounts for the possibility of differing relative
quantities of atom types between the observed distance distributions in the chosen database
versus the biomolecular interactions being evaluated, as this can significantly effect the
magnitudes of calculated interatomic pair potentials. With a mean reference state, equal
weighting is attributed to each interatomic distance distribution regardless of varying atom
type occurrences in the distribution set source data. However, this may result in an
ineffective potential, as seen with the combination of mean reference state and complete
composition, if too many atom type pairs are included in the derivation.

Composition: With the present discriminatory function formulation, native and near-native
complexes are identified by finding the most probable atom types from those available in
one molecule to be positioned at favorable distances from interacting atoms of another
molecule. Consequently, establishing a reference state from a reduced composition improves
discriminatory accuracy by focusing solely on those atom type pair interactions that are
possible between the given molecular pair. For example, if an intermolecular sp3 carbon and
sp2 nitrogen interaction is scored at a distance bin where an sp3 oxygen and sp2 nitrogen
pair has a very high occurrence, but sp3 oxygen is not present in either molecule, then the
sp3 oxygen distributions should not be included in the reference state and effect the scores
for atom types being evaluated at this position.

Discriminatory power of protein-small molecule interactions—Accurate
discrimination should be accompanied by a reduction and funneling of the score as near-
native interactions approach the native conformation. Accordingly, the same parameter set
should yield both the highest accuracy and best (i.e., lowest) z-score. The mean native z-
score over all protein-small molecule complexes is shown in Figure 2 for each evaluated
parameter set. The parameter set with the lowest average z-score was the r·m·r·6 function,
coinciding with the superior accuracy performance of this parameter set.

Additionally, the mean z-scores were calculated for the nearest-native complex (ranging
from 0.12 to 2.63 Å) to investigate the extent to which native-like protein-small molecule
scores are distinguishable from all other decoy complexes in a realistic blind docking
experiment, where the native conformation is unknown. These mean nearest-native z-scores
are plotted in Figure 3. When the native complex is excluded from the discriminatory power
analysis, the lowest mean nearest-native z-score with accompanying high accuracy is
achieved with the r·m·r·12 function. However, the accuracy at this cutoff is slightly lower
than the r·m·r·6 function, indicating that near native scores may be undesirably more
favorable than native scores. Therefore, initial scoring with a 12 Å cutoff, followed by more
accurate evaluation around low scoring clusters with a 6 Å cutoff, may be preferable for
protein-small molecule interactions when the native conformation is unknown.

As an example of the score reduction and funneling as near-native interactions approach the
native conformation, the r·m·r·6 scores are plotted in Figure 4 as a function of RMSD for
PDB identifier 1adb (alcohol dehydrogenase) with z-score of −4.5.

Alternatively, to illustrate the importance of water molecules in the evaluation of protein-
small molecule interactions, scores for PDB identifier 1cla (chloramphenicol
acetyltransferase) are plotted in Figure 5 as a function of RMSD. With the inclusion of
experimental water molecules, the native score is reduced and is successfully identified
amongst all other decoys (Figure 5a). When experimental water molecules are excluded
from the complex, a non-native decoy is scored more favorably than the native conformation
(Figure 5b). The interactions between the protein and small molecule are mediated by water
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molecules (Figure 5c), which were removed from all experimental complexes during test set
generation but should be considered in the evaluation of biomolecular interactions.

Ideally, the distribution of score and z-score magnitudes would be indicative of whether
native and near-native complexes have been successfully identified. For example, Figure 6
shows the score of the lowest scoring complex for each protein-small molecule pair,
including native and non-native decoys, with respect to the z-score for each complex. While
there is not a complete distinction between the accurate and inaccurate protein-small
molecule pairs, the inaccurate pairs are clustered at the region of highest scores and z-scores.
This may serve as a guide for confidence in protein-small molecule scoring when the native
conformation is unknown.

Conformational sampling requirements for protein-small molecule
interactions—In an actual blind docking experiment, the native conformation is unknown
and the discriminatory function should be able to identify near-native interactions as the
decoy conformations are more native-like. Consequently, the conformational sampling
requirements can be guided by the discriminatory ability of the function with the exclusion
of native conformations from the test set. To evaluate the conformational sampling
requirements of the r·m·r·6 discriminatory function, ‘near-native accuracy’ was defined as
the best scoring decoy being within 0.5 Å RMSD of the native conformation (due to
uncertainty in experimentally determined atomic coordinates) or the best scoring decoy
being closer to the native conformation than all other decoys, indicating that the score is
becoming more favorable as the biomolecular complex is sampled closer to native. While
these criteria are more stringent than the typical 2Å allowed deviation to be considered near-
native, this is helpful to set conformational sampling parameters for accurate identification
of more native-like conformations.

As shown in Figure 7, sampling within 0.25 Å RMSD of native allows for accurate near-
native decoy discrimination. The near-native accuracy quickly drops to 50 % when the
nearest decoy is between 0.25 Å and 0.5 Å RMSD to native. The drop in near-native
accuracy at this distance range is due to large discrete conformational sampling step sizes
combined with uncertainty in experimentally determined atomic coordinates leading to a
higher probability that the evaluated binding mode is outside of the near-native scoring
funnel. More specifically, if the experimentally determined atomic coordinates have an
uncertainty of 0.5 Å RMSD and the evaluated decoy is another 0.25 to 0.5 Å RMSD from
this position, then the resulting decoy may be up to 1 Å RMSD away from the true
experimental conformation and the discriminatory function may not identify this distant
nearest-native decoy. The continued drop in near-native accuracy indicates that, while the
discriminatory accuracy and power of native complexes are strong for the present function,
conformations should be sampled within 0.25 Å of native for blind protein-small molecule
interactions to be evaluated within the near-native scoring funnel. This can be accomplished,
for example, by conducting a coarse grain search using a discriminatory function with softer
interatomic pair potentials followed by more thorough sampling and evaluation around low
scoring clusters with the present function. Alternatively, highly focused searches can be
conducted near known or predicted binding sites selected by methods such as MFS [24] and
Q-SiteFinder [25].

Evaluation of protein-DNA interactions
The protein-DNA test set was used to evaluate the effect of distribution set source data from
the CSD and the PDB on discriminatory ability. Additionally, this test set was independently
chosen to evaluate parameter selection on multiple types of molecular interactions (i.e.,
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protein-small molecule and protein-DNA). Discriminatory accuracy and power were used to
address these issues.

Accuracy of protein-DNA interactions—Accuracies of the eight evaluated parameter
sets are plotted in Figure 8 for the CSD and PDB distribution sets. The most accurate
discrimination for the PDB distribution set occurs from 4 to 8 Å, with a wider range of high
accuracy cutoffs for the CSD distribution set from 4 to 12 Å. The high accuracy at 4 Å
cutoff is a result of the test set generation method. Unlike AutoDock decoy generation for
the protein-small molecule test set, the FTDock decoy generation for protein-DNA
interactions allows for moderate steric atomic clashes. Consequently, at 4 Å cutoff the shape
complementarity of the native complex is readily identified amongst the remaining non-
native decoys for nearly all parameter sets. The optimal cutoff varies among parameter sets
at longer lengths, and so the high accuracy at 12 Å can be attributed to fundamental
geometric and chemical properties of protein-DNA interactions being well characterized by
interatomic pair potentials of the r·m·r parameter set with the CSD distribution set.

At longer cutoff lengths, the CSD distribution set has higher discriminatory accuracy than
the PDB distribution set. The improved performance of CSD over PDB distribution sets has
been previously discussed for protein-small molecule interactions [3]. The authors have
attributed the performance to the uncertainties in atomic coordinates being lower in the
CSD, showing steeper pair potential wells and better defined higher order minima. The same
rationale is applicable here to protein-DNA interactions as similar characteristics are
evident, for example, in Figure 9 for the hydrophobic sp3 carbon-carbon interatomic pair
potential. Additionally, the interatomic pair potential converges closer to zero at longer
cutoff lengths for the CSD distribution set, which is an important feature for a
discriminatory function. Based on discrimination accuracy, the CSD distribution set is
preferred over the PDB distribution set for reference state derivation.

Discriminatory power of protein-DNA interactions—Due to the high accuracy of
several parameter sets, the z-score is used to assist in parameter set selection. The mean
native z-scores over all protein-DNA complexes scored with the CSD and PDB distribution
sets are shown in Figure 10 for each evaluated parameter set. Similarly, the mean z-scores
were calculated for the nearest-native complex (ranging from 0.50 to 1.44 Å) to investigate
the extent to which native-like protein-DNA scores are distinguishable in a blind docking
experiment from all other decoy complexes. These mean nearest-native z-scores are plotted
in Figure 11 for the CSD and PDB distribution sets.

While short cutoffs demonstrated high accuracy, equivalent accuracies and accompanying
lower z-scores were primarily achieved at longer cutoffs. The exception is parameter sets
consisting of mean reference states and complete compositions, which have the most
favorable z-scores, yet have very poor accuracy performance at all cutoff lengths. The
parameter set with the lowest average native z-score accompanied by the highest accuracy
was the r·m·r·12 function with the CSD distribution set. This is in agreement with the
superior protein-small molecule discriminatory performance of the r·m·r·6 parameter set,
differing only in cutoff length. As with accuracy, the discriminatory power of the CSD
distribution set with lower z-scores is better than that attained with the PDB distribution set.

When the native complex is excluded from the discriminatory power analysis, the lowest
mean nearest-native z-score with accompanying high accuracy is achieved with the r·m·r·14
function and the CSD distribution set. However, the accuracy at this cutoff is slightly lower
than the r·m·r·12 function, indicating that near native scores may be undesirably more
favorable than native scores. The r·m·r·12 function with the CSD distribution set is therefore
preferable for discrimination of protein-DNA interactions.
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Conformational sampling requirements for protein-DNA interactions—In an
actual blind docking experiment, the native conformation is unknown and the discriminatory
function should be able to identify decoys as they are more native-like. Therefore, to
evaluate the conformational sampling requirements of the r·m·r·12 discriminatory function
with the CSD distribution set in the case where the native conformation is unknown, ‘near-
native accuracy’ was defined as the best scoring decoy being within 0.5 Å RMSD of the
native conformation (due to uncertainty in experimentally determined atomic coordinates) or
the best scoring decoy being closer to the native conformation than all other decoys,
indicating that the score is becoming more favorable as the biomolecular complex is
sampled closer to native.

As shown in Figure 12, sampling within 0.5 Å RMSD of native allows for accurate near-
native decoy discrimination. The near-native accuracy is reduced to 83 % when the nearest
decoy is between 0.5 Å and 0.75 Å RMSD to native. The continued drop is indicative that
conformations should be sampled within 0.5 Å of native for blind protein-DNA scoring.
This can be accomplished, for example, by using smaller translation and rotation step sizes
in fast Fourier transform (FFT) docking protocols [23, 26, 27], accompanied by more
thorough sampling around low scoring clusters. The conformational sampling requirements
for protein-DNA interactions are less stringent than for protein-small molecule interactions
(0.5 Å versus 0.25 Å, respectively), presumably due to the larger and symmetric helical
binding interface of protein-DNA complexes allowing for near-native conformations to be
more readily identified.

Comparison to an alternative discriminatory function—The discriminatory
performance of the r·m·r·12 function can be compared to the best performing 5/10/1 all-atom
discriminatory function of [4]. The key differences are that the 5/10/1 function used a bin
size Δr of 1 Å, scored all intermolecular heavy atom pairs located at distances r within the
range of 5 < r < 10 Å, and used the PDB for distribution set source data, whereas the
r·m·r·12 function used a bin size Δr of 0.1 Å, scored all intermolecular heavy atom pairs
located at distances r within the range of 0 < r ≤ 12 Å, and evaluated both the PDB and
CSD for distribution set source data.

The accuracy of the 5/10/1 function was 17.8 %, whereas that of the r·m·r·12 function was
100 % with the CSD distribution set. While the accuracy of the 5/10/1 function is
substantially lower, 82.2 % of the lowest scoring decoy complexes (i.e., excluding native)
were within 2 Å RMSD of native. For the r ·m·r·12 function, only 46.7 % of the lowest
scoring decoy complexes were within 2 Å RMSD of native with the CSD distribution set,
and 55.6 % with the PDB distribution set.

In the analysis conducted by [4], only the top 2000 FTDock scored decoys were considered.
The average native z-score for the 5/10/1 function was −6.8, whereas that of the r·m·r·12
function was −8.0 (−9.2 for all 10000 decoys). These z-scores are indicative of the native
conformations having substantially more favorable scores than the decoy conformations.
While the 5/10/1 function does generate lower scores for native and near-native complexes
with respect to non-native decoys, it usually does not identify the native experimental
structure. However, identification of the lowest scoring decoy conformation within 2 Å of
native for 82.2 % of the protein-DNA complexes combined with an average native z-score
of −6.8 is indicative of broad funneling of the 5/10/1 function. This is exemplified in
Figures 13 and 14 with PDB identifier 1dsz (RXR-RAR DNA-binding complex). For the
5/10/1 discriminatory function (Figure 13) there is a wider funnel towards native, with
scores reducing from the non-native distribution as far away as 7 Å until reaching a
minimum score at 0.84 Å RMSD from native. Conversely, the r ·m·r·12 discriminatory
function (Figure 14) has a narrower funnel at approximately 1 Å that continues to drop in
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score as the native conformation is approached. The broader funneling of the 5/10/1 function
can be attributed to the larger 1 Å bin size and the less defined pair potential wells of the
PDB distribution set. Broader near-native funneling, as accomplished with the 5/10/1
function, is preferable for initial stage scoring to identify favorable clusters of coarsely
sampled conformations, with the r·m·r·12 function being subsequently applied for finely
sampled near-native scoring.

Summary and Conclusions
Several established and novel discriminatory function formulations and reference state
derivations have been evaluated to identify parameter sets capable of distinguishing native
and near-native biomolecular interactions from incorrect decoys. The radial distribution
function with mean reference state and reduced composition (r·m·r) had the best
combination of discriminatory accuracy and power for protein-small molecule and protein-
DNA interactions, regardless of whether the native complex was included or excluded from
the test set. The superior performance of the r·m·r parameter set for both protein-small
molecule and protein-DNA interactions was indication that the function was not over-
optimized through back-testing on a single class of biomolecular interactions. The only
parameter to be modified and evaluated for different classes of biomolecular interactions is
the cutoff length.

The conformational sampling requirements for blind evaluation of biomolecular interactions
was guided by the discriminatory ability of the r·m·r parameter set with the exclusion of
native conformations from the test sets. Due to the narrow funneling and score reduction as
the native complex is approached, conformations should be sampled within 0.25 Å of native
for small molecules and 0.5 Å of native for DNA to achieve accurate discrimination. This
can be achieved by initial stage scoring to identify favorable clusters of coarsely sampled
conformations, with the r·m·r parameter set being subsequently applied for finely sampled
near-native scoring.

The improved performance of CSD over PDB distribution sets, discussed previously for
protein-small molecule interactions [3], was shown to be applicable to protein-DNA
interactions as well. This improved performance can be attributed to the lower uncertainties
in atomic coordinates in the CSD leading to steeper pair potential wells, better defined
higher order minima, and the interatomic pair potential converging to zero at longer cutoff
lengths.

Naturally, the discriminatory performance is related to the extent to which the distribution
set accurately represents the probability of observing a distance r for each intermolecular
pair ij of atom types ab in a correct binding mode C. The novel ‘reduced reference state’
was created to more accurately represent these probabilities for any given biomolecular
complex. The initial success of this reference state implies that further improvements are
possible by deriving probabilities from subsets of the CSD, using structures that consist of
only the atom types to be considered for the given biomolecular interaction. If an atom type
is not present in the complex, then the intermolecular distance distributions of CSD
structures containing this atom type should not be included in the reference state and effect
the observed probabilities for the atom types being evaluated.

Availability
The method is available as a web server module at http://protinfo.compbio.washington.edu.
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Fig 1.
Accuracies of the eight evaluated parameter sets for the protein-small molecule test set.
‘Accurate’ discrimination was defined as the lowest scoring protein-small molecule
conformation having an RMSD of less than 0.5 Å from the native conformation. The native
conformations were included in the accuracy calculation. The radial distribution function
with mean reference state, reduced composition, and 6Å cutoff (r·m·r·6) is the most accurate
parameter set for protein-small molecule interactions.
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Fig 2.
The mean native z-score over all protein-small molecule complexes used as a measure of
discriminatory power for each parameter set. The parameter set with the lowest average z-
score was the r·m·r·6 function, coinciding with the superior accuracy performance of this
parameter set.
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Fig 3.
The mean nearest-native z-score, excluding the native complex, over all protein-small
molecule complexes used as a measure of discriminatory power for each parameter set. This
figure suggests that scoring with the r·m·r parameter set and a combination of 6 and 12Å
cutoffs is preferable for protein-small molecule interactions when the native complex is
unknown.
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Fig 4.
Successful scoring of alcohol dehydrogenase (PDB identifier 1adb) protein-small molecule
complex with the r·m·r·6 function. (A) The scores of the decoys reduce and funnel towards
the native complex. The native z-score for this complex is −4.5. (B) Alcohol dehydrogenase
protein structure (gray) in complex with the native (green) and nearest-native (magenta)
small molecule conformations, both of which score the best amongst all other decoys with
the r·m·r·6 function. These conformations are 0.78Å RMSD from each other, and the
conformation closest to native would have been identified in a blind docking experiment.
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Fig 5.
An example illustrating the importance of water in evaluating the chloramphenicol
acetyltransferase (PDB identifier 1cla) protein-small molecule complex with the r·m·r·6
function. (A) With the inclusion of experimental water molecules, the native complex is
identified as the water mediated interactions between protein and small molecule contribute
to this complex having the most favorable score. (B)When experimental water molecules are
excluded from the complex, several incorrect conformations, including the best scoring
complex at 6 Å RMSD from native, have lower scores than the native complex. With the
exclusion of water, this would be an inaccurate prediction in a blind docking experiment.
(C) The interactions between the protein (gray) and small molecule are mediated by water
molecules (five blue and one red sphere), which were removed from all experimental
complexes during test set generation. With the inclusion of these experimental water
molecules, the native conformation (green) is successfully identified from all other decoys
as the waters mediate hydrogen bonds between the protein and small molecule, and the red
colored water sphere sterically prohibits the incorrect decoy conformation (magenta) from
being experimentally preferable. The protein binding site is identified with and without the
experimental waters.
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Fig 6.
The r·m·r·6 score of the lowest scoring complex for each protein-small molecule pair,
including native and non-native decoys, with respect to the z-score for accurately and
inaccurately scored pairs. The inaccurately scored pairs are clustered at the region of highest
scores and z-scores.
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Fig 7.
Protein-small molecule conformational sampling requirements of the r·m·r·6 discriminatory
function. The ‘near-native accuracy’ was defined as the best scoring decoy being within
0.5Å RMSD of the native conformation (due to uncertainty in experimentally determined
atomic coordinates) or the best scoring decoy being closer to the native conformation than
all other decoys, indicating that the score is becoming more favorable as the biomolecular
complex is sampled closer to native. Sampling within 0.25Å RMSD of native allows the
most accurate near-native decoy discrimination for the evaluated protein-small molecule test
set.
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Fig 8.
Accuracies of the eight evaluated parameter sets for the protein-DNA test set. ‘Accurate’
discrimination was defined as the lowest scoring protein-DNA conformation having an
RMSD of less than 0.5Å from the native conformation. The native conformations were
included in the accuracy calculation. (A) With scores derived from the CSD distribution set.
The radial distribution function with mean reference state, reduced composition, and 12 Å
cutoff (r·m·r·12) is the most accurate parameter set for protein-DNA interactions. (B) With
scores derived from the PDB distribution set. The PDB distribution set does not perform as
well as that of the CSD for reference state derivation.
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Fig 9.
Interatomic pair potential for sp3 carbon-carbon with the r·m·r parameter set. The lower
uncertainties in atomic coordinates in the CSD leads to steeper pair potential wells, better
defined higher order minima, and more stable convergence to zero at longer cutoff lengths.

Bernard and Samudrala Page 22

Proteins. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 10.
The mean native z-score over all protein-DNA complexes as a measure of the discriminatory
power for each parameter set. (A) With scores derived from the CSD distribution set. Due to
the high accuracy of several parameter sets, the z-score is used to assist in parameter set
selection. The parameter set with the lowest average native z-score accompanied by the
highest accuracy was the r·m·r·12 function with the CSD distribution set. (B) With scores
derived from the PDB distribution set. The discriminatory power of the PDB distribution set
is inferior to that attained with the CSD distribution set.
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Fig 11.
The mean nearest-native z-score, excluding the native complex, over all protein-DNA
complexes as a measure of the discriminatory power for each parameter set. (A) With scores
derived from the CSD distribution set. While the lowest mean nearest-native z-score with
accompanying high accuracy is achieved with the r·m·r·14 function, a combination of
highest accuracy and lowest z-score is attained with the r·m·r·12 function and CSD
distribution set and is therefore preferable for discrimination of protein-DNA interactions.
(B) With scores derived from the PDB distribution set. The discriminatory power of the
PDB distribution set is inferior to that attained with the CSD distribution set.
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Fig 12.
Protein-DNA conformational sampling requirements of the r·m·r·12 discriminatory function
with the CSD distribution set. The ‘near-native accuracy’ was defined as the best scoring
decoy being within 0.5Å RMSD of the native conformation (due to uncertainty in
experimentally determined atomic coordinates) or the best scoring decoy being closer to the
native conformation than all other decoys, indicating that the score is becoming more
favorable as the biomolecular is sampled closer to native. Sampling within 0.5 Å RMSD of
native allows the most accurate near-native decoy discrimination for the evaluated protein-
DNA test set.
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Fig 13.
RMSD versus score for the RXR-RAR DNA-binding complex (PDB identifier 1dsz) with
the 5/10/1 protein-DNA discriminatory function [4]. For the 5/10/1 discriminatory function
there is a wide funnel towards native, with scores reducing from the non-native distribution
as far away as 7Å until reaching a minimum score at 0.84 Å RMSD from native. The
broader near-native funneling of the 5/10/1 function can be attributed to the larger 1 Å bin
size and the less defined pair potential wells of the PDB distribution set.
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Fig 14.
Scoring the RXR-RAR DNA-binding complex (PDB identifier 1dsz) with the r·m·r·12
discriminatory function and CSD distribution set. (A) The r·m·r·12 discriminatory function
has a narrow scoring funnel at approximately 1 Å that continues to drop in score as the
native conformation is approached. (B)The protein structure (gray) in complex with the
native (green) and nearest-native (magenta) DNA conformations, both of which score the
best amongst all other decoys with the r·m·r·12 function. The two conformations are 0.84 Å
RMSD from each other, and the nearest-native one would have been identified in a blind
docking experiment.
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Table 1

Discriminatory function parameter sets evaluated in this work

Set Distribution Function Reference State Composition

nf·m·c normalized frequency mean complete

nf·m·r normalized frequency mean reduced

nf·c·c normalized frequency cumulative complete

nf·c·r normalized frequency cumulative reduced

r·m·c radial mean complete

r·m·r radial mean reduced

r·c·c radial cumulative complete

r·c·r radial cumulative reduced

normalized frequency: probability calculation by normalizing the observed frequencies for each atom type pair at each radial distance bin by the
observed frequencies for each atom type pair at all radial distance bins within rcutoff

radial: same as the normalized frequency, except that each observed frequency is further normalized by the spherical volume element

mean: averaging normalization of the reference state over all unique atom type pairs

cumulative: cumulative normalization of the reference state for all unique atom type pairs

complete: composition including all distances from all atom types present in the selected distribution set

reduced: composition including only distances from atoms of type a paired with atoms of type b in the selected distribution set for each molecule in
the given biomolecular complex to be evaluated
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