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Summary

In cancer research, it isimportant to evaluate the performance of a biomarker (e.g. molecular, genetic,
or imaging) that correlates patients’ prognosis or predicts patients’ response to a treatment in large
prospective study. Due to overall budget constraint and high cost associated with bioassays,
investigators often have to select a subset from all registered patients for biomarker assessment. To
detect a potentially moderate association between the biomarker and the outcome, investigators need
to decide how to select the subset of a fixed size such that the study efficiency can be enhanced. We
show that, instead of drawing a simple random sample from the study cohort, greater efficiency can
be achieved by allowing the selection probability to depend on the outcome and an auxiliary variable;
we refer to such a sampling scheme as outcome and auxiliary-dependent subsampling (OADS). This
paper is motivated by the need to analyze data from a lung cancer biomarker study that adopts the
OADS design to assess EGFR mutations as a predictive biomarker for whether a subject responds
to a greater extent to EGFR inhibitor drugs. We propose an estimated maximum likelihood method
that accommodates the OADS design and utilizes all observed information, especially those
contained in the likelihood score of EGFR mutations (an auxiliary variable of EGFR mutations) that
isavailable to all patients. We derive the asymptotic properties of the proposed estimator and evaluate
its finite sample properties via simulation. We illustrate the proposed method with a data example.
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1 Introduction

In cancer research, there is a growing need for assessing the utility of a biomarker (e.g. genetic,
molecular, or imaging) in predicting disease prognosis and treatment efficacy. Such task
involves assessment of the association between patient’s clinical outcome and biomarker
measures while adjusting for confounding variables. In many cases, due to the low prevalence
rates of subjects with positive outcome (e.g. tumor response) and positive biomarker (e.g.
genetic mutations), rigorous evaluation of cancer biomarkers requires a prospective cohort
study of a large size. If the biomarker assays are expensive, the cost of assessing all subjects
in the entire cohort is prohibitive. In such situations, the subsampling scheme of selecting a
subset of subjects for biomarker assays is often used. As subjects with positive tumor response
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or positive biomarker levels may be more informative about the relationship between the
outcome and the biomarker, it makes sense to oversample these subjects. Compared to a simple
random subsample, utilization of such a subsampling scheme is expected to improve the
efficiency in estimating the outcome-biomarker correlation with a given size of the subsample
(Zhou et al., 2002).

We further illustrate this idea with a lung cancer biomarker study. Recent cancer studies found
that EGFR inhibition drugs, such as Erlotinib and Gefitinib, moderately extended survival for
patients with advanced non-small cell lung cancer. Intriguingly, based on retrospectively
available samples, researchers (Paez et al., 2004; Lynch et al., 2004) found that patients with
EGFR mutations responded in a greater extent to the EGFR inhibitor drugs than those without
mutations. EGFR mutations are summarized by the type and the extent of EGFR gene
irregularity. A national consortium for lung cancer patients treated by EGFR inhibition drugs
was recently established (Eberhard et al., 2007) to prospectively evaluate EGFR mutations as
a predictive biomarker for receiving EGFR inhibitor drugs, that is, to test whether EGFR
mutants respond in a greater extent to EGFR inhibition drugs than EGFR wild-types. Hundreds
patients treated with EGFR inhibition drugs will be registered into the consortium. All of them
are required to submit tissue samples for assays on EGFR mutations. The consortium is
expected to predominantly consist of non-responders to the treatment (~ 70%) and EGFR wild-
types (~ 85%). Due to the high cost of genotyping EGFR genes, it is not cost-effective to
genotype all banked samples. How to efficiently select a subset of patients for EGFR mutations
assays becomes an important issue. Paez et al. (2004) reported that women, Asian patients,
non-smokers, and patients with adenocarcinoma have much higher probability of being EGFR
mutants. Taking advantage of this finding, CALGB investigators (Janne et al., 2008) suggested
a subsampling scheme which includes a simple random subsample of 250 patients as well as
two supplementary samples. Of the two supplementary subsamples, one includes all responders
and the other includes non-responders with a > 0.70 likelihood score of EGFR mutations. The
likelihood score is the predicted probability of a patient having EGFR mutations from a logistic
regression model using baseline patient characteristics as predictors. Subsampling according
to the likelihood score of EGFR mutations is expected to increase the chance of EGFR mutants
being represented in the subset of patients who will have EGFR mutations measured. Also,
since the likelihood score of EGFR mutations is observed for all patients, it can be used as an
auxiliary variable for EGFR mutations to better quantify the effect of EGFR mutations.

We refer to the subsampling scheme illustrated above as the outcome and auxiliary-dependent
sub-sampling (OADS). The OADS can be considered as an extension of the outcome-
dependent subsampling (ODS). In the ODS, the subsampling depends on the subjects’
outcomes in order to enrich the selected sample with those who have a rare outcome. Study
designs using the ODS subsampling have been discussed by Zhou and his colleagues (Zhou
et al., 2001; Zhou et al., 2002; Weaver & Zhou, 2005; Zhou et al., 2007). To reap the benefits
of the ODS subsampling, one generally needs an analysis that accounts for the outcome-
dependent nature of the sampling scheme. In the OADS, the subsampling depends on both the
subjects’ outcome (e.g. tumor response) and an auxiliary variable (e.g. the likelihood score of
EGFR mutations). The key idea is to achieve higher efficiency by concentrating more
information in the OADS subsample as compared to the simple random subsample (SRS) and
the ODS subsample. Wang & Zhou (2006) considered a design with two sampling components
- arandom sample (SRS) and an outcome and auxiliary-dependent sample (OADS), in which
all patients in the study cohort have all variables observed, including the extent of EGFR
mutations. On the other hand, the motivating example in this paper is proposed as a large
prospective study. Due to the large size of patients and the associated high cost, we proposed
that only a subset of patients in the entire study cohort have their EGFR mutations observed
through genotyping. The two-stage sampling scheme in the current motivating example leads
to a completely different data structure from that of Wang & Zhou (2006). The data structure
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that we consider in this paper consists of three sampling components: SRS, OADS and V. The
V denotes those patients who have all variables but the extent of EGFR mutations observed.
How to efficiently use all information in such a data structure is the focus of the current paper.

The origin of the ODS sampling can be found in case-control study (e.g. Breslow & Day,
1980) and its extensions such as nested case-control study (Breslow & Cain, 1988), case-cohort
study (Prentice, 1986), and two-stage study (e.g. White, 1982; Wacholder & Weinberg,
1994; Breslow & Chatterjee, 1999). Related ideas of choice based sampling have also been
developed in economics (e.g. Cosslett, 1981). These study designs may be considered as
examples that utilize the idea of the ODS sampling/subsampling. Of these designs, the OADS
design that we consider in this paper is especially related to the two-stage study, in which the
outcomes and some stratification variables of all subjects are observed at the first stage, but
other variables are only observed in a subsample of all subjects at the second stage. In a general
framework of a two-stage sampling, Weaver & Zhou (2005) developed an estimated likelihood
method to allow both continuous outcome and the ODS subsampling. For the two-stage study
with binary outcome, Flanders & Greenland (1991) and Zhao & Lipsitz (1992) proposed a
Horvitz-Thompson type method (Horvitz & Thompson, 1952) that weights the complete data
observed inversely with the selection probability; Breslow & Cain (1988) developed a
conditional likelihood estimator, 1985); Wild (1991), Cosslett (1981) and Breslow & Holubkov
(1997) studied nonparametric maximum likelihood estimation. These statistical methods,
especially those for two-stage case-control studies, provide tools to correct estimation bias due
to the ODS subsampling, but they are not ideal methods for analyzing data arising from the
motivating lung cancer study. In the EGFR lung cancer study, for each patient in the study
cohort a likelihood score of EGFR mutations can be computed according to a prediction model
with smoking history, sex, race and histology as predictors. The likelihood score contains
valuable auxiliary information about the true extent of EGFR mutations; we call it the auxiliary
variable for the biomarker of interest. Auxiliary variable can be any variable that is correlated
to the biomarker. Auxiliary variable is not necessarily a surrogate variable, which has a strict
statistical definition (e.g. Prentice, 1989). The existence of such an auxiliary variable not only
enables investigators to identify possible EGFR mutants for efficient subsampling, but also
functions as an intermediate variable to better quantify the correlation of EGFR mutations and
tumor response to treatment. In principle, the profile likelihood-based method in Wang & Zhou
(2006) can be extended to the OADS design that we consider in this paper. When the auxiliary
variable is continuous, however, one is unable to apply the profile likelihood-based method
without categorizing the auxiliary variable and accordingly losing valuable information.

In this paper, we propose an outcome and auxiliary-dependent subsampling (OADS) design
to improve study efficiency and a statistical method that accommaodates the OADS design and
the auxiliary variable for the biomarker. The rest of the paper is organized as follows. In Section
2, we present the outcome and auxiliary-dependent subsampling (OADS) scheme and its data
structure. We propose in Section 3 an estimated likelihood method and give its asymptotic
properties. In Section 4, we demonstrate via simulation the benefits of the OADS design and
the performance of the proposed method in finite samples by comparing it with the competing
methods. Section 5 illustrates the proposed method using a data example. Final remarks are
presented in Section 6. A sketched proof of the asymptotic properties of the proposed estimator
is given in the Appendix, which is available on line as supplementary material.

Supplementary Materials

The appendix gives a sketched proof of the asymptotic properties of the proposed estimator. It is available at the Biometrics website
http://www.biometrics.tibs.org as a supplementary material. The authors would like to thank the editor, the associate editor and two
referees for their valuable comments.
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2 Sampling Scheme and Data Structure

Tofix notation, let Y be a categorical outcome with possible values 1, ... ,K, e.g. tumor response
(complete, partial, stable, or progressed), let X be the measure of the biomarker that is observed
only for those subjects in the OADS subsample, e.g. the extent of EGFR mutations, let Z be
the vector of all covariates that are observed for all subjects in the study cohort, and let W be
the auxiliary variable for X, e.g. the likelihood score of EGFR mutations. We assume that the
conditional density of Y given (X, Z, W) belongs to a canonical exponential family and is

parameterized as P(Y|X, Z, W):h(ﬂ0+ﬁlx+ﬁ;Z), where h™1(.) is a known link function and
(1,X,2) are covariates. This formulation implies that as an auxiliary variable for X, W provides
no additional information about Y when X is included. The formulation is always true if W is
allowed to be an element of the vector Z.

Let {c,}r=1, ..., R be real numbers satisfying —o =cg< ¢y ... <Cr_1 < Cr =o0and (Cr_1,
¢l r=1, ..., R partitions the domain of W into R mutually exclusive intervals. We consider an
OADS design in which the subsampling depends on both Y and C, where C=r if W €
(cr—1,¢r]- The combination of Y x C partitions the study cohort into a total K x R stratum. The
size of the stratum {Y = k,C = r} is Ny and the size of the whole study cohort is

N=Y D e
=+ - From each stratum {Y =k, C = r} of the study cohort, we select an OADS
subsample of size ny, denoted as V,, such that subjects in Vy will have {X, Y, Z, W} observed,
while the remaining set of subjects Vi of size My = Ny — ne will have only {Y,Z,W} observed.

.. V= Vik V= Vrk’ .
Defining ,Z‘AZ‘ p ;‘ we have the following data structure for stratum {Y
=k,C=r}:

Subjects in V+V:  {Y;, Zi, Wi} fori € V+V .

Subjects in V: {Y:, Z;, Wi|Y=k,C=r}fori € V.

The above data structure is slightly different from that of the motivating example, in which the
subset of patients who have X observed consist of two components: an SRS and an OADS.
Since the likelihood and the inference method for the SRS/OADS design is not different from
that of the OADS only design, we consider the OADS only design thereafter.

3 The Estimation Likelihood Inference

In this section, we describe an estimated likelihood method for data arising from the OADS
design. Following the argument in Schill et al. (1993), one can show that the joint likelihood
of the OADS design is

R K R K
L= 1 ] Psvixi- 2 exiiz, W»} {]_[]_[ [ TPecriz;, W,-)J ,
T

r=1 k=1ieVy r=1k=1; (1)

where Px(Yj|Zj ,\Wj)= | Pa(Yjlx.Zj ,Wj) dG(x[Z; ,Wj) and G(X|Z, W) is the conditional cdf of(X|Z,
W).

Notice that P4(Y;|Z; ,Wj) in (1) has an unknown function form in general and one cannot directly
maximize the likelihood (1) with respect to g. If G(X|Z, W) can be parameterized to a set of
additional parameters A, then the inference on £ can be carried out by maximizing the likelihood
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for L(B, ) with respect to g and A (e.g. Wacholder & Weinberg, 1993). As misspecification of
the function G(X|W, Z) could lead to biased estimates, a more attractive approach is to model
it nonparametrically. Upon obtaining G(X|W,Z), one can estimate Ps(Yj"Zj ,\Wj) and substitute
the estimate into (1) to get the estimated log likelihood function

_ R K R K _
LB o« Y > > logPy(YilXi, Z)+ ) " > logPy(Y lZ;, W)).

r=1k=1ieVy r=1 kzljevrk (2)

Statistical inference on £ can then be carried out by maximizing the estimated likelihood
function (2). When the subsample consists of a simple random sample, Pepe & Fleming
(1991) and Carroll & Wand (1991) studied estimated likelihood methods for validation studies.
Zhou & Pepe (1995) and Zhou & Wang (2000) studied the estimated likelihood method for
time to event data. Zhou, Chen & Cai (2002) extended the approach to random effect models
for clustering data.

For dataarising from the OADS design, a nonparametric estimator for G(X|Z, W) without taking
into account the subsa[npling dependency on Y and C will render bias on Ffﬁ(Yj 1Zj ,Wj) and
subsequently bias on g. Let W* = {Z* W} where Z* is an informative subset of Z such that G
(X|Z,W) = G(X|W*). Under the OADS design, we recognize that

G(X|Z, W):ZZP(Y:I, C=s|W*) G(X|W*, Y=I,C=s5),
s 1 3)

where P(Y = I,C = s |W*) is the joint probability {Y,C} conditional on W* for the OADS
subsample. In other words, if one is able to estimate consistently the conditional distribution
G(X|w*) within a stratum {Y =1,C = s}, a consistent estimator of G(X|Z,W) can then be obtained
by summing G (X|W*) over all s,| with appropriate weights. Let 7tgj(W*) = P(Y = I,C = s |W*)
and Gg (X |W*) = G(X|W*,Y = I,C = s). We further have

Py(Y 12, W)= [ Po(¥ jIx, Z))dG(Z;j, W)= [ Pa(¥jlx, Z)) d{ )" ) mta(WHG (W),
s (4)

According to (4), if consistent nonparametric estimators g (W*) and Gg(X|W*) are available,
the consistency of Ijﬂ(Yj |Zj ,\Wj) will follow. In the next, we discuss estimating the unknown
quantity P4(Y |2 ,W) in the likelihood function for continuous and discrete W separately.

W* is a Continuous Variable

Notice that P(Y;jlZ; \W;) in (1) is expressed as Pp(Y;|Z;, W)=E[P(Y;1X, Z;, W)IW}], j € V.
Clearly, the expression describes a nonparametric regression problem about P4(YjlX, Zj ,\Wj)
on Wj When W* is continuous, the kernel smoother (Eubank, 1999; Wand & Jones, 1994) can
be employed. Without loss of generality, we assume W* is one-dimensional. Based on
Nadaraya (1964) and Watson (1964), a kernel estimator for the conditional c.d.f Gg(x|w*) has
a form of
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D 1 < DKW} = w)

i=eVy

DKW —w)

i€Vy (5)

Gy(xlw*)=

where Kp(.)= K(./h)/h and h is the bandwidth. The function K(.) is called the kernel function
and is a piecewise smooth function satisfying | K(v)dv = 1. In general, K(.) is selected as a
symmetric probability density function such as the standard normal density function and the
Epanechnikov kernel function. For a multi-dimensional W*, a multivariate kernel smoother
can be used.

Using (4), a weighted kernel estimator for P4(Yj|Zj ,Wj) can be then constructed as

D P(Y1Xi, Z)Ku(W; = W)

R K
== —~ sy 1€Vs
Pp(Y\Z, W=D > Fu(W;)—
s=11=1

DKW - W)

i€Vy (6)

where T (W}) is another kernel smoother

N
D JTi=L C=9Ku(W; = W)
. * i=1
”.x‘I(Wj )=

N

D Ku(W; = W)
i=1

The proposed estimator £ is therefore the solution to the score equation dl(8)/94 = 0. Estimates
can be obtained through the Newton-Raphson iterative procedure. A consistent estimator

var(B) for the variance matrix of 4 can be obtained using large sample properties. A simple ad

-1/3
v

hoc bandwidth selection ~=2W*n_ /> can be used, where 6y is the estimated standard

deviation of W*,

W+ is a Discrete Variable
In the case of discrete W*, an analogous estimator can be obtained by replacing the kernel

function Kx(W; — W) with an indicator function I[w;—w;r Specifically, when W} for j € Vg
contains only discrete components with possible R levels, we estimate P4(YjlZj ,Wj) by

Py(Y 12, W)= [Pa(¥ 1, Z)) A1) ) T )G u(xw)}
s 1

D PoXiZ)]

R K 5
— o L€Vl
=20 W) :

s=11=1
i€V (7)

where

Biometrics. Author manuscript; available in PMC 2010 June 29.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wang and Zhou

Page 7

24[)’ /(_sw*uj

i€V

gl -
Wr=wi1

i€V

T(W))

The inference on / can be carried out the same way as outlined in the continuous case.

Asymptotic Properties

The asymptotic properties of the proposed estimator /8 for continuous W* are summarized in
the following theorems. We assume that forr=1, ... R, k=1, ... \K,andas N — oo, ny/N —
#rk > 0 and My /N — 7y — drk, Where e = P(Y = k,C =).

Theorem 1. (consistency) Under regularity conditions let £ denote an estimate of 4 that solves
the score equation ol(5)/0p = 0, where a kernel estimate of Ps(Y|Z, W) with the bandwidth h

satisfies NhZ — o and Nh* — 0, then £ is a consistent estimate of 4 such thatg %, g.

Theorem 2. (asymptotic normality) Under regularity conditions, the proposed estimator /5 has
an asymptotic normal distribution

VWG~ N, Y)

with the variance matrix

.= (ﬂ)+ZZ "1 ‘B B ®),

s=1 =1 (9)

where

B 8210gPﬁ(Y|X,Z)] [ﬁzlogPﬁ(YIZ, W)]
1(B)=— B | ————— |+ — d)Ek | ——————|¢»
B Z; {m k | Py Tk — Gri) Eri pyo™

Z‘]var {ZZ(I - _)E:k [T (WD)S 4, IWF ] }

s _ 9Ps(YIX.2)/9B de(YIX Z)|op
X.W; = T PR(YIZW) [Pp(YI1Z.W))?

I

Pp(Y|X,Z),

and E(.)denotes a conditional expectation given Y =k,C =r.

Theorem 3. (consistent variance estimator) A consistent estimator for the asymptotic
covariance-variance matrix in (9) is

S BT (ﬁ)+NZZ "1 ‘B> BTG

s=1 =1 (10)

where
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B)=-=—=. ) (B=TarX; (S, . i€ Vy

1058 <
N (')ﬁ(?ﬁl ,

where ag(B) is the sample variance matrix of S y.w-+ I € Vitlwith

R K — .
5 ke — . |OPs(Y||Xi,Z))|0B  OPg(Y;|Z;, W;)|0B
Sx,».w‘_* = ZZ Z N_kﬂ"k(Wi) fj J J _ f Nz, W, 2
r=1 k=1jeV,.k rk Pﬁ(lezl’ W/) lPﬂ(lezj’ WJ)I
R K
xPy(Y X, Z))| Kn(W’ = W)} / {ZZ > KW - W;}.
r=1 k:ljevrl\

A sketch of the proof is given in the Appendix, available as supplementary material. The
asymptotic properties of the proposed estimator for discrete W* can be similarly stated.

4 Simulation Study

Simulation is conducted to evaluate the performance of the proposed estimators. The outcome
Y is generated according to a logistic model

exp(Bo+p1X+B22)
l+exp(Bo+B1X+B2Z) (11

Py(Y=1|X,Z)=

Xand Z are independently generated from a standard normal distribution. Let W = X + € where
€ ~ N (0, 4) which corresponds to corr(X, W) = 0.45. Let C=1if W € (—oo,1] and C = 2 if
W € (1, ). Notice that W* = W under this setup.

At first, we examine the statistical efficiency of the proposed estimators under three
subsampling designs: SRS, ODS and OADS. In the SRS design, the ny, subjects consist of a
simple random subsample from the study cohort of size N. In the ODS design, the ny subjects
consist of an outcome-dependent subsample of the study cohort with ny/2 subjects from each
of the two strata defined by {Y =0, 1}. In the OADS design, the ny subjects consist of an
outcome and auxiliary-dependent subsample of the study cohort with ny/4 subjects from each
of the four strata defined by {Y,C} = (0, 1), (0, 2), (1, 1), (1, 2).

Four estimators are compared: P4 denotes the proposed estimator for continuous W* assuming
the OADS design; P, is the counterpart of P4 for discrete W* assuming the OADS design;
ES, is the estimated likelihood estimator for discrete W* assuming the SRS design (Pepe &
Fleming, 1991); ES; is the estimated likelihood estimator for continuous W* assuming the SRS
design (Carroll & Wand, 1991). For kernel-assisted estimators P; and ESy, a logistic
transformation is applied to W* to mimic the likelihood score of EGFR mutations and to
stabilize the algorithm. Also, for these estimators, a simple ad hoc method is used to choose

2
W

the smoothing parameter such that h=2W*n;'/* where &
the subjects in V.

is the sample variance of W* for

Table 1 shows the mean of 1 (Mean) and the standard deviation of £y (SE) from 1000
independent runs. In (a), where N = 3000, ny = 240, g = —2.5, 1 = log(2) = 0.693, 5, = 0.1,
the estimates from ES; and ES are consistent under the SRS design, but they are biased under
both the ODS design and the OADS design. This is understandable because these two
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estimators don’t take into the outcome-dependent nature of the subsample into account. In
contrast, those from P and P, remain consistent across all three designs. That is, the proposed
estimators are always unbiased regardless of the subsampling scheme. In addition, the table
shows that with a fixed size of the subjects in the subsample, the estimates of ES; and ES,
under the SRS design have larger variation than P, and P, under the ODS design, which in
turn have larger variation that those under the OADS design. This demonstrates that the OADS
design is a more efficient design than both the SRS design and the ODS design when the size
ny of subjects with observed X is fixed. In (b), where N = 1500, ny = 240, g =—1.5, 1 = 0.693,
> = 0.1, similar findings to (a) can be observed. Further simulation finds that the advantage
of the OADS design over the ODS design holds when there is substantial correlation between
W and X, although in some cases the relative efficiency gain is small.

Next, we evaluate the performance of the proposed estimators P4 and P, under the OADS
design relative to competing methods. Four competing methods are considered: (i) CC is the
naive method that only analyzes data from the OADS subsample; (ii) WL denotes the weighted
likelihood method that employs the Horvitz-Thompson weighting (e.g., Flanders & Greenland,
1991; Zhao & Lipsitz, 1992); (iii) CL denotes the conditional likelihood method (Breslow &
Cain, 1988) that models the conditional probability of selecting a subject into the OADS
subsample; (iv) BH denotes the semiparametric method studied by Breslow & Holubkov
(1997). The last three methods were proposed for a two-stage study. To apply them to the
OADS design that we consider, one needs ignore the auxiliary variable W and the covariates
Z from those subjects who are not in the OADS subsample.

Table 2 lists the results for the cases with 36 and 60 subjects from each of the four strata defined
by Y x C in a study cohort of size N = 900 and N = 1500, respectively. This corresponds to
16% of the size of the OADS subsample relative to the size of the study cohort. Data are
generated using the same model and parameters as Table 1(b). All estimators yield consistent
estimates for the regression parameters Sy, 51 and B,. As shown by the smaller standard errors
of $1,P1,P, and BH are constantly more efficient than CC, WL and CL, while P1 tends to be
the most efficient. It is worth pointing out that CC yields consistent estimates for #1 and >
only because a logit link function is used in simulation. Prentice & Pyke (1979) showed that
valid estimates of model parameters in a logistic regression can be obtained from case-control
data by fitting the model as if the data were obtained for a prospective study. As a reference,
AL gives the results from the hypothetical situation in which all subjects in the study cohort
have X observed. In addition, we notice that P, and P yield more precise estimates for f, than
do the competing methods. Increasing the sample size, especially the size of the OADS

subsample, will improve estimation precision. The variance estimator j7z7-(3) for the proposed
method perform well with the relatively small size of the OADS subsample. The coverage of
the 95% confidence interval based on the proposed variance estimator is close to its nominal
level.

Similar patterns are observed for different combinations of (N, ny/) in the OADS design. Table
3 shows the efficiency gain on ; for various estimators. SE is the simulated standard error of
S1 and SER% is the percent reduction SE relative to that of CC at (N = 900, ny = 72), which
yields the largest SE. For each OADS design, the proposed estimators P, and P4 outperform
the competing estimators, although the efficiency for BH could be very close to P, when N
and ny get bigger, e.g. for (N = 1500, ny = 240). Also, bigger N or ny, generally yields more
accurate estimates of 1. However, it is interesting to notice that for P, and P, the combination
of (N = 1500, ny = 120) yield slightly higher percents of SE reduction on £ than those of (N
=900, ny = 144). This suggests that the proposed estimators can better utilize the information
about X contained in W for all subjects of the cohort than other methods do.
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We conclude that the proposed estimator P1 performs well in analyzing data from the OADS
design in finite samples; the estimates from the proposed estimator are unbiased and the
proposed variance estimator yields good nominal coverage from a 95% confidence interval.
Compared with competing methods, it yields more efficient estimation on the effect of the
biomarker X as well as those for other covariates Z.

When the auxiliary variable W is continuous, we further explore the sensitivity of choosing
different cutoff points on W via a simulation study. To simplify the problem, we assume C =
1if W € (-, ¢q] and C = 2 otherwise and a balanced allocation of subjects among the four
strata defined by Y x C.

Again, we generate data under the similar setting as Table 1(b). X and Z are independent
standard normal variables and W = X + € where € is a standard normal error. The cutoff point
c1 on W varies from 0.0 to 1.75 by a step of 0.25 such that subjects with extremely high X have
an increasing chance of being selected into the second-stage subsample. As shown in Figure
1, the efficiency gain by over sampling extremely high X is not monotonically increasing, as
evidenced by the standard errors of all estimators decreasing as ¢; moves from 0.0 to 0.75,
reaching a minimal value when ¢4 is around 0.75 ~ 1.0, and increasing again as ¢; moves away
from 1.0. The patterns are consistent across different strengths of correlation of X and W, as
seenin (a): € ~ N(0, 9) and corr(X,W) = 0.32 and (b): € ~ N(0, 4) and corr(X, W) = 0.45. This
suggests that to achieve a bigger efficiency gain it is not necessary to set the cutoff point at
highly extreme values; the 60% — 70% percentiles of the auxiliary distribution W may be a
good choice. This finding is important in guiding investigators not to choose extreme cutoff
points on W; extreme segmentation will not only introduce difficult in ascertaining subjects
with extreme values of W but also may lower estimation efficiency. At a 65% percentile cutoff
point on W, we also investigate via simulation the effect of unbalanced allocation of subjects
among the strata defined by outcome and auxiliary. It is found that equal allocation tends to
give the best efficiency for £. The phenomenon that a better efficiency is achieved at equal
allocation was reported by other authors such as Breslow & Chatterjee (1999). For both
simplicity and efficiency consideration, we recommend balanced allocation among the OADS
strata.

5 Data Example

In the Introduction section, the EGFR mutations example is used to illustrate the outcome and
auxiliary-dependent subsampling (OADS) design. This proposal is under review by the lung
cancer EGFR consortium such that no dataset is available for analysis. Instead, we illustrate
the proposed method using a dataset from another study, CALGB 9761 (Maddaus et al.,
2006). The researchers investigated whether the presence of occult micrometastases (OM) in
histologically negative lymph nodes is associated with faster cancer recurrence among stage |
non-small cell lung cancer (NSCLC) patients following surgical resection. The standard
treatment for stage | NSCLC is surgical resection, but a considerable proportion of these
patients are at high risk of cancer recurrence and a subsequent death within 2 years. It is
hypothesized that the poor survival of these patients is due to the presence of occult
micrometastatses (OM). Reverse transcriptase-PCR (RT-PCR) is a molecular technique which
is considered a sensitive measure on the level of tumor specific MUC1 mRNA in negative
lymph nodes. A total of 207 eligible patients were registered and had their OM measured by
RT-PCR. All 207 patients were followed for cancer recurrence for at least 5 years. Baseline
patient characteristics were captured, including age, performance status, race, sex, histology,
pathological stage and smoking status. The extent of OM measured by RT-PCR (PCR) is of
primary interest, which is measured on a 1-7 intensity scale with 1 “absolutely no signal” to
7 “very strong signal”.
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Since CALGB 9761 doesn’t have an OADS design, to illustrate the proposed method, we first
augment the original dataset by resampling it into a large cohort of 890 patients, which
predominantly consists of patients who were cancer recurrence free within 2 years of follow-
up (70%) and patients who absolutely have no signal of OM detected by RT-PCR (PCR > 1)
(83%). We also create an auxiliary variable W, which is the predicted likelihood score of
observing PCR > 1 and is computed according to a logistic regression model for all 890 patients.
The predictors included in the logistic model are the OM measured by immunohistochemistry
(IHC), female, age, adenocarcinoma and non- or former smoker. The IHC method is considered
a less sensitive but much cheaper measure for OM. As shown in Table 4, we generate an
illustrative data structure with three sampling components: SRS, OADS and V. The SRS
subsample consists of a random sample of 60 patients. The OADS subsample includes all 256
patients who had cancer recurrence within 2 years and all 60 patients who remain cancer
recurrence free for more than 2 years but have a high likelihood score (> 0.70) for observing
PCR > 1. The V consists of the rest of 524 patients.

Table 5 lists the results of analysis of five estimators. Besides the extent of OM measured by
RT-PCR (PCR), other covariates in the logistic model include age, race (non-white vs. white),
performance status (2 vs. 0,1). Other baseline variables are not significant and are excluded
from the final model. The continuous variables are age and PCR. Age is centered at its mean.
The weighted likelihood method (W L) is the least efficient in estimating the PCR effect, which
is contrary to the simulation result and may be caused by some peculiarity of the illustrative
dataset. As evidenced by their narrower 95% Cls on the odds ratios for the PCR, the methods
CL and BH yield more efficient estimates than the method CC. Notice that the efficiency gain
is only observed for the PCR effect while the standard errors of other covariates are largely
unchanged. This makes sense because W is strongly correlated only with the PCR. The
proposed method P is the most efficient among all methods both for the PCR effect of
(OR=0.940, 95%ClI: 0.877-1.007) and all other covariates. The analysis suggests that the extent
of OM measured by RT-PCR (PCR) is not significantly related to cancer recurrence within 2
years of surgical resection. Those patients who are non-white (OR=0.236, 95%Cl: 0.184—
0.302) and have lower performance status (OR=0.649, 95%ClI; 0.543-0.775) and older age
(OR=0.836, 95%ClI: 0.802-0.872) have lower odds for remaining cancer recurrence free within
2 years than their counterparts without these features. We notice that these findings are
consistent with those from the analysis based on the original dataset.

6 Discussion

Our work is motivated by the need for developing an efficient method to determine that non-
small cell lung cancer patients with EGFR mutations benefit much more from being treated
with EGFR inhibition drugs. We developed an estimated likelihood method to accommodate
the OADS design as illustrated in the motivating example. Nevertheless, it is worth noticing
a potentially broader applicability of the proposed method. For example, the proposed method
can be used to evaluate the role of biomarker in predicting clinical outcomes in an observational
study as well as to evaluate the treatment effect for patients with positive biomarker in an
randomized clinical trial. For the later setting, see Baker and Kramer (2005) for more examples
and discussion. The method is also applicable to studies in which the problem of missing or
mismeasured covariates exists as long as P(d = 1|//Y,W,X,Z) = P(6 = 1|Y,W,Z) holds where ¢ is
the selection indicator.

In the presentation, we assume the existence of an auxiliary variable W that is correlated with
the expensive or invasive biomarker X, and W is conveniently available to all subjects of the
study cohort. Efficiency gain can be achieved by utilizing the auxiliary variable W in study
design. As compared to an outcome-dependent subsampling (ODS) and a simple random
subsampling (SRS), the outcome and auxiliary-dependent subsampling (OADS) generally
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improves the efficiency in estimating the effect of the biomarker X with a subsample of a fixed
size. Besides the role of the auxiliary variable W in study design, additional efficiency gain can
be achieved by incorporating the auxiliary variable W in statistical inference. The proposed
estimator is studied under two cases. When the auxiliary variable W is continuous, a
nonparametric kernel smoother is used to estimate the unknown quantity of the likelihood. We
derived asymptotic distribution theory for the proposed estimator when the auxiliary variable
is continuous and the optimal bandwidth rate is applied. The ad hoc bandwidth used in the
simulation is a convenient choice. In analyzing real data with continuous auxiliary variable, it
is useful to consider some bandwidth selection criteria such as the generalized cross validation
(GCV). Boundary points are not a big problem based on our simulation, but one may consider
a boundary kernel (Eubank, 1999) or the locally linear smoother (Fan, 1992). When the
auxiliary variable W is discrete, we show that a similar empirical estimator based on the level
of the auxiliary variable W applies and similar asymptotic properties hold. As compared to the
competing methods developed for the two-stage studies, the proposed estimator uses the exact
value of the auxiliary variable W, allowing a more precise estimation of the unknown quantity
P(Y|Z ,W) and consequently a better precision for the estimates of regression parameters. Also,
the proposed estimator is able to incorporate the information of the model covariates Z from
the subjects not being selected onto the subsample, resulting in a considerable efficiency gain
in estimating the regression parameters of Z.

When W* has multiple continuous variables, a multivariate kernel smoother has to be used to
estimate G(X|W*). For the reason of curse of dimensionality, the proposed method will not
work well if the dimension of the kernel smoother is high (e.g. p > 3). One way to avoid the
potential issue due to high dimensionality, the auxiliary variable can be created using a
predicted model with possible multiple predictors, such as the predicted likelihood score of
EGFR mutations in the motivating example, such that a single dimensional kernel smoother
is applicable. Finally, we should point out that although it is desirable to have the auxiliary
variable W as a stratification factor in subsampling and as an intermediate variable for the
proposed estimator, the existence of an auxiliary variable for the biomarker of interest is not a
perquisite to use the proposed method.
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